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ABSTRACT

When users initiate search sessions, their queries are often unclear
or might lack of context; this resulting in inefficient document
ranking. Multiple approaches have been proposed by the Informa-
tion Retrieval community to add context and retrieve documents
aligned with users’ intents. While some work focus on query dis-
ambiguation using users’ browsing history, a recent line of work
proposes to interact with users by asking clarification questions
or/and proposing clarification panels. However, these approaches
count either a limited number (i.e., 1) of interactions with user or
log-based interactions. In this paper, we propose and evaluate a
fully simulated query clarification framework allowing multi-turn
interactions between IR systems and user agents.

CCS CONCEPTS

« Information systems — Users and interactive retrieval.
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1 INTRODUCTION

Understanding information need is a long-standing issue in Infor-
mation Retrieval (IR) [10, 17, 34], often highlighted by the difficulty
for users to formulate open-ended information needs into queries.
Queries are thus often under-specified and/or ambiguous [17]. De-
pending on the user or the context, the same query may refer to
different intents. For instance, the query "Orange" may refer to
several topics, including company names, locations, songs titles, ...
To tackle this issue, numerous works have been proposed. One first
line of work relies on query reformulation [3, 21, 33, 44] where the
objective is to rewrite the query. A lot of effort has been provided
by designing models based on either (pseudo-)relevance feedback
[3, 21, 33] or external knowledge resources [44]. But recently, the
advances in machine translation models and in large language
models have turned this task into a query generation task [11, 13].
Another category of work focuses on search/query diversification
[1, 6, 8, 23, 25] to increase the query coverage, particularly when
the query is multi-faceted. While early search result diversifica-
tion work have designed or derived the Maximal Margin Relevance
(MMR) model [8], other techniques such as document clustering 1]
or document-driven voting scheme [12] has been used to retrieve a
diversified list of documents. Recently, MacAvaney et al. [23] have

proposed to focus on query diversification by generating queries
by designing a Distributional Causal Language Modeling. However,
for all these diversification techniques, the issued document list
might include some top-ranked documents that do not match with
the user’s intent [37]. This highlights the need to clarify users’
queries before retrieving documents. A last category of work aims
to leverage search history to infer user’s profile or session context,
with the objective to ground the initial query [4, 15, 20, 24, 39]. By
encoding short-term behavior or long-term behavior as features
of the ranking model, these methods manage to retrieve more per-
sonalized documents. But, these approaches might be limited by
the user’s behavior’s variability over time [42]. In parallel, neural
ranking models, such as [16, 19], have increased their performance
due to the fine-grained capture of queries and documents seman-
tics. Nevertheless, the query ambiguity is often inherent to users,
increasing the need to place the user at the center of the IR process.

A promising approach has been proposed in [2] to clarify infor-
mation needs by proactively interacting with the user. The authors
propose a conversation framework that consists in generating clari-
fying questions when the query is ambiguous. Clarifying questions
might be query reformulation (e.g., "Would you like to know how
to care for your dog during heat?" for the initial query "dog heat" as
in [2]) or questions with possible options (e.g., "what do you want
to know about this british mathematician? Options: movie, suicide
note, quotes, biography" for the initial query "alan turing" as in
[41]). With this in mind, the classic workflow for asking clarifica-
tions is based on three main steps [2]: 1) the IR system produces
a clarifying question for the user, 2) the latter provides an answer
or selects an option, and 3) the IR system ranks documents ac-
cording to the user’s feedback. The pioneering work [2] aims at
generating clarifying questions by 1) retrieving a predefined set of
questions using a Bert-based model and 2) at each turn, selecting
the best query through a conversation history-driven model. The
user’s answer corresponds to a predefined text built using crowd-
sourcing. One drawback of this approach is that the multi-turn
conversation is log-based, interactively simulated using predefined
logs of conversation history (i.e., sequence of questions/answers
obtained by HITS). This simulated conversation defined a priori
without interaction with the proposed question selection model
might hinder the evaluation performance in the sense that we are
not sure about the soundness of the conversation flow. Other work
[14, 28, 35, 38, 41] tackle this issue by proposing generative models,
that create clarification question or query suggestions. But they do
not address the multi-turn framework, stopping the clarification
process at the first interaction.

In this paper, we propose to build a fully simulated query clar-
ification framework allowing multi-turn interactions between IR



and user agents. Following [2], the IR agent identifies candidate
queries and ranks them in the context of the user-system inter-
actions to clarify the initial query issued by the user agent. We
particularly target simple information needs, multiple information
needs are let for future work since it might impact the modeling of
the query ranking function. Our framework can be seen as a basis
and a proof-of-concept for future work willing to integrate sequen-
tial models (namely reinforcement learning models) for question
clarification. It is worth noting that large language models relying
on attention mechanisms (transformers) are not yet well suited to
handle sequential interactions and long-term planning, as current
models are hardly trainable with current reinforcement learning
algorithms [9]. Therefore, all agent components in our framework
are based on continuous and simple models. To validate our simu-
lation framework, we conduct an experimental analysis on the MS
Marco dataset. We show the benefit of multi-turn interactivity and
evaluate the effectiveness of different question selection strategies.

2 QUESTION CLARIFICATION SIMULATION
FRAMEWORK

2.1 Overview and Research Hypotheses

Our query clarification simulation framework is inspired from [2],
but provides the possibility of leveraging user-system agents’ inter-
actions sequentially. More particularly, our framework is illustrated
in Figure 1 and relies on the following workflow:

o A) The user issues an initial query qo associated to her/his
information need i to the IR system.

o B) The IR system generates a set Q = {q1, q2, ..., gm } of candi-
date queries which might express different query reformula-
tions or diversified queries to better explore the information
need i.

o C) The IR system selects N queries to display to the user. To
do so, we propose to follow [2] and design a model ranking
the candidate query set Q to identify the top N queries.

e D) The user selects one of the N queries, enabling to extract
positive and negative feedback, resp. noted (q*,q7).

e Steps C) and D) can be repeated several times to model multi-
turn interactions. The query set ranking function (step C)
integrates the user’s sequential feedback (g%, ¢~) to improve
the query ranking along with the interaction simulation.

e E) After T turns, the IR system considers the best ranked
query as the optimal query reformulation and runs a ranking
model to retrieve documents.

The design of this evaluation framework is guided by some
choices/research hypothesis.
o First, following [2], we consider a fixed set of candidate queries
O = {q1,92, ... qm} constituting the reformulation of the initial
query qo. All the interactions are leveraged to improve step by step
the ranking of this candidate query set so as, at the end of the
session, the final query used for retrieving documents is a good
clarification of its initial one. Obviously, this means that the set
of candidate queries includes a large variety of queries which, for
some of them, improve the search performance.
o Second, following [41], we propose to model question clarification
as a possible option between two reformulated queries. In other
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Figure 1: Query clarification simulation framework

words, expressed in natural language, the IR system agent would
ask the user agent the following question: "Which reformulated
query do you prefer? A or B". This implies that the user is willing
to judge queries A or B regarding its information need.
e Third, guided by the motivation to propose a framework for
future work on sequential models, we consider here that each agent
component is modeled at the embedding level. Indeed, leveraging
large language models for generating/ranking questions is very
effective, but integrating them into reinforcement learning models
is still challenging (one main reason being the computational cost).
This means that we processed a priori all queries and documents
to represent them using text embeddings. This processing is done
offline, alleviating the sequential modeling of the text encoding.
In what follows, we present the different components behind the
IR system and user agents.

2.2 The IR System Agent

The IR agent has three objectives in our framework: 1) generating
the set of candidate reformulated queries willing to be presented to
the user, 2) ranking this set to identify the most relevant queries
according to the interaction history, 3) ranking documents using
the best-ranked query (ending the interactive session).

Generation of the candidate reformulated query set. The objective
here is to instantiate various and diverse reformulation covering
a wide range of relevant topics for the initial query qo. Different
techniques might be used, leveraging large language models [27, 31,
32], query diversification [6, 23, 40] or query expansion [29]. We
propose here to use the T5 model [31] which is designed to translate
token sequences into other token sequences. It has already been
used for query reformulation tasks, demonstrating its ability for
our approach [9, 22, 31]. On the top of that model, the generation
process is driven by beam diversity [36] which aims at generating
a set Q of diversified query reformulation, Q = {q1,q2, ..., gm }-



Ranking of queries based on the interaction history. The role of
the selection policy is to select queries used to interact with the
user agent. Following [2] which proposes to rank queries according
to both performance criteria and the interaction context, we use a
conditional ranker [5] which computes a pairwise score between
two candidates queries given the context, namely the initial query
qo and the additional information provided by interaction with the
user. Let g; and g be the candidate queries with their supervised
effectiveness scores, resp. y;, yj. The ranking model relies on:

P(y; > yjlq, qi, qj, feedbacks—1, ..., feedbacky) (1)

For sake of simplicity, we assume that each query (initial or candi-
date) are represented through text embeddings. In the following, q
refers to query embedding and d to document embedding.

In practice, the ranking model estimates a score for each query g;
and g; given all the context, {q, gi, q;, feedback;—1, ..., feedback; }
and then compare these scores to identify which one is the most
relevant. feedback; corresponds to selected or not selected queries
(resp. ¢t and q7) by the user agent at interaction turn t. These
queries are concatenated as follows: feedback; = (gq*,q”) and
feedback overall interaction turns are aggregated, the whole process
using a Hierarchical Recurrent neural network (RNN) to encode
at the interaction level and also the sequence of interactions. Note
that queries g* and g~ are encoded differently using resp. a cosin
and sin function. Moreover, we do not encode the position in which
each query is presented to the user agent, as this latter does not
have position bias on the clarification query selection.

Final ranking of documents. Documents are retrieved with the
top ranked query using a Dense Retriever model [16].

2.3 The User Agent

After issuing the initial query qo, the user agent interacts with the
IR system agent to refine her/his information need. With this in
mind, we hypothesize that the user is greedy toward her/his intent
and fully cooperative. Therefore, he always selects the preferred
query as the most similar to the intent. Despite being unrealistic,
we ignore the click bias problem for clarification panel presented
in [42, 43] (as mentioned earlier). Other choices for user simulation
could be done, following [7], but we let these variations for future
work.

In practice, let d be a user intent, ¢; and gq; the clarification
queries presented to the user agent. The user agent selects the
best query (noted g* for highlighting positive feedback from the
user) according to a similarity metric (in our case, the dot product)
between the proposed queries g; and q; and intent d:

q" = argmaxq, ({qi.d)) @

The non-selected query, g~, expresses negative feedback.

3 EVALUATION PROTOCOL

Evaluating our simulation framework consists in measuring the
effectiveness of the final ranking after T clarification interactions.
Since the user behavior is greedy and follows a simple behavior
dependent on the query selection process, the effectiveness results
mainly denote the quality of this latter component. Other compo-
nents (candidate set generation and final document ranking) do not

depend on the interaction feedback, so we mainly focus on under-
standing whether the selection policy integrates users’ feedback
and takes good decisions to select the N clarification questions.
For reproducibility, the code of our simulation framework and the
evaluated baselines/scenarios will be released upon acceptance.

3.1 Dataset

We carry out our experiments on MS Marco 2020 passages which re-
groups 8.8M passages and more than 500K Query-Passage relevance
pairs. Following [26], we evaluate our model on 2 sets. The small
test set (43 queries) and a subset of the dev set (1000 queries sam-
pled from 59 000). One motivation to consider these two datasets
is their difficulty level: in the dev set, only one passage per query
is labeled relevant in the ground truth, while several passages are
considered as relevant in the test set.

3.2 Baselines and Scenarios

To evaluate the effectiveness of our selection policy component, we
compare with:

(1) Non-interactive settings to show the gain of interacting with
users. We measure the ranking effectiveness of the user’s initial user
query (noted User Query), the Best Reformulation in the candi-
date query set - which can be seen as an oracle, and the MonoT5
Documents re-ranker which acts as a strong ranking baseline [30].
This model is a pointwise ranking, estimating relevance scores for
query/document pairs. This model relies on a large sequence to
sequence language model pretrained on various task [31]. Please
note that using this model for the selection policy, and therefore
integrating user’s feedback, is not obvious since this is a seq2seq
pointwise model, labels associated with queries are binary (relevant
or not) and has to be grounded relative to a value. For that reason,
we only consider its non-interactive scenario.

(2) Naive interactive selection: At each step, we select the 2
top ranked queries from the current query rank and then remove
the query which has not been selected by the user agent. The re-
ranking of the candidate query set is only carried out once, at the
beginning of the session, and the size of this list decreases with the
interaction number.

To instantiate the selection policy after each interaction-driven
query ranking step (step C in Figure 1), we consider these scenarios:

(1) Interact. + Random Sampl: we sample 2 queries from the
ranked candidate query set to constitute the interaction pair.

(2) Interact. + Top 2: we select the top 2 query reformulations
at each turn.

(3) Interact. + random sampl@5: we randomly select 2 queries
among the top 5 query reformulations at each turn.

(4) Interact. + Kmeans selection: At each turn, queries in
the candidate set are clustered in 2 groups using Kmeans. Queries
from each cluster are ranked by the model. The best-ranked query
from each cluster is then selected for interaction with the user. The
cluster of the query not selected by the user is removed for the next
turn from the set of candidate queries. This strategy corresponds
to a refinement strategy, removing a group of semantically similar
queries that have not been chosen by the user and going deeper in
the other cluster.
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Figure 2: Effectiveness score of query reformulation by rank.

3.3 Model Implementation

All queries and passages embeddings are pre-computed using the
Dense Retriever proposed by [16]. Embeddings are stored and in-
dexed using faiss HSWN32 index [18]. The candidate query set
is generated by diversity beam with a group penalty equal to 0.6.
The size of the candidate set is of 64. The number of queries dis-
played to the user agent is set to N = 2. For the model hyper-
parameters, we use batches of size 128, the optimizer is Adam
(f1 = 0.9, B2 = 0.99) with weight decay (= 0.01). We use batch nor-
malization and dropout (p = 0.3) between each layer. The learning
rate is set to 1 x 1074,

4 RESULTS

4.1 Preliminary Analysis

We present here a preliminary analysis to quantify the potential
retrieval performance gain of the candidate query set within the
question clarification step. To do so, we compare the performance
of different query rankings: 1) the candidate query generated by the
T5 model ranked by decreasing order of likelihood resulting from
the Diversity Beam search (without application of our ranking func-
tion); 2) the Oracle corresponding to the candidate query set ranked
in a decreasing order according to their performance according to
Mean Marginal Rank metric in the ground truth. We emphasized
that this Oracle curve shows the performance of our T5 model at
generating search oriented reformulations. 3) The MonoT5 ranking
corresponding to candidate queries re-ranked by MonoT5. Figure 2
illustrates the performance of queries depending on their rank in
the different mentioned lists. From Figure 2, we can see that ranking
queries with MonoT5 allows to improve the performance for the
top k queries (MonoT5 vs. Output Generator). This has a negative
effect for the end of the list, but it is not critical in our case, since
we consider selection policy regarding the top query list. Moreover,
one can notice that, although performance are increased, there is
still a gap between the curve of the MonoT5 ranked list and the
Oracle curve. Our intuition is that leveraging users’ interactions
will lower this gap, which leads to the evaluation we performed in
what follows.

‘ No interaction | 1 2 3 4 5

mrr@10 0.4554
User Query map@10 0.3382 -
. mrr@10 0.8720
Best Reformulation map@10 0.5646 ~
mrr@10 04713
Monot5 (query ranker) map@10 0.3200 - R R - R
Naive selection mrr@10 0.2135 0.3270  0.3597 0.4036 0.4191 0.4271
map@10 0.1222 0.1943  0.2205 0.2553 0.2688 0.2766
Interact. + random sampl mrr@10 0.4031 0.4786 0.4814 0.4903 0.4814 0.5019
map@10 0.2531 0.3344 0.3413  0.3529 0.3480 0.3685
Interact. + Top 2 mrr@10 0.4031 0.4746  0.4693 0.4903 0.4786 0.5019
map@10 0.2531 0.3294 0.3436  0.3520 0.3471 0.3428
Interact. + random sampl@5 mrr@10 0.4031 0.4734  0.4670 0.4903 0.4798 0.5019
map@10 0.2531 0.3287 0.3420 0.3517 0.3469 0.3451
Interact. + Kmean mrr@10 0.4031 0.5232  0.4658 0.4692 0.4863 0.5515
map@10 0.2531 0.3706  0.3207 0.3402 0.3181 0.3347

Table 1: Effectiveness results on the Test set of MS Marco
passage 2020 (43 queries - multiple relevant documents per

query)

‘ No interaction ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
User Query mrr@10 0.2090 - - - -
Best Reformulation mrr@10 0.4119
Monot5 (query ranker) mrr@10 0.1557 - - - - -
Naive selection mrr@10 0.1228 0.1513  0.1659 0.1767 0.1866 0.1911
Interact. + random sampl mrr@10 0.1719 0.2012  0.1990 0.1954 0.2003 0.2016
Interact. + Top 2 mrr@10 0.1719 0.2020 0.1987 0.1973  0.2017 0.1990
Interact. + random sampl@5 | mrr@10 0.1719 0.2020 0.1983 0.1966 0.2007 0.2008
Interact. + Kmean mrr@10 0.1719 0.1748 0.1984 0.2016 0.2158 0.2224

Table 2: Effectiveness results on the subset of MS Marco pas-
sage 2020 dev set (1000 queries - 1 relevant document per

query)
4.2 Effectiveness Results

We analyze here the performance of the query ranker at different
interaction turns using mmr@10 and map@10. Tables 1 and 2 resp.
show the results on the MS Marco passage 2020 test set and dev set.
From a general point of view, we can see that performance metrics
are lower for the dev set than for the test set. This can be explained
by the task difficulty, which is higher for the dev set in which only
one document per query is assessed as relevant. By comparing all
baselines and scenarios, we can outline the following trends. 1)
The first candidate query ranking within our interactive models
(No interaction columns) provides lower performance than non-
interactive baselines. For instance, the Interact. + Top2 scenario
observes a decrease of 12% in terms of mrr@10 for the test set
w.r.t. the initial user query. 2) But this trend is reversed with each
interaction turn to obtain for certain scenarios performance higher
than baseline ones (see all interaction models in the test set, and the
Interact + Kmeans for the dev set). 3) The interaction model with
Kmean strategy looks to be the best selection policy for question
clarification since it obtains the highest mrr@10 for both datasets.
This is somehow intuitive because this strategy might correspond
to a refinement strategy, going deeper and deeper into clusters. This
is also connected with the dataset peculiarity since MS Marco is
mainly composed mono-faceted questions in natural language.

5 CONCLUSION AND PERSPECTIVES

This exploratory work focuses on sequential click-based interac-
tion with a user simulation for clarifying queries. We provide a
simple and easily reproducible framework simulating multi-turn
interactions between a user and a IR system agent. The advantage
of our framework is the simplicity of interaction, as there is no need
for dataset of real and annotated user-system interactions. Experi-
ments highlight performance gain in terms of document retrieval
through the multi-turn query clarification process and provide a



comparative analysis of selection strategies. The next steps for this
work are: 1) leveraging reinforcement learning for the selection
policy. 2) test more diverse and more sophisticated user simulation,
as done in [7] for multi-faceted information needs.
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