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Abstract 

The Machine Loading Problem (MLP) refers to the allocation of operative tasks and tools to machines for the production of parts. 
Since the uncertainty of processing times might affect the quality of the solution, this paper proposes a robust formulation of an 
MLP, based on the cardinality-constrained approach, to evaluate the optimal solution in the presence of a given number of 
fluctuations of the actual processing time with respect to the nominal one. The applicability of the model in the practice has been 
tested on a case study. 
 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 27th International Conference on Flexible Automation and 
Intelligent Manufacturing. 
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1. Introduction 

The Machine Loading Problem (MLP) consists of deciding (given a set of part types to produce, a set of 
machines, and a set of tools) the quantities to produce on each machine and the tools to be assigned to the machines, 
respecting technological and capacity constraints. It was firstly introduced by Stecke [1,2]: control policies for 
Flexible Manufacturing Systems (FMSs) were discussed in [1], while a mathematical programming model was 

 

 
* Corresponding author.  

E-mail address: giovanni.lugaresi@gmail.com 

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 27th International Conference on Flexible Automation and 
Intelligent Manufacturing

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2017.07.298&domain=pdf


1719 Giovanni Lugaresi et al.  /  Procedia Manufacturing   11  ( 2017 )  1718 – 1725 

introduced in [2]. The deterministic MLP has been deeply studied, and the number of publications on the subject is 
very large. Detailed surveys are available in Guerrero [3] and Grieco et al. [4]. Among the others, valuable 
contributions can be found in Shanker and Tzen [5], who compared a heuristic approach and the exact formulation, 
and in Abazari et al. [6], who compared two solution strategies based on a genetic algorithm. Another interesting 
contribution can be found in Das et al [7], where the authors analysed the problem in a comprehensive way, 
including machine loading, product part type grouping, and operations sequencing. 

However, as far as the authors’ knowledge, robust MLP models are missing in the literature despite processing 
times are subject to uncertainty in the practice due to a variety of reasons (e.g., failures, unexpected tool breaks, 
unplanned maintenance interventions). These perturbations on the input data might cause a substantial detriment of 
the objective function, or even make the MLP deterministic solution infeasible. 

Robust Optimization (RO) allows including uncertain input parameters in optimization problems through the 
definition of uncertainty sets for the parameters, e.g., intervals in which parameter values can vary [8]. RO 
approaches formulate the problem on the basis of the uncertainty set of the input parameters, to find a solution that 
is feasible over all the set. There exist several RO approaches in the literature, based on the shape and the 
assumptions of the uncertainty set. Ben-Tal and Nemirovski [9] considered ellipsoidal-box uncertainty sets, while 
Bertsimas and Sim [10] considered a generic convex uncertainty set in which all uncertain parameters are assumed 
to belong to an interval. 

RO approaches provide solutions that guarantee feasibility for all possible combinations of parameters within the 
uncertainty set. Thus, to avoid overconservative solutions that are unsatisfactory in practice, it is fundamental to 
control the level of robustness through a proper uncertainty set. In [10], the level of robustness is tuned by superiorly 
bounding the number of the parameters (cardinality) that assume the worst value of the interval instead of the 
nominal one. For this reason, such an approach is called cardinality-constrained. 
 
Nomenclature 

 I set of product part types 
 J set of tools 
 M set of machines 
 T set of time periods 
 Ejt set of processing times of products worked on tool j  J subject to uncertainty in period t  T 
 Ujt set of product types worked on tool j  J affected by disruptive events in period t  T 

 pjmt time spent for production on the tool j  J of machine m  M in period t  T 
 qijt, rij auxiliary dual-variables 
 Si shortage of production of product type i  I 
 Ljmt Boolean variable that is 1 when tool j  J is loaded on machine m  M in period t  T 
 νijt  time spent for production of product type i  I over tool j  J in period t  T 
 zijt auxiliary primal variable 
 xit quantity of product type i  I produced in period t  T. 

 αj number of tool copies available for tool j  J 
 Γjt  cardinality parameter of tool j  J in period t  T 
 Amt available time for production on machine m  M in period t  T 
 Ci  shortage cost per product type i  I 
 Di  total demand of product type i  I 
 kj number of slots required by tool j  J 
 Km total slots available in the slot magazine of machine m  M 
 Oij  processing time of one unit of product i  I on tool j  J  
 hit holding cost per part of product type i  I in period t  T over the remaining time horizon 
 wi total earning per part for the production of product type i  I 

Our aim in this paper is to address the uncertainty of processing times in an MLP. Specifically, we integrate a 
deterministic model available in the literature with the cardinality-constrained approach. Thus, the solution of the 
robust MLP is the system configuration that covers from a certain number of disruptive events (we define disruptive 
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an event that perturbs a processing time from the nominal to the worst value). As deterministic model, we have 
chosen the one proposed by Sodhi et al. [14], because it includes all main parameters of the MLP and addresses the 
core issues identified in [4].  

Production managers are likely able to estimate how many events might occur over a certain time horizon, and 
they can use this knowledge for making reasonable assessments on the most proper cardinality values to adopt for 
the uncertain parameters. This motivates the choice of the cardinality-constrained approach to develop a robust 
MLP, and our confidence in possible advantages from its application to the MLP. 

Despite the cardinality-constrained approach has been widely applied in several fields [11], applications to 
manufacturing problems such as production planning are not common. Valuable contributions can be found in 
Moreira [12], who developed a robust assembly line balancing, and in Lu et al. [13], who proposed a robust single 
machine job scheduling problem with uncertain processing times. 

This paper is organized as follows. Section 2 presents the deterministic MLP as in [14] and the proposed robust 
version. The tests conducted on a case study and the numerical results are presented in Section 3. Section 4 draws 
the conclusions of the work. 

2. Model formulation 

2.1. Deterministic model (MLP-DET) 

Sodhi et al. [14] considered the short-term production plan and the allocation of tools to machines. The model is 
multi-period and considers a time horizon divided into a finite number of periods. The time horizon corresponds to 
the production planning period, while a single time period to the time interval between two consecutive tool 
changeovers. Within each time period t, each machine m processes the workpieces assigned to it with a given time 
availability Amt. Workpieces are worked sequentially on their assigned machine using the selected tools; the 
processing time of product type i over tool j is denoted by . Thus, the number of products that is possible to 
produce in each time period is limited by the machine time availability. The model maximises the profit, while it 
does not consider any workload balancing among machines. Moreover, it is assumed that the batch of product types 
has been previously composed, that the tool storage capacity is limited, that no tool transportation system is present; 
thus, it is not possible to change the tools without stopping the system. Finally, production quantities are assumed to 
be continuous, to enable the partial production of certain product types over a time period. The model determines the 
production plan in terms of the variables xit, i.e., the quantity of product type i to produce in period t. The machine 
loading is expressed by the variables Ljmt, Boolean variables equal to 1 if tool j is loaded on machine m in period t, 
and 0 otherwise. Finally, variables pjmt represent the aggregate machining time spent on tool j of machine m in 
period t. The deterministic model MLP-DET is formulated as follows: 

MLP-DET:  max  − −∑∑ ∑ ∑∑i it i i it it
i t i i t

w S hx C x   (1) 

subject to: ,   jmt j m
j

k KL m t≤ ∀∑    (2) 

   it i i
t
x D S i= − ∀∑     (3) 

   ,ij it jmt
i m
O x p j t≤ ∀∑ ∑    (4) 

, , jmt jmt mtp L A j m t≤ ∀    (5) 

  ,jmt mt
j
p A m t≤ ∀∑     (6) 

 ,  jmt j
m
L j tα≤ ∀∑     (7)

{ }   0,1 , ,jmtL j m t∈ ∀  
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0 , , ;   ;  0  , 0≥ ∀ ≥ ∀ ≥ ∀jmt it ip j m t x i t S i  

The objective function (1) aims at both maximizing the total profit related to the production of products and 
minimizing the shortage and stocking costs, where the stock is the quantity of products held in the warehouse before 
being sold. Constraints (2) limit the number of tools that can be loaded on machines, as the number of slots available 
for machine m is always constrained to Km slots. Constraints (3) compute the production shortage Si of each product 
i, which is defined as the difference between the production of part type i over all the time horizon  and the 
demand Di. Constraints (4) to (6) guarantee that all the production is made within the time availability of the 
machines. Specifically, constraints (4) limit the total production time on tool j in time period t. Constraints (5) 
guarantee that, for each tool j, machine m, and period t, the production can be done only if the necessary tool has 
been loaded. Constraints (6) guarantee that, over each time period t, the production time at machine m does not 
exceed the machine availability Amt. Constraints (7) limit the maximum number of tool copies αj available for tool j 
in each period t. Finally, the other constraints define the domain of the variables. 

2.2 Robust model formulation (MLP-ROBUST) 

According to the cardinality-constrained approach, we consider the processing times as random variables , 
symmetrically distributed in the interval [ , where  is the expected value of the processing 
time, and  is the maximum deviation. The deviation  represents a disruptive event that can cause the 
processing time to rise. Hence, constraints (4) are affected by the increase of total processing time, due to the 
disruptive events. 

We denote as Ejt the set of the processing times over tool j at period t. Also, we define the cardinality matrix 
, where  represents the number of product types subject to an increment of their processing time over 

tool j at period t. The increment is assumed to be up to the maximum value . Set  represents any 
subset of  constrained to have cardinality  (i.e., ). Specifically, at the optimum of the robust 
formulation, set  contains the worst combination that mostly affect the total usage time of tool j in period t. The 
selection of the processing times to include in set  is represented by a specific set of auxiliary decision variables 

. The robust counterpart of constraints (4) is: 

ˆmax ,
jt

jt

ij it U ij it jmt
i i U m
O x O x p j t

∈

⎧ ⎫⎪ ⎪
+ ≤ ∀⎨ ⎬

⎪ ⎪⎩ ⎭
∑ ∑ ∑  (8) 

where the selection of the worst  is the inner maximization problem. The maximization problem in the above 
constraint, denoted as PRIMAL, can be written as: 

PRIMAL:  max  ˆ
ij it ijt

i
O zx∑      (9) 

  subject to: ,ijt jt
i
z j tΓ≤ ∀∑     (10) 

0 1 , ,ijtz i j t≤ ≤ ∀      (11) 

where  refers to a given solution of the problem. The dual of problem PRIMAL, denoted ad DUAL, is: 
 
DUAL:   min  jt jt ijt

i
r qΓ +∑      (12) 

subject to: ˆ , ,jt ijt ij itr q O x i j t+ ≥ ∀    (13) 

0 , , 0 ,;≥ ∀ ≥ ∀ij ijtr i j q i j t  
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where  and  are dual variables referring to constraints (10) and (11), respectively. Since the problem PRIMAL 
is bounded and feasible, for the Strong Duality Theorem (cf. [15]) the optimal solution  of problem PRIMAL and 
the solutions  and  of the problem DUAL are equivalent in terms of objective function in equations (9) and 
(12). The property holds for any ; therefore, also for the optimal :  

* * * *ˆ
jt jt ijt ij it ijt

i i
r q O x zΓ + =∑ ∑  

The objective function of problem DUAL can replace the maximization problem in (8). Together with its additional 
constraints, the robust counterpart of problem MLP-DET becomes:  

MLP-ROBUST:  max  − −∑∑ ∑ ∑∑i it i i it it
i t i i t

w S hx C x   (14) 

subject to: ,jmt j m
j

tL k K m≤ ∀∑    (15) 

it i i
t
x D S i= − ∀∑     (16) 

, ,jmt jmt mtp L A j m t≤ ∀    (17) 

,ij it jt jt ijt jmt
i i m
O x qr p j tΓ+ + ≤ ∀∑ ∑ ∑  (18) 

ˆ , ,jt ijt ij itq O x i tr j+ ≥ ∀    (19) 

,jmt mt
j
p A m t≤ ∀∑     (20) 

 ,jmt j
m

j tL α≤ ∀∑     (21) 

{ }0,1 , ,jmt j tL m∈ ∀  

, , ; ,

; ,

0  0

0  0  ,; 0 ,

≥ ∀ ≥ ∀

≥ ∀ ≥ ∀ ∀≥
jmt it

i ij ijt

p j m t x i t
S i r i j q i j t

 

For practical applications, it is possible to reasonably estimate the time deviations  and to select the cardinality 
values jt from the information commonly available in industry. For instance, the estimation of the processing time 
interval [  can be extracted from the historical data, or it can be computed using the expected 
Mean Time To Repair (MTTRj) of each tool j by assuming . Also, we can estimate the cardinality 
parameters based on the number of failures for each tool j, related to the expected Mean Time Between Failures 
(MTBFj) and the time availability at machine m. Furthermore, for a more exhaustive analysis, the values of  can 
be increased and different values of the cardinality jt can be investigated for the same instance. 

3. Numerical results  

The proposed robust model is tested using a real case from the literature [7], which is a multi-period single-
machine MLP. The problem considers 12 product types to produce using 12 tools over 5 time periods, each one 
represented by a shift of 9 hours (i.e., Amt = A = 540 min). The demand Di of product type i and the nominal 
Production Time (PTi) per part of product type i (i.e., ) are in Table 1a. The slots kj required by tool j 
are in Table 1b. All machines have a tool slots capacity Km = K = 30 slots, so that the capacity is not affecting the 
problem solution ( ). Only one instance of each tool is available ( ); anyway, this does not affect the 
loading since we are in a single-machine scenario. For each product type, the weight, the shortage cost, and the 
holding cost are wi = w = 30 €/unit, Ci = C = 40 €/unit, and hit = h = 0, respectively. The nominal processing times 
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 are in Table 1c. Each product requires at least 2 and maximum 5 tools. The model has been solved on a 
computer equipped with processor Intel Core i7 @2.5Ghz and 8GB of installed RAM, using IBM ILOG CPLEX 
v12.5. The computational times are very short, ranging between 5.13 s and 5.82 s for all runs. 

In the deterministic case, the optimal solution is x* = {124.8, 4, 8, 8, 40, 0, 4, 20, 20, 8, 0, 0}, where each element 
xi

* is the quantity of product i to produce over the whole time horizon, and it achieves an objective function of 7103 
€, as shown in Table 2a. The selection of product types is based on a ranking of the nominal production time PTi, 
since the products that require less production time are firstly selected. The machine availability is saturated, i.e., the 
Total Production Time  coincides with the time availability  min. Since holding 
costs are zero, the arrangement of production quantities over the time periods does not follow any pattern, and they 
are therefore aggregated over the time horizon in the following analyses. Achieved results are aligned with [7].  

Table 1. (a) Product demand Di and nominal production time per part PTi; (b) slot occupancy kj; and (c) nominal processing time . 

(a) Product data  (b) Tool slots  (c) Processing times data (rows: product types, columns: tools) 

Product Di [part] PTi [min/part] Tools kj Nominal processing times ( ) [min/part] 

1 160 14 1 4 4.61 2 2.74 4.73 0 0 0 0 0 0 0 0 
2 4 11.9 2 2 2.46 2.51 0 4.19 2.7 0 0 0 0 0 0 0 
3 8 11.9 3 2 4.4 0 0 2.86 4.62 0 0 0 0 0 0 0 
4 8 7.7 4 2 0 0 0 0 0 3.12 1.95 2.64 0 0 0 0 
5 40 7.9 5 2 0 0 0 0 0 0 0 0 4.29 3.68 0 0 
6 4 14.8 6 1 0 0 0 0 0 0 0 0 3.15 5.39 2.18 4.14 
7 4 11.3 7 1 0 0 0 0 0 0 0 0 0 2.7 2.44 6.18 
8 20 7.8 8 1 0 0 1.92 2.59 3.3 0 0 0 0 0 0 0 
9 20 8.3 9 1 0 0 3.04 5.28 0 0 0 0 0 0 0 0 

10 8 6.5 10 1 4.45 2.1 0 0 0 0 0 0 0 0 0 0 
11 8 20.3 11 3 0 0 0 0 5.42 4 0 0 0 0 5.48 5.47 
12 4 15.4 12 3 0 0 0 0 0 0 0 4.22 3.62 3.92 3.72 0 

For the robust analysis, we consider the production time deviations as proportional to the nominal times, i.e., 
 where δ is a parameter. We investigate the behaviour of the model varying the variability of processing 

times: specifically, we analyse three different scenarios: δ = 0.1, δ = 0.5, and δ = 1. Moreover, we consider six 
different cardinality matrices Γ ={Γjt} with equal elements, i.e., Γjt = Γ = 0, 1, 2, 3, 4, 5 where the case Γ = 0 
represents the deterministic case. As for example, with Γ = 1 we are limiting the failures to a maximum of 60, one 
failure per tool (12 tools) at each period (5 periods). 

 

Fig. 1a. Results – Objective function value for each given cardinality 
vector and values of δ. Point Γjt = 0 corresponds to the deterministic 
case. The distance between the robust solution and the deterministic 
one is the price of robustness. 

Fig. 1b. Results – Actual TPT with δ = 0.5 and ratio between 
working and failure time. It can be noticed that the machine 
availability  min is always saturated, and that the 
failure time increases with the cardinality. 
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The objective function is shown in Fig. 1a by varying the cardinality Γ and the variability δ. Given a certain δ, the 
objective function decreases as the cardinality Γ increases. The TPT is composed by both the nominal processing 
times and the failures. Fig. 1b shows the ratio between the working and failure time over all parts produced in the 
system. Since the machine availability is limited and saturated, the total number of parts produced decreases 
together with the objective function. The gap between the objective functions for Γ = 0 and for any other scenario 
represents the “price of robustness”, i.e., the price required for covering from unfortunate events. Since the most 
disruptive events are selected first, the marginal price of robustness decreases in the cardinality. 

Table 2. Results – (a) Deterministic case; (b) Robust solution with δ = 0.1; (c) Robust solution with δ = 0.5; (d) Robust solution with δ = 1. 

(a) Deterministic case  (b)   (c)   (d)  

i     Γ=1 Γ=2 Γ=3 Γ=4 Γ=5  Γ=1 Γ=2 Γ=3 Γ=4 Γ=5  Γ=1 Γ=2 Γ=3 Γ=4 Γ=5 

1 160 14 124.8  103.8 108.6 107.6 107.4 107.3  63.3 58.5 62 61.2 60.8  37.2 27.4 30.6 29.4 28.8 
2 4 11.9 4  4 4 4 4 4  4 4 4 4 4  4 4 4 4 4 
3 8 11.9 8  8 8 8 8 8  8 8 8 8 8  8 8 8 8 8 
4 8 7.7 8  8 8 8 8 8  8 8 8 8 8  8 8 8 8 8 
5 40 7.9 40  40 40 40 40 40  40 40 40 40 40  40 40 40 40 40 
6 4 14.8 0  4 0 0 0 0  4 4 0 0 0  4 4 0 0 0 
7 4 11.3 4  4 4 4 4 4  4 4 4 4 4  4 4 4 4 4 

8 20 7.8 20  20 20 20 20 20  20 20 20 20 20  20 20 20 20 20 

9 20 8.3 20  20 20 20 20 20  20 20 20 20 20  20 20 20 20 20 
10 8 6.5 8  8 8 8 8 8  8 8 8 8 8  8 8 8 8 8 
11 8 20.3 0  0 0 0 0 0  2.7 0 0 0 0  4.5 1.8 0 0 0 
12 4 15.4 0  2.6 0 0 0 0  4 3.5 0 0 0  4 4 0 0 0 

For each combination of  and , the optimal solution x* is detailed in Tables 2a-2d. Results show that the 
demand of some product types is always satisfied (i = 2, 3, 4, 5, 7, 8, 9, 10), while the optimal quantity of other 
product types changes from case to case. In fact, when uncertainty is included, the actual processing times are 
considered instead of the nominal ones, a product can be more affected by failures than the others, and the selection 
might change compared to the deterministic case. Let us consider the case with  and  (Table 2d). The 
nominal PTi (Table 2a) for product i = 6 is 14.8 min/part and it would suggest the selection of type 6 only after 
product 1 is completely satisfied (PT1 = 14 min/part). Since machine availability is saturated, product 6 is not 
produced in the deterministic case.  

However, the actual processing times at the optimum with  and  become 28.2 min/part and 14.8 
min/part for i = 1 and i = 6, respectively, so that product 6 is chosen firstly. Furthermore, it is noteworthy that the 
robust solution might not complete the demand of two product types. The actual processing times (28.2 min/part for 
i = 1 and 25.8 min/part for i = 11) would suggest the selection of type 1 only after type 11 is completed. However, 
with  and , type 11 is produced up to 4.5 parts only. This holds because the ranking of part types i also 
changes with the produced quantity. Indeed, producing a higher quantity of product type 11 would change the 
ranking, making the actual processing time of i = 11 equal to 31.1 min/part, in such a way that product type 1 should 
be selected. Understanding how the actual processing times are affected is not trivial and depends on the 
combination of events that is selected. For this reason, the proposed mathematical formulation is very effective in 
finding the optimal. 

For a practical application, the proposed approach allows to evaluate the products that are mostly subject to risk 
in a specific layout. As for example, Fig. 2 shows that, with  and δ = 0.5, product type 1 is affected by the 
highest number of failures. This analysis can be useful for the production planning process and for the 
implementation of maintenance interventions. Indeed, the user is supposed to pay particular attention to the 
production of product 1, for example by providing multiple copies of the used tools (in this case 1, 2, 3, and 4) and 
by maintaining all these tools in a good state. 



1725 Giovanni Lugaresi et al.  /  Procedia Manufacturing   11  ( 2017 )  1718 – 1725 

 
Fig. 2. Number of failures affecting product types ( , δ = 0.5). 

4. Conclusions and future developments 

In this work we have developed a robust version of an existing MLP model. The proposed model provides a 
robust solution against a given number of unfortunate events that the production planner is expecting to happen or 
against which he/she wishes to cover. The behaviour of the model has been also analysed by means of a case study. 
The achieved results can be very useful in terms of impact analysis at the first stages of a production planning 
process. Indeed, the robust model allows to evaluate the maximum performance we can expect from the system once 
the cardinality and the entity of the disruptions are set. 

The analysis on the test case does not consider the cost of holding parts. An additional analysis could include the 
inventory cost, e.g., to avoid or delay the production of product types associated with higher holding. Further, a 
sensitivity analysis will provide more insights on the effect of other model parameters, and the application to real 
cases will allow us to better evaluate the applicability of the model. As for the model, future developments will be 
devoted to include a broader cardinality sets, e.g., by considering failures that affect single work-pieces. The 
proposed model may be also used under a rolling horizon approach: once a plan is implemented, if less events occur 
than expected, the remaining time can be used to schedule both the remaining products and the newly arrived orders. 
Finally, additional analyses will include a comparison with other existing MLP models, by applying the cardinality-
constrained approach to them, and with other robust approaches. 
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