
HAL Id: hal-03880585
https://hal.science/hal-03880585

Submitted on 1 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Validation of Digital Models for
Manufacturing Systems: a Novel
Signal-processing-based Approach

Giovanni Lugaresi, Gianluca Aglio, Federico Folgheraiter, Andrea Matta

To cite this version:
Giovanni Lugaresi, Gianluca Aglio, Federico Folgheraiter, Andrea Matta. Real-time Validation of
Digital Models for Manufacturing Systems: a Novel Signal-processing-based Approach. 2019 IEEE
15th International Conference on Automation Science and Engineering (CASE), Aug 2019, Vancouver,
Canada. pp.450-455, �10.1109/COASE.2019.8843082�. �hal-03880585�

https://hal.science/hal-03880585
https://hal.archives-ouvertes.fr


Real-time Validation of Digital Models for Manufacturing Systems: a
Novel Signal-processing-based Approach

Giovanni Lugaresi∗1, Gianluca Aglio1, Federico Folgheraiter1, Andrea Matta1

Abstract— Recently, the connection between manufacturing
systems and their digital counterparts has become of great
significance for planning and control activities in a short-
term scope. However, the alignment of a digital model with a
very dynamic system is not always guaranteed, and traditional
validation techniques cannot be used since they are designed for
off-line simulators and rely on the availability of a large amount
of data. This work develops a novel validation procedure
inspired by signal-processing theory and a novel approach
called quasi Trace Driven Simulation. The procedure is coherent
with a Real-Time Simulation framework since it does not
require large datasets to provide a good solution. The approach
has been tried on test cases which demonstrated its applicability
to a manufacturing environment.

I. INTRODUCTION

Recent economic pressure has driven manufacturing sys-
tems to become much more dynamic than before. Besides,
electronic devices such as sensors and data acquisition
systems reached higher reliability along with affordability,
and in manufacturing environments it is possible to ob-
tain information about the shop floor status anytime [1].
These developments paved the way for the deployment of
Cyber-Physical Systems (CPSs) [2]. CPSs are based on the
symbiotic coexistence of the real system with its digital
counterpart, often called digital twin or digital model. With
a production planning and control scope, the digital model
of a manufacturing system can be represented by a Discrete
Event Simulation (DES). The recent dynamism of production
systems represents a challenge since it is not always granted
that digital models are able to accurately follow the behavior
of the real system. A recent survey by Skoogh et al. [3] points
out how a great percentage of manufacturing companies do
not reuse a simulation model after a decision is made: these
models have also been labeled as throw-away models [4].
Indeed, if the model is not a close representation of the actual
system, any conclusion derived from the simulation is likely
to be erroneous and may result in erroneous decisions and
unjustified costs [5]. As a result, since traditional models are
typically not directly linked to the real system, they are often
used only for system design and long-term decision-making
[6].

In order to see the application of discrete event simulators
as digital models for short-term decision-making in the
practice, two main requisites are needed: (1) the possibility of
generating and updating the models with a higher frequency

1 Department of Mechanical Engineering - Politecnico di Mi-
lano - Via La Masa 1, 20156 Milano, Italy. ∗Corresponding Author:
giovanni.lugaresi@polimi.it

and (2) the ability of identifying when a model is not cor-
rectly representing its real counterpart, in other words when
it is not valid. In this work, we develop a new input validation
procedure that is based on signal-processing theory and we
propose a new method to temporally correlate the DES model
to its real counterpart through their inputs called quasi Trace
Driven Simulation (QTDS), which allows for the effective
comparison of real and simulated data for validating digital
models in a Real-Time Simulation framework.

II. STATE OF THE ART

A. Real-Time Simulation in Industry

Real-Time Simulation (RTS) is a recently coined term that
describes the deployment of simulation technology for short-
term decision-making. RTS can save considerable time and
resources by allowing the same simulation model to be used
and corrected when needed [7]. Manivannan and Banks [8]
firstly defined the concept of RTS, also called on-line DES,
and some of its applications can be found in the literature.
Harmonosky [9] described a procedure for the selective
rerouting of the parts within a shop floor. Spedding et al.
[5] delineated an adaptive simulation model for a keyboard
assembly cell. Framinan et al. [10] studied how data collected
in real-time can be used to rearrange the sequence of jobs in
a flow-shop with stochastic processing times with the goal
to minimize the makespan. Xie et al. [11] developed a meta-
model to calibrate and guide real-time decision-making for
complex systems. These works show that simulation can be
used as a tool for on-line decision support. According to
Hanisch et al. [12], RTS reaches its maximum efficiency with
an on-line connection between the simulation model and the
real system along with a fast execution time and a valid DES
model. Lugaresi and Matta [7] discussed over several features
of RTS frameworks found in the literature, highlighting the
most important challenges for the future research in this field:
data management, model adaptability and model generation,
model validation, and reactiveness.

B. Validation of Digital Models

Validation is defined as the process of determining whether
a simulation model is an accurate representation of the
system, for the particular objectives of study [14]. It com-
pares the input-output transformation of the simulation model
with the real system one by running the model using the
same input conditions derived from the real system and
analyzing its behavior in terms of output measures [15].
Several validation methods have been developed over the
years for the off-line validation of a DES model. These



Fig. 1: Real-Time Simulation framework taken as reference in this paper.

methods are mostly based on statistical techniques allowing
the comparison between output data from the DES model
and the real system [16]. A first-cut evaluation of the model
performance is to compute the differences between observed
and predicted responses by means of statistical indicators.
Some are used very often in the practice (i.e. the mean,
the median, the mean squared error) whereas others are less
popular although they can be used effectively: for instance,
the Coefficient of Determination [17], the Coefficient of
Residual Mass [17], the Modeling Efficiency [18]. Usually,
a simulation model is then validated by means of statistical
tests. Among others, Rebba et al. [19] combined a t-test
statistic for the mean and F-test statistic for the variance.
The Two-Sample Kolmogorov-Smirnov Test [20] exploits
Empirical Cumulative Distribution Functions (ECDF) of the
output data. Kleijnen et al. [21] developed a regression-based
test for Trace Driven Simulations (TDS). Khan et al. [23]
created an approach based on the comparison between the
feedback from a simulation model and specified outputs of
each event in the specification model. The approach checks
if each event in the DES model is consistent with the event
that would happen in the specification model under the same
inputs.

The list of validation techniques is very long [13], [16].
However, all of them have been developed for an off-line
use. Hence, they are limited when applied to RTS conditions
due to their need of a large amount of data to reach a
statistical significance of their results. Differently, our work
aims at validating a simulation model on-line, hence directly
comparing data from the real system with simulation data. To
the best of our knowledge, such methods for the validation
of digital models in a real-time context are not present in the
literature.

III. SCOPE OF WORK

In this paper we refer – without loss of generality – to
the framework for planning and control in a manufacturing
plant based on RTS described in Figure 1. The Real System
block represents the manufacturing plant. From here, data are
continuously collected by tools such as the Manufacturing
Execution System (MES) or the Advanced Planning and
Scheduling (APS) System, and sent to the digital counterpart
of the system where the generation of the DES model of
the system takes place in the Simulation Model Generation
block. The model building phase occurs either if a digital
model is not existing yet or if the current model is not
considered as a valid representation of the real system.

Fig. 2: Validation: (a) of the logic, (b) of the inputs.

Simulation models are validated, updated and synchronized
with the current system states through the Simulation Model
Validation block. The models are then exploited by the
Decision Making block to provide production control actions.

Referring to the framework by Nelson [24], we may
separate validation activities in two main parts: validation
of the logic (Figure 2a) and validation of the inputs (Figure
2b). The validation of the logic regards, for instance, the
arrangement of the machines in a layout, the routing of parts,
so on. On the other hand, input validation concentrates on
the probability distributions generating the model input data
and the model parameters. In this work, we concentrate on
the latter problem.

Furthermore, since a production system is continuously
subjected to changes, only a single data history may be
used. Hence, frequent changes of the real system lead to
the problem of model validation with small datasets. Indeed,
in RTS the time horizon is much shorter than conventional
simulation and only one small dataset may be available
from the real system. A possible solution is to treat Key
Performance Index (KPI) data as signals. The exploitation
of signal-processing techniques in simulation output analysis
have been encouraged by Schruben and Cogliano [25], who
used the Discrete Fourier Transform (DFT) to perform a
sensitivity analysis by oscillating the input data fed to the
DES model. The authors showed the advantages of such an
approach for identifying the terms of a regression model of
the simulation response against the inputs. Our approach is
based on the same intuition: the output data of a simulation
model can be treated as a signal in a frequency domain, hence
two signals may be compared: the output signal generated
from the simulation model and the one collected from the
real system.

IV. PROPOSED PROCEDURE

The proposed validation procedure consists in the follow-
ing steps: (A) quasi-Trace Driven Simulation (QTDS) setting,
(B) Batch Partitioning, (C) calculation of a validation degree
indicator. QTDS is performed on input data, while the latter
two points on output data.

A. Quasi Trace Driven Simulation (Input Data)

In an RTS framework, a digital model should properly
represent the real system in every considerable time-frame.
However, if input data of the simulation model (e.g., in-
terarrival times) are generated independently from the real



Fig. 3: Schema of the quasi Trace Driven Simulation

system input data trace, the two signals may have very
different profiles (see Figure 4) and only a comparison of
aggregated measures can be performed (that is, through
traditional validation techniques).

Indeed, consider a real system (Figure 2) with its inputs
XR following a generic, unknown distribution FR. The
distribution of the input data of the simulator FS is usually
assumed by the modeler. If the scope is the validation of
the logic (Figure 2a), one way of validating the simulator
is to perform a Trace Driven Simulation (TDS). In TDS the
same input data of the real system are fed to the simulator;
then, a comparison of the output measures YR and YS is
done. On the other hand, if the scope is the validation of the
inputs (Figure 2b), TDS is not suitable since, in this case, the
mechanisms of input data generation are investigated. Hence,
input data shall be generated through the same probability
model that has been assumed (FS). In this case, comparing
YR and YS directly might be a difficult task due to the
innate noise of the Random Number Generation that makes
YS totally uncorrelated from YR and not useful for any
comparison when only a small dataset is available. QTDS is
based on the intuition that with correct assumptions on the
inputs, the simulation output data will show a behavior very
similar to the real system, allowing for the comparison of
YR and YS . On the other hand, assuming a distribution that
is not realistic will yield to significantly different outputs.

QTDS simply generates random variates XS starting from
FS that are highly correlated with the real system input
datasets XR. The QTDS procedure works as follows. A
sample of input data [X1, . . . , XN ] is gathered from the real
system and the discrete ECDF is obtained. Then, the ECDF
is used to extract a stream of numbers between 0 and 1,
u = [u1, . . . , uN ], where ui = ECDF (Xi)∀i = 1 . . . N .
The vector u constitutes the basis for the generation of the
simulation model input data according to the distribution FS

assumed for the simulator, hence XS = Φ−1
S (u) with ΦS

being the cumulative distribution of FS . Notice that this way
a temporal correlation is guaranteed since each input variate
of the simulator refers to a single input value of the real
system, and vice versa. This way each simulated datum can
be compared with the related real counterpart.

B. Batch Partitioning (Output Data)

Consider YR and YS the real and simulated output
datasets, respectively, which could represent a certain per-
formance index over a fixed time horizon (for instance, the
system throughput over the last 30 minutes). Each of these

Fig. 4: Example showing datasets of ten values representing interarrival
times. The XR curve represents the real system input data. The XS curves
are the simulated input data. Even if generated by the same probability
model (exponential distribution with mean 2 s), the XS curve with no
correlation (red) shows a very different profile with respect to the XR

curve, while the XS curve correlated with QTDS (green) has the same
profile because it shares the same trace of random numbers.

signals is a time series and it might be affected by auto-
correlation (i.e. there are lag values l that link two values of
the series: yi = yi+l ∀i) which may invalidate our analysis.
To remove auto-correlation, a common countermeasure is
data batching. In this step, the real and simulated input
datasets are both split into K data batches through a pro-
cedure named Batch Partitioning (BP):

YR = {Y(1)
R ,Y(2)

R , . . . ,Y(K)
R },

YS = {Y(1)
S ,Y(2)

S , . . . ,Y(K)
S }.

BP may be performed only on the real system data, while
the dataset generated by the DES model is divided into
batches with the same partition scheme. This practice is very
common in the literature. Since the selection of a batching
procedure is beyond our scope, we refer to Appendix I for
the one we used.

C. Spectral Indicator (Output Data)
In this step an indicator of the degree of validation is

computed as follows:
1) The Power Spectral Density (PSD)1 for both simulated

and observed data is computed for each k-th batch:

P(k)
R = PSD(Y(k)

R ) ∀k,
P(k)
S = PSD(Y(k)

S ) ∀k.

2) A value δ is decided and fixed by the user. This pa-
rameter represents the size of equally-spaced intervals
in which the batch is divided. Hence:

P(k)
R = {P(k)

R,1, . . . ,P
(k)
R,i, . . . ,P

(k)
R,nk
},

P(k)
S = {P(k)

S,1, . . . ,P
(k)
S,i , . . . ,P

(k)
S,nk
}

1The Power Spectral Density of a signal is defined as follows:

PSD =
Sxx(f)

∆f

Where Sxx is the auto-spectral density function (i.e. the power spectrum)
and ∆f is the frequency resolution.



where nk indicates the number of intervals in the k-th
batch.

3) For each i-th interval in the k-th batch, a weighted
average M (k)

i based on the absolute difference between
the spectral densities is computed as follows:

M
(k)
i =

∑ti
j=1

|p(k)
R,i,j−p

(k)
S,i,j |

tk

fk
· δ ∀i, k (1)

where fk is the sampling frequency for each batch and
ti is the number of data entries in the i-th interval.

4) For each batch k, the average of all the differences
M

(k)
i , is computed as follows:

M̄k =

nk∑
i=1

M
(k)
i

n
∀k. (2)

5) A synthetic value ∆ describes the degree of similarity
between the two PSD functions. It is computed through
a single mean, considering all the k batches:

∆ =

∑N
k=1 M̄k

N
(3)

where N indicates the total number of batches. The
indicator is then normalized between 0 and 1 by means
of a negative exponential function as follows:

I = e−Ψ∆ (4)

where we call I Spectral Indicator.
Finally, we have obtained a function which is equal to 1 in
the origin (if the signals are equal, ∆ = 0) and asymptotic
to 0 for ∆→ +∞.

V. NUMERICAL RESULTS

A. Calibration

A Design of Experiments has been carried out to investi-
gate the effect of the parameters of the procedure over the
final value of the proposed indicator. The Spectral Indicator
has been computed to compare two datasets referred to
the lead time of parts flowing through an M/M/2 queue
and its DES model. The M/M/2 queue has interarrival and
processing times following exponential distributions with
parameters λ = 0.4 and µ = 0.5, respectively. A full factorial
study has been done on the following factors:
• the initial batch length L1, two levels (20, 30);
• the size of the interval δ, two levels (0.01, 0.03);
• the assumptions on the simulation input data distribution

(FS), four levels:
1) exponential, with the same parameters of the real

system inputs;
2) exponential, with parameters fitted to the real

system inputs;
3) exponential, with different parameters;
4) normal, with the same mean and standard devia-

tion of the real system inputs;
The Spectral Indicator has been computed for each different
combination of factors (in total, 16 combinations), and the

Source of Variation F0 Statistic P-Value
δ 250.54 < 0.05
L1 0.77 0.384
FS 33.48 < 0.05
δ*L1 0 0.997
δ*FS 1.85 0.159
L1*FS 0.97 0.418
δ*L1*FS 0.38 0.768

TABLE I: ANOVA table obtained during the calibration phase

experiments have been repeated three times, for a total of
48 runs. The results of the ANOVA are summarized in
Table I. Residuals have been verified to be independent and
identically distributed as a normal distribution. The size of
the interval δ and the type of distribution FS used in the DES
model both present a low P-Value, indicating that these two
parameters significantly affect the final result; on the other
hand, the choice of the initial batch length L1 does not im-
pact on the final result. Moreover, no significant interactions
among the three parameters are visible. Therefore, we may
state that: (1) the batch decomposition manners are impacting
on the comparison results since the value of δ influences the
amount of data that is included in each interval, (2) the choice
of the initial batch length L1 does not impact the results of
the analysis, and (3) the Spectral Indicator is sensitive with
respect to the input data distribution FS .

Further, with the aim to test the effectiveness of the
proposed approach, we have applied it to two test cases: (1)
an M/M/2 queue and (2) a flow line made of seven stations.
Given the aforementioned results, in these cases the initial
batch length and the size of the intervals have been set equal
to L1 = 20 and δ = 0.01, respectively. The test cases will
be presented in the following subsections.

B. Test Case 1 - M/M/2 Queue

Let us take as reference the same M/M/2 queue analyzed
in Section V-A. An experimental plan has been generated
by fixing real system parameters (exponential distributions
with parameters λreal = 0.4, µreal = 0.5), the number of
parts (η = [100, 200, 500, 1000, 5000, 10000]), and varying
the simulated system parameters in three settings:

1) the FS distribution is exponential and the interarrival
and process parameters are fitted to the real system
input data;

2) the FS distribution is exponential and the parameters
are the same as in the real system;

3) the DES inputs follow a normal distribution FS .
Experiments have been replicated 100 times. Figure 5

shows the mean values of I obtained for each experimental
setting depending on the dataset length η (the maximum
variance obtained is of magnitude less than 10−3). As
expected, the first setting is the best case, since a fitting
procedure is performed on each dataset coming from the real
system. As the dataset dimension increases, the exponential
distribution approximates better the real dataset distribution,
and as a consequence I increases. The mean values of I
obtained for the third setting (normal distribution) are much



Fig. 5: Test Case 1 - Results obtained for the Spectral Indicator I (mean
values)

smaller. Indeed, this case shows the worst behavior since the
DES model input distribution FS is incorrect. Notice that
the obtained results are valid for any dataset length that we
have tested. The same settings have been done performing a
Kolmogorov-Smirnov Test [20], which with datasets smaller
than η = 5000 could never identify the difference between
Setting 1 and 3 (P-Value = 0.85).

In addition, a Latin Hypercube Square (LHS) design of
experimental points has been created by fixing the real
systems parameters at λreal = 0.4 and µreal = 0.5 and
varying the parameters of the DES model so that µsim ∈
[0.2, 0.6] and λsim ∈ [0.3, 0.7]. 100 replications have been
done for a dataset with η = 150 parts. Figure 6 shows
the average values of the Spectral Indicator that have been
obtained. The maximum variance among the outputs is equal
to 0.0084, hence the results are fairly concentrated around
the mean. Again, the highest values are achieved when the
DES parameters are close to the real system ones.

C. Test Case 2 - Flow Line
In this case, we considered a multi-product production

line composed by 7 workstations whose processing times
are each exponentially distributed with mean µreal = 1 and
with parts interarrival times exponentially distributed with
mean λreal = 1. Each workstation follows a Blocking Before
Service policy. Experiments have been carried out with the
Spectral Indicator I referred to the production lead time. Two
settings of experiments have been generated as follows:

1) variations of ±0.1 in the values of µreal;
2) different distributions of the simulation input data FS ,

namely (2a) exponential distribution and (2b) normal
distribution;

The experiments have been replicated 100 times. Figure
7 shows the results obtained. Also in this case, if the input
datasets are correct the Spectral Indicator shows the highest
values. Further, with deviations of ±0.1 on the mean value
of the processing times, the values of I drop as lower values
correspond to a greater input error, and this is valid for any
dataset length. Similarly to the first test case, lower values of
I occur when the assumption on the distribution is erroneous,
as it can be noticed from the results of the second setting.

Fig. 6: Test Case 1 - Color map of the mean values of I obtained: the real
system inputs are λreal = 0.4 and µreal = 0.5. The indicator I shows it
highest peak over the correct values (λreal = λsim; µreal = µsim).

Fig. 7: Test Case 2 - Spectral Indicator computed for different dataset lengths
(mean values).

VI. CONCLUSIONS AND FUTURE RESEARCH

A novel procedure for validating digital models in an real-
time context has been presented. The method provides an
indicator which can help an industrial user to understand if
a digital model is an accurate representation of the real pro-
duction system. Experiments showed that small errors in the
estimation of the input data are recognized even with reduced
datasets. The proposed approach is beneficial for Real-time
Simulation applications, in which real feeds of data are used
to validate a simulation model, thus can positively contribute
to the application of discrete event simulation as a short-term
decision-making tool. In the future, the proposed procedure
should be tested on more complex manufacturing systems.



Further, the approach could also be applied to compare other
KPI measures. Last but not least, the means for estimation
of the risk of accepting a wrong model shall be investigated.

APPENDIX I: BATCH PARTITIONING

Following is the batching procedure used in this work:
1) An initial batch length L1 is fixed, together with a

minimum length, Lmin.
2) The sampling frequency fS is set.
3) The first batch is created, with initial size L2 = L1.
4) The period Θ is computed by means of the auto-

correlation function2.
5) If the batch size L2 is an integer multiple of its period,

the batch is kept. Otherwise, the batch size is reduced
and the algorithm goes back to step 4, until the equality
is satisfied. In case this condition is not guaranteed and
the minimum batch length Lmin is reached, L1 is used
and the dataset is sampled with a Hanning Window
[27].

6) The partitioning continues until all the data are grouped
into batches. If the last batch does not contain enough
data, it is discarded.
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