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Abstract: Reaction F + H2S→SH + HF (1) is an effective source of SH radicals and an important
intermediate in atmospheric and combustion chemistry. We employed a discharge-flow, modulated
molecular beam mass spectrometry technique to determine the rate coefficient of this reaction and that
of the secondary one, F + SH→S + HF (2), at a total pressure of 2 Torr and in a wide temperature range
220–960 K. The rate coefficient of Reaction (1) was determined directly by monitoring consumption of
F atoms under pseudo-first-order conditions in an excess of H2S. The rate coefficient of Reaction (2)
was determined via monitoring the maximum concentration of the product of Reaction (1), SH radical,
as a function of [H2S]. Both rate coefficients were found to be virtually independent of temperature in
the entire temperature range of the study: k1 = (1.86 ± 0.28) × 10−10 and k2 = (2.0 ± 0.40) × 10−10 cm3

molecule−1 s−1. The kinetic data from the present study are compared with previous room temperature
measurements.

Keywords: fluorine atom; hydrogen sulfide; H2S; SH; kinetics; rate coefficient

1. Introduction

Reactions of atomic fluorine, as a rule, are extremely fast, with rate coefficients of-
ten approaching the bimolecular collision frequency [1]. The rapidity of the elementary
reactions of the F atoms arouses, in addition to theoretical interest, a practical interest
for these reactions, in particular for the generation of active species (atoms and radicals)
in laboratory gas-phase kinetic studies. For example, reactions of atomic fluorine with
H2O [2], H2O2 [3], CH4 [4], and HNO3 [5] are often used as a source of OH, HO2, CH3, and
NO3 radicals, respectively. In the present work we report the results of an experimental
study of the reactions of F atoms with hydrogen sulfide:

F + H2S→SH + HF (1)

Reaction (1) is a convenient and effective source of SH radicals, an important interme-
diate in combustion [6] and atmospheric chemistry [7]. The experimental study of the fast
elementary reactions of F atoms is challenging, in particular, due to the presence of a rapid
secondary chemistry. The secondary reaction, occurring in the F + H2S chemical system,

F + SH→S + HF (2)

was also investigated as a part of this study.
The kinetic information available for Reactions (1) and (2) is extremely scarce. There

are no data on the temperature dependence of the reaction rate coefficients. One theoretical
study [8] and only three relative [9–11] and one absolute measurement [12] of the rate
coefficient of Reaction (1) are available, all realized at room temperature. The reported room
temperature values of the rate coefficient differ by a factor of nearly 1.5. For Reaction (2),
there is only one previous measurement, also at room temperature [12].
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The objective of the present work was to determine the rate coefficients of the title reac-
tions over a wide temperature range, T = 220–960 K, in order to provide a new kinetic data
set for use in laboratory studies and, potentially, in theoretical reaction rate calculations.

2. Experimental

Experiments have been carried out at total pressure of 2 Torr of Helium in a flow tube
reactor, employed in the laminar flow regime (Reynolds number < 10), and combined with
a modulated molecular beam quadrupole mass spectrometer for the detection of the gas
phase species. The experimental setup has been used extensively in the past, in particular,
to study the kinetics and products of the reaction involving atomic fluorine [4,5,13–16].
Briefly, it consists of the gas introduction vacuum lines, the flow tube reactor, and the
differentially pumped stainless steel high-vacuum chamber which houses the quadrupole
mass spectrometer (Balzers, QMG 420, Balzers Aktiengesellschaft, Liechtenstein). Gas
phase molecules sampled from the flow reactor are modulated by a tuning-fork chopper
(35 Hz), ionized through impact with high kinetic energy electrons (18–30 eV, in this
study) emitted by the ion source of the mass spectrometer and detected using an electron
multiplier. Subsequently, the mass spectrometric signals are filtered and amplified with a
lock-in amplifier and recorded for further analysis.

Two different flow reactors were used depending on temperature of the kinetic mea-
surements. A low-temperature flow reactor covered the temperature range 220–320 K
and consisted of a Pyrex tube (45 cm in length, 2.4 cm i.d.) with an outer jacket through
which a temperature-regulated fluid was circulated. To minimize wall-loss of active species
(F atoms and SH radicals), the inner surface of the reactor as well as the mobile injector
were coated with halocarbon wax. A high-temperature flow reactor (Figure 1), used over
the temperature range 300–960 K, consisted of a quartz tube (45 cm in length, 2.5 cm i.d.),
where the temperature was controlled with electrical heating elements [17]. The tempera-
ture in the reactor was measured with a K-type thermocouple positioned in the middle of
the reactor in contact with its outer surface. A temperature gradient along the flow tube
measured with a thermocouple inserted in the reactor through the movable injector was
found to be less than 1%.
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Figure 1. High-temperature flow reactor: configuration used in the measurements of the rate
coefficient of reaction (1).

Fluorine atoms were produced by discharging trace amounts of F2 in He in a mi-
crowave cavity (microwave generator Microtron 2000, 75 W, 2450 MHz, Electro-Medical
Supplies Ltd., Wantage Oxfordshire England). To reduce F atom reactions with a glass
surface inside the microwave cavity, a ceramic (Al2O3) tube was inserted in this part of the
injector. It was verified by mass spectrometry that more than 95% of F2 was dissociated in
the microwave discharge. The fluorine atoms were detected either as FCl (FCl+, m/z = 54)
or as FBr at m/z = 98/100 (FBr+), after being scavenged in rapid reactions with excess Cl2
or Br2, respectively, added at the end of the reactor 5 cm upstream of the sampling cone:

F + Cl2→Cl + FCl (3)
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k3 = 6.0 × 10−11 cm3 molecule−1 s−1 (T = 180–360 K) [18].

F + Br2→Br + FBr (4)

k4 = 1.28 × 10−10 cm3 molecule−1 s−1 (T = 299–940 K) [14].
Absolute concentrations of F atoms were determined through their titration in Re-

actions (3) and (4) from the consumed fraction of Cl2 and Br2 ([F] = ∆[Cl2] = [FCl] and
[F] = ∆[Br2] = [FBr]), respectively.

A similar approach was used to monitor two other labile species, S atoms and SH radicals,
detected as BrS (BrS+, m/z = 111/113) and BrSH at m/z = 112/114 (BrSH+), respectively:

S + Br2→Br + BrS (5)

k5 = 9.5 × 10−11 cm3 molecule−1 s−1 (T = 298 K) [19].

SH + Br2→Br + BrSH (6)

k6 = 5.7 × 10−11 exp(160/T) cm3 molecule−1 s−1 (T = 273–373 K) [20].
Absolute calibration of the mass spectrometric signals of BrSH was carried out as

follows. First, the F atoms were titrated with an excess of Br2 in the main reactor, which
led to the formation of FBr ([FBr]0). Then, the same concentration of F atoms was titrated
with a mixture of Br2 and H2S resulting in the formation of FBr ([FBr]) and SH in Reac-
tions (4) and (1), respectively. In the presence of Br2, SH radicals are rapidly converted to
BrSH ([BrSH]) according to Reaction (6). The absolute concentration of BrSH was deter-
mined as [BrSH] = [FBr]0 − [FBr]. This calibration procedure avoids possible complications
due to the rapid self-reaction of SH radicals:

SH + SH→S + H2S (7)

k7 = 1.2 × 10−11 cm3 molecule−1 s−1 (T = 298 K) [21,22].
In several experiments, SH was detected directly at its parent peak (SH+, m/z = 33). In

this case, the SH signals should be corrected for the contribution of H2S at m/z = 33 due to
the dissociative ionization of H2S in the ion source of the mass spectrometer. At an electron
energy of 18 eV, the contribution of H2S at m/z = 33 was ≤4% of the intensity of its parent
peak (H2S+, m/z = 34).

The purities of the gases used were as follows: Br2 > 99.99% (Aldrich); Cl2 (>99%;
Ucar); F2, 5% in helium (Alphagaz); and H2S > 99.5% (Alphagaz). Absolute concentrations
of all stable species (H2S, F2, Cl2, and Br2) were derived from the measured flow rates of
their manometrically prepared gas mixtures. He (the carrier gas) was taken directly from a
high-pressure tank and had stated purity better than 99.999% (Alphagaz).

3. Results and Discussion
3.1. Rate Coefficient of Reaction (1)

The rate coefficient of Reaction (1), k1, was measured in an absolute way under pseudo-
first order conditions in an excess H2S over F atoms ([F]0 = (0.6–1.2) × 1011 molecule cm−3,
[H2S]/[F]0 = 2–35). The consumption of the excess reactant, H2S, in Reaction (1) generally
did not exceed a few percent, although reaching up to 20% in a few kinetic runs. In all
cases, the average concentration of H2S along the reaction zone was used in the calculations.
In this series of experiments, Cl2 ([Cl2] ≈ 4 × 1013 molecule cm−3) was added at the end
of the reactor (Figure 1) and F atoms were detected as FCl. In fact, measurements of
the very high rate coefficient of Reaction (1) required the use of low concentrations of F
atoms and the sensitivity of the mass spectrometer towards FCl was much better than that
of FBr. The concentration vs. time profiles of both F-atom and H2S were monitored by
changing the position of the movable injector (Figure 1). The distance between the injector
head and the Cl2 introduction point (5 cm upstream of the sampling cone) was converted
into reaction time using the linear flow velocity (2190–2830 cm s−1) of the gas mixture
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in the reactor. Figure 2 shows typical data obtained in this manner. The linearity of the
semilogarithmic plots in Figure 2 clearly illustrates that the F-atom decays are first order,
[F] = [F]0 × exp(−k1

′ × t), where k1
′ = k1 × [H2S].
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A linear least-squares fit of these data at each temperature gave the bimolecular
rate coefficient. A summary of the absolute measurements of k1 is given in Table 1. The
combined uncertainty on k1 was estimated to be around 15% by adding in quadrature
statistical error (≤2%) and those on the measurements of the absolute concentration of H2S
(~10%), flows (3%), pressure (2%), and temperature (1%). It is important to note that the
current measurements of k1 were not affected by the fast secondary Reaction (2), given
that the values of k1 and k2 are close (see below) and that [SH] ≤ ∆[F] << [H2S] under
experimental conditions of the measurements.

Table 1. Experimental conditions and results of the measurements of the rate coefficient of reaction (1).

T (K) a [H2S] b k1
c Reactor Surface d

220 0.11–2.87 1.94 HW
235 0.16–2.59 1.84 HW
250 0.19–2.26 1.86 HW
270 0.15–2.51 1.89 HW
295 0.27–3.13 1.84 HW
305 0.17–2.60 1.84 Q
320 0.13–2.95 1.85 HW
360 0.26–3.04 1.89 Q
410 0.16–2.03 1.89 Q
475 0.16–2.60 1.89 Q
575 0.14–4.44 1.83 Q
720 0.15–2.82 1.83 Q
960 0.17–3.21 1.84 Q

a 7–11 kinetic runs with different [H2S] at each temperature, [F]0 = (0.6–1.2) × 1011 cm−3. b Units of
1012 molecule cm−3; c units of 10−10 cm3 molecule−1 s−1; statistical 2σ uncertainty is ≤2%; total estimated
uncertainty is 15%; d HW: halocarbon wax; Q: quartz.

The present data for k1 are plotted as a function of temperature in Figure 4 together
with previous room temperature measurements [9–12]. In the single direct measurement
of k1, Schölne et al. [12] used an experimental setup similar to that of the present study
and determined the rate coefficient of Reaction (1) from the kinetics of H2S consumption in
an excess of F atoms, k1 (±1σ) = (1.28 ± 0.04) × 10−10 cm3 molecule−1 s−1. This value is
lower by a factor of 1.45 than the current measurement. Schölne et al. [12] also performed
several experiments with an excess of H2S relative to F atoms. The rate coefficient of
Reaction (1), determined under these conditions from the kinetics of HF formation, was
k1 (±1σ) = (1.7 ± 0.4) × 10−10 cm3 molecule−1 s−1, which agrees very well with the present
measurements. Smith et al. [10], measuring the relative HF infrared emission intensities
from the reactions of F atoms with different compounds, determined k1 relative to the rate
coefficient of Reaction (8), k1/k8 = 2.0 ± 0.2:

F + CH4→CH3 + HF (8)

k8 = 1.28 × 10−10 exp(−219/T) cm3 molecule−1 s−1 (T = 220–960 K) [4].
A much higher value for this ratio, k1/k8 = 3.2 ± 0.3, can be extracted from the work of

Williams and Rowland [9], who studied a number of competitive reactions involving thermal-
ized 18F atoms. Persky [11], monitoring the decays of H2S and CH4 in reactions with F atoms
in a flow reactor, determined k1/k8 = 2.35 ± 0.05 (±2σ). The relative rate data placed on an
absolute basis with recently updated k8 = 6.14 × 10−11 cm3 molecule−1 s−1 (T = 298 K) [4]
provide the following values for k1: (1.23 ± 0.25) × 10−10 [10], (1.44 ± 0.30) × 10−10 [11],
and (1.96 ± 0.40) × 10−10 cm3 molecule−1 s−1 [9] with 20% uncertainty including 15%
uncertainty on the rate coefficient of the reference Reaction (8) [4]. The last two values of k1
agree with the present measurements within the experimental uncertainties.
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Smith et al. [10]; open circles, Schölne et al. [12]; squares, Persky [11]; filled circles, this work.
Uncertainties shown for selected present measurements of k1 correspond to 15%.

The continuous line in Figure 4 represents an exponential fit to the present data:
k1 = (1.83 ± 0.03) × 10−10 exp((7 ± 4)/T) cm3 molecule−1 s−1 with statistical 2σ uncertain-
ties on the precision of the fit. The experimental data for k1 are also well described (dashed
line in Figure 4) with a temperature-independent value of k1 = (1.86 ± 0.28) × 10−10 cm3

molecule−1 s−1. We estimate the rate coefficient to be accurate within 15% over the investi-
gated temperature range 220–960 K.

3.2. Rate Coefficient of Reaction (2)

The rate coefficient of F-atom reaction with SH was determined relative to that of
Reaction (1). Kinetics of H2S and SH were monitored in an excess of F atoms over H2S.
An example of the observed kinetic runs is shown in Figure 5. The simulated concentra-
tion vs. time profiles shown in Figure 5 were obtained within a simple mechanism including
Reactions (1), (2) and (7) and wall loss of the active species involved, F + H2S→SH + HF,
k1 = 1.86 × 10−10 cm3 molecule−1 s−1 (this work); F + SH→S + HF, k2 = 1.90 × 10−10 cm3

molecule−1 s−1 (fit), SH + SH→S + H2S, k7 = 1.2 × 10−11 cm3 molecule−1 s−1 [21,22]:

F + wall loss k9 = 20 s−1 (this work) (9)

SH + wall→loss k10 = 35 s−1 (this work) (10)

S + wall→loss k11 = 120 s−1 (fit) (11)

The wall losses of F atoms and SH radicals were measured directly, monitoring the
loss of these species in the absence of other reactants in the reactor. When measuring k10,
the concentration of SH radicals (formed in Reaction (1) in an excess of H2S) was relatively
low (≈1011 molecule cm−3) in order to minimize the contribution of the SH + SH reaction.
Values of k10 measured at T = 220–960 K were in the range (20–35) s−1 with no notable
correlation with temperature.

The data in Figure 5 show that the reaction mechanism used for the simulation gives
an adequate representation of the chemical processes occurring in the reactor. The absolute
concentrations of S atoms (detected as SBr, see Section 2) were not measured in the study;
therefore, the corresponding experimental points in Figure 5 were simply scaled to the
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simulated profile. In addition, a first-order S-atom loss rate of 120 s−1 was included in the
mechanism to better match experimental data. In any case, the data on the S-atom are not
involved in the determination of k2 and are shown only for the sake of completeness.
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Figure 5. Reaction F + H2S: measured (points) and simulated (lines) kinetics of the reactants (F and
H2S) and products (S and SH), T = 295 K.

One can note that the kinetics of two reactants, F-atom and H2S, are well described
with k1, determined above in an excess of H2S. The SH concentration, as expected, increases
to a maximum and then drops due to the loss of SH in Reactions (2), (7) and (10). The
dotted line in Figure 5 shows the SH profile calculated without taking into account the
SH losses in its self-Reaction (7) and on the wall (10). The relative contribution of these
reactions increases with the reaction time (as F-atom is consumed). At the maximum
concentration of SH, the impact of these two reactions can be considered negligible (the
error bar displayed at the top of the SH profile corresponds to 5%), even for the relatively
high initial concentration of H2S used in this experiment. Hence, one can conclude that the
maximum concentration of SH is determined with a sufficient degree of accuracy by only
two processes, the formation of SH in Reaction (1) and the consumption in Reaction (2),
with k1[H2S] = k2[SH]max at the time when [SH] is maximum. We did not perform the
above analysis at other temperatures. It was assumed that the aforementioned conclusion is
valid over the entire temperature range of the study, since the wall loss of SH does not vary
significantly with temperature and the temperature dependence of the SH + SH reaction
(unknown) is expected to be weak.

Thus, k2 was determined relative to k1 from the ratio k1/k2 = [SH]max/[H2S]. Experi-
ments consisted of monitoring the concentrations of SH and H2S when [SH] reached its
maximum. Examples of the experimental data observed at three different temperatures
with varied initial concentration of H2S are shown in Figure 6. The slopes of the straight
lines in Figure 6 provide the k1/k2 ratios at respective temperatures. The experimental
conditions and the results of these measurements are summarized in Table 2. The values
of k2 presented in Table 2 were calculated using k1 = 1.86 × 10−10 cm3 molecule−1 s−1

(T = 220–960 K), determined in the present work.
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Figure 6. Typical dependence of [SH]max on [H2S] (see text). For clarity, the experimental points at
T = 220 and 720 K are Y-shifted by 0.5 and 1, respectively.

Table 2. Experimental conditions and results of the measurements of the rate coefficient of Reaction (2).

T (K) a [H2S]0
b k1/k2

c k2
d Reactor Surface e

220 0.22–1.81 0.95 1.96 HW
235 0.12–2.23 0.97 1.92 HW
250 0.19–2.07 1.01 1.84 HW
270 0.13–2.80 0.96 1.94 HW
295 0.18–3.42 0.97 1.92 HW
300 0.22–2.73 0.94 1.98 Q
320 0.57–4.59 0.84 2.21 HW
360 0.19–2.21 0.92 2.02 Q
410 0.17–2.17 0.86 2.16 Q
475 0.15–2.05 0.97 1.92 Q
575 0.12–2.14 0.85 2.19 Q
720 0.10–1.84 0.94 1.98 Q
960 0.07–1.28 0.91 2.04 Q

a 8–12 measurements with different [H2S] at each temperature; b Units of 1012 molecule cm−3; c statistical 2σ
uncertainty is ≤2.5%; d units of 10−10 cm3 molecule−1 s−1, total estimated uncertainty is 25%; e HW: halocarbon
wax; Q: quartz.

Temperature dependence of k2 is shown in Figure 7. The only value of k2 avail-
able in the literature is that reported by Schölne et al. [12]. The authors determined
k2 = (2.0 ± 0.4) × 10−10 cm3 molecule−1 s−1 at T = 298 K from modeling SH kinetics in
F + H2S system under an excess of F atoms over H2S. Fitting the current experimental
data with an exponential function (solid line in Figure 7) yields the following Arrhenius
expression: k2 = (2.14 ± 0.09) × 10−10 exp(−(23 ± 14)/T) cm3 molecule−1 s−1 with 2σ
uncertainties representing the precision of the fit. The measured rate coefficient is observed
to be independent of temperature, with all measured k2-values well within their corre-
sponding uncertainties, k2 = (2.0 ± 0.4) × 10−10 cm3 molecule−1 s−1, in the temperature
range of the measurements, T = 220–960 K. This value of k2 is recommended from the
present study with a conservative uncertainty of 20% (including the uncertainty on the rate
coefficient of the reference reaction).
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4. Conclusions

In this work, using a discharge-flow reactor combined with mass spectrometry, we
have investigated the kinetics of the reaction of atomic fluorine with hydrogen sulfide in
a wide temperature range, 220–960 K. The F + H2S reaction is an effective source of SH
radical (important intermediate in atmospheric and combustion chemistry) in laboratory
studies. The rate coefficient of this reaction measured for the first time as a function of
temperature was found to be practically independent of temperature with the value of
k1 = (1.86 ± 0.28) × 10−10 cm3 molecule−1 s−1 at T = 220–960 K. Similar results were
observed for the fast secondary reaction F + SH occurring in the F + H2S chemical system:
k2 = (2.0 ± 0.4) × 10−10 cm3 molecule−1 s−1 at the same temperature range. The rate
coefficient data for F atom reactions with H2S and SH obtained for the first time in an
extended temperature range provide an experimental dataset for use in laboratory studies
and theoretical reaction rate calculations.
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