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Manufacturing Systems Mining: Generation of Real-Time Discrete
Event Simulation Models

Giovanni Lugaresi1, Marco Zanotti1, Diego Tarasconi1, Andrea Matta1

Abstract— The recent economic outlook has prompted man-
ufacturers to spend a lot of resources towards automation
and Cyber Physical Systems (CPS). One of the requisites to
successfully deploy CPSs is the availability of up-to-date digital
models coupled with the real system, yet this is not always
guaranteed in dynamic and complex environments such as
production systems. This paper develops a new method that
generates the Petri Net model of a manufacturing system
starting from an event log with three data labels. The user
decides the number of maximum events to be mapped to control
the model level of detail. The method has been applied on a
test case and it is promising in terms of applicability to real
manufacturing systems.

I. INTRODUCTION

Recent economic pressure has driven manufacturers to-
wards partial or complete automation of production facilities
[1]. Besides, electronic devices such as sensors and data
acquisition systems are regularly deployed in manufacturing
environments and it is possible to obtain information about
the shop floor status almost anytime [2]. Cyber Physical
Systems (CPS) are based on the coexistence of the real
system with its digital counterpart, often called digital twin
or digital model [3], [4].

With a planning and control scope, the digital model of a
manufacturing system can be represented by Discrete Event
Simulation (DES). However, if the model is not a close
representation of the actual system, any conclusion derived
from simulation results is likely to be erroneous and may
culminate in expensive decisions. The possibility of generat-
ing digital models with a higher frequency (i.e. through an
automated procedure) is crucial for achieving the application
of simulation models for short-term decision-making (also
called Real-time Simulation models), particularly in highly
dynamic environments [5].

Process Mining (PM) is a recent discipline aiming to
discover new or hidden information from event logs available
in manufacturing systems [6]. Event logs are files containing
information about parts flowing in the system (e.g., serial
codes associated to the parts, time stamps of each activity,
activity tags, so on). PM is defined as composed by three
main parts [6]: (1) system discovery, that is finding the main
logical relationships between activities, (2) conformance
checking, that finds deviations from a standard model used
for comparison, and (3) enhancement, that is the process
of strengthening some properties of interest of the analysed
system model. PM is currently used for multiple purposes,
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for instance in social network or organizational mining (i.e.
Business Process Modeling).

The scope of this work is to discover a production system
configuration in an automated way starting from an event
log with three data labels, then building a Petri Net model
of the manufacturing system. Further, we wish to tune the
model generation procedure by fixing the maximum number
of activities allowed. This way the user may decide the level
of detail of the obtained simulation model. The proposed
approach is addressed at production systems applications,
hence we refer to it as Manufacturing Systems Mining
(MSM).

II. STATE OF THE ART

Most mining algorithms from the literature exploit a
generic event log composed by a certain number n of activ-
ities Ψ = {ψ1, . . . , ψn}, each performed by at least one of
the parts (i.e. products). Further, it is important to understand
to which path the activities belong. For example, consider
the simple system of Figure 1a, with three different stations:
S1, S2, and S3. Station S1 performs activity a, S2 performs
activity b, and S3 activity c. If a batch of P parts has to be
processed, it is fundamental to associate each flowing item to
the right path: (a, c) or (b, c). Notice that usually the whole
set of available paths for parts is not known a priori, and in
order to recreate the production sequence an activity mining
step is necessary. This procedure characterizes the possible
sequences of events in the system. Starting from the event
log, the paths are built through a string recognition of the
activities encountered by each of the P parts in the event
log. The next step is the so-called footprint, which is a set
of causal dependencies regarding the type of connections
among the activities in the event log. Usually it can be
expressed by a set of strings F = {f1, . . . , fP }, hence the p-
th part performs the activities in the order defined by fp ∈ F.
For instance, consider the production line of Figure 1a. The
activities are Ψ = {a, b, c}. If the technological cycle of
the p-th product type prescribes the visit of two stations in
the order (S1, S3), then its corresponding footprint will be
fp = ac.

A. The α-mining Algorithm

One of the most used process mining algorithms is the α-
mining algorithm [7], which models the activities in the event
log as transitions in a Petri Net. The composition of the Petri
Net model is done by following the relationships among the
activities Ψ of the event log. Since the α-mining algorithm is
focused on the discovery of transitions relationships, during



the composition of the Petri Net, places must be added in
order to maintain the correct alternation between places and
transitions. Applications of the α-mining algorithm range
between healthcare [8], forensics [9], and banking [10].

B. Other Mining Approaches

Other mining algorithms have been developed as improve-
ments of the α algorithm. We may divide them in three main
categories: (1) Heuristic Miners, (2) Genetic Miners, and (3)
Fuzzy Miners.

Heuristic Miners use a frequentist approach to discover
the different weights related to sequences of activities. Also,
timestamps associated to the activities are considered for
ordering them and give a perception of the temporal prece-
dences. One of the most known work related to mining
algorithms is from Weijters et al. [11], which is based on the
creation of a frequency-based dependency graph and takes
into account AND/XOR relationships (e.g., two parallel
machines). Cook et al. [12] developed an approach focused
on mapping the analyzed system which retrieves a model
describing the most frequent paths in the event log. This
approach aims at overcoming the issues associated to the
noise which may populate a generic event log (for instance,
due to wrong data entries from sensors along the system).

Genetic Miners algorithms are adaptive search methods
capable of following the process evolution starting from
an initial population or an initial structure attempt. Genetic
algorithms search for a result which is fitting as globally as
possible using a comparison technique between the created
structure and the possible others [13].

Fuzzy Miners algorithms exploit clustering to remove
activities considering the correlation among different types
of events. Indeed, they cluster highly correlated activities
into a single node with a common attribute, while the
most isolated nodes are removed from the representation
[13]. These algorithms are typically used for unstructured
processes, in which there is no trivial distinction between
what is important and what could be discarded. Greco et
al. [14], [15], [16] aims at discovering a hierarchical tree of
process models that describes the event log at different levels
of detail. Gunther et al. [17] developed a new fuzzy miner
algorithm through an attribute analysis and a consequent
abstraction of the mined event log.

Other approaches use PM for several applications. Among
others, Van der Aalst et al. [18] described a particular
heuristic approach used for mining the invoices flows in one
of the provincial offices of the dutch national public works
department. Gouveia [19] illustrated the process mining
application for a business platform for software development.
Van Dongen [20] introduced a clustering method in order to
apply process mining to a dutch municipality real-life case.

C. Limitations of Mining Approaches

Mining algorithms have some limitations and we list the
most relevant as follows.

• The availability of all the needed information in the
event log is not always guaranteed. For instance, serial

Fig. 1: Sample production systems – (a) 3-station system,
(b) 9-station system, (c) 6-station system.

numbers (or, in general, IDs) of the parts and the ac-
tivities are used for identifying the relationships among
themselves and to discover the system structure. These
pieces of information are essential for a correct process
mining activity [11].

• The α-mining in its basic form does not consider the
frequencies with which activities are performed. Indeed,
only logical relationships among activities through parts
flowing are taken into account, which leads to a partial
view of the system behavior. Without considering oc-
currences, a path that is done a lot of times will have
the same weight of one that is done only rarely.

• In case of components of the system with finite capacity
such as machines and buffers, it is necessary to force
the entities flowing the system to respect capacity con-
straints. In a Petri Net, this corresponds to to limit the
number of tokens allowed to flow in certain transitions.

D. Problem Introduction
Let us consider a manufacturing system such as the 9-

station line as in Figure 1b and assume its event log is
available with at least the following information:

• the product-IDs (entities);
• the activities performed by the entities;
• the timestamps of each activity done by each entity.

The log holds a lot of knowledge from the system and we
can think of exploiting the data in the event log to build a
discrete event simulation model of the line. Additionally, we
may want to obtain a simulator that does not reach the same
level of detail of the event log, and to define the maximum
number of activities to be modeled (for instance, only seven
activities instead of nine).

The aim of this work is to develop an algorithm for
process discovery through event logs from manufacturing
systems and suitable for the on-line generation of simulation
models. The procedure must be compliant with a Real-time
Simulation framework [5], hence the system discovery has
to be performed automatically, without pre-existing models
nor any user interaction during the computation. Initial steps
in this direction have already been outlined by [21].



Fig. 2: High-level structure of the proposed approach.

In our procedure, we combined the properties of the min-
ing methodologies presented in section II-B. The frequentist
approach (Heuristic Miners) is based on the occurrence of
event types and this is coherent with manufacturing systems
where multiple paths for items may be present. The genetic
approach is visible in the optimization problem which will be
further explained in section III. The influence of the Fuzzy
Miners approaches is visible from the classification at input
phase, in which the user is free to tune the number of events
to be mapped or to be discarded.

III. A NEW MINING APPROACH

A. Working Procedure

We have developed a general working procedure which
allows for mining manufacturing systems event log datasets.
Here, Petri Nets [22] are used – without loss of generality
– as formal language capable of reflecting the relationships
among activities and entities populating the physical system.
Further, we opted for an optimization approach in which the
level of detail of the system model can be controlled by
the user. Also the selective representation of just a portion
of activities or entities is possible. The main steps of our
approach are described as follows:

• Step 1 – Dataset loading. The event log dataset is used
to generate the footprint and a correlation matrix.

• Step 2 – Optimized mining of event types. The mod-
ified mining algorithm finds the optimal network. This
is done by maximising a quantity called reproducibility,
which takes into account both the logical relationships
among the events and the occurrences of arcs and nodes.
The result is an activity network. Further details about
the proposed method for this step are in section III-B.

• Step 3 – Petri Net model generation. At this step we
may add places between the activities of the activity
network generated in Step 2, thus obtaining the Petri
Net model PN1.

• Step 4 – Petri Net model adjustment. The final step
is related to adjustments of the PN1 model in order to

obtain a formally correct Petri Net model of the system.
Shortly, these steps consists in:

1) addition of token-generation and token-disposal
places;

2) addition of places after all transitions;
3) removal of places in order to guarantee that no

tokens are disposed during the simulation, hence
that tokens in the PN may represent physical parts
in the manufacturing system;

4) mining finite capacities (e.g., buffers). This step
is done through a searching procedure that is
not further described in this work for brevity.
The reader is referred to [23] for further details.
Finite capacities are modeled as additional places
between two transitions.

Figure 2 briefly presents the aforementioned steps. The final
result is a Petri Net model PNadj .

B. Proposed Method for Step 2

The goal of Step 2 is to find the activity network that
maximises the reproducibility of the final graph. This is
done by solving the following problem.

Input data

• n is the number of event types present in the log.
• E is the number of event types that the user desires to

be mapped: it can be lower or equal to the number of
event types in the event log (E ≤ n).

• M = {mi} is a vector, where each of the n elements
mi shows the occurrences related to the i-th activity in
the event log.

• A = {aij} is a n×n matrix where each of its elements
aij represents the frequency of the connection between
activities i and j as found in the event log (i.e. how
many times the arc i− j is visited).

• C = {cij} is the correlations matrix. It is a boolean
matrix such that:

cij =

{
1 if aij > 0

0 otherwise
∀i, j

• kmax is the maximum number of iterations allowed,
hence the computational budget for the optimization
process.

Decision variables

• β = {βi} is a boolean vector such that βi = 1 if
the i-th activity is considered for the inclusion in the
network, βi = 0 otherwise; hence β represents the list
of activities that are used in the network: notice that the
length of the list will be constrained to be equal to the
number provided by the user.

• Γ = {γij} is a symmetric, boolean matrix representing
an activity network and its elements γij are 1 if the
event type i is followed by the event type j.



Station s Entrance Exit

0 999 –
1 998 997
2 996 995
3 994 993

TABLE I: Illustrative Test Case – System activity codes.
Station s = 0 corresponds to the system entrance.

Optimization problem (MSM-1)

max

n∑
i=1

βimi +

n∑
i=1

n∑
j=1

aij γij (1)

s.t.

n∑
i=1

βi = E (2)

γij = min

(
βi cij ; βj cij

)
∀i = 1 . . . n, (3)

∀j = 1 . . . n,

βi ∈ {0, 1} ∀i = 1 . . . n, (4)
γij ∈ {0, 1} ∀i = 1 . . . n, (5)

∀j = 1 . . . n.

The objective function (1) is composed by two terms: the
first term represents the frequency of occurrences of the
activities in the network, the second one takes into account
the frequency of the connections between activities. Here,
we assume equal weights for the two terms. Constraint (2)
is focusing the number of considered events to the user-
specified value E. Constraints (3) are logical constraints
needed to define the variables γij . Constraints (4) and (5)
state the nature of the decision variables.

The MSM-1 problem is solved by a local search procedure.
Specifically, in each iteration k, the performance of just one
neighbor sequence is evaluated, that is a sequence differing
from the starting one only for one single activity [24]. The
solution Γ∗ = {γ∗ij} identifies the final activity network.

IV. EXPERIMENTS

We have tested the mining approach presented in section
III-A and solved the MSM-1 problem for (A) an illustrative
test case on the system of Figure 1a, and (B) a test case on the
LEGO R© Manufacturing System model of the system shown
in Figure 1c. Following we present the results obtained.

A. Illustrative Test Case – Sample System (Figure 1a)

The event log is composed by seven activities (n = 7)
which have been coded according to Table I: Figures 3a and
3b show the results obtained in case a different number of
input events E is imposed. With E = 5, two activities related
to the station that is less visited – 40% of the entities – have
been removed. This is reasonable also if we consider the
simplicity of the system. As a result, the reproducibility of
60% of the entities has been maximized.

(a)

(b)

Fig. 3: Illustrative Test Case – Activity networks obtained in
the cases: (a) with E = 7, and (b) with E = 5.

Fig. 4: Test Case – LEGO R© Manufacturing System (LMS)
model.



B. Test Case – LEGO R© Manufacturing System (Figure 1c)

We applied the proposed method for discovering the con-
figuration of a LEGO R© Manufacturing System (LMS) that
is installed in the Manufacturing Systems Laboratory from
the Department of Mechanical Engineering of Politecnico di
Milano [25]. The physical system is composed by six stations
s ∈ {1, 2, 3, 4, 5, 6} with intermediate conveyors that operate
also as buffers (Figure 4). All the stations are controlled by
LEGO R© EV3 R© bricks, each programmed through python
scripts (EV3DEV OS [26]), and connected to a local net-
work. Conveyors are controlled through proprietary LEGO R©

software that allows switch on/off and speed setting. Wooden
circles tagged with red plates represent pallets that load
the workpieces which must be processed by all the stations
(single-product line).

Each station has three sensors. The first sensor is placed on
the upstream buffer: if it detects that any part is available,
the latter is let into the workstation. The second sensor is
positioned inside the workstation and identifies if a pallet
has entered the station. Buffer capacities are defined by the
position of the third sensor on the downstream conveyor.
We call Bs the buffer after station s. When the third sensor
of the s-th station detects that Bs is full, station s is
set to blocking state and does not release pallets in the
downstream conveyor. The total buffer capacity is limited
and the blocking after service rule is applied. Despite the
LMS is a closed-loop system, in this work it is modeled as
open and it is assumed that a large number of unprocessed
workpieces are waiting outside the system, and that each
part arriving at station 1 is a new arrival. The processing
times are represented by a time TW (s) that each workpiece
has to wait in the s-th station before being released. Sta-
tions {1, 3, 4} represent manual operations, therefore their
processing times are modeled as stochastic. Stations {2, 5, 6}
represent automatic workstations and their times are modeled
as deterministic. Station 2 involves two sequential operations
with deterministic processing time and no buffer slots in
between.

In accordance to the literature [27], we have first framed
the event log by positioning two additional sensors in each
station, one at the entrance and one at the exit of the station,
and collecting the transit times of pallets along the system.
The generated log is composed by three data labels: (1) a
sequential number which is the ID of parts, (2) the sensor
ID, which is uniquely referring to its location on the line,
and (3) the date and time of the detection of the parts
passage by the sensor. The event log activities have been
coded in accordance to Table II. We acquired 3 different
and independent traces, thus 3 different event logs were
produced. Each log records the events encountered by 40
pieces along the LMS.

Figure 5 describes the obtained PN model that has been
validated by creating a simulation model of the line in
Arena R© using the capacities and the processing time dis-
tributions obtained. For each of the three event logs we have
generated a simulation model with the procedure as in section

Station s Entrance Exit

1 999 998
2 997 996
3 995 994
4 993 992
5 991 990
6 989 988

TABLE II: Test Case – LMS system activity codes.

Fig. 5: Test Case – Final PNadj representation and corre-
sponding stations of the LMS.

III-A and compared the performance values of the real sys-
tem with the ones obtained by simulation experiments (each
simulation has been replicated 100 times). Tables III and
IV list the results obtained and the comparison between the
simulation model and the LMS in terms of the distributions
of processing times and buffer capacities. Results confirm
that the generated PN is correctly representing the system
layout and the cycle times, hence the developed method is
effective for the simulation model construction phase. From
Table III it can be noticed that the simulation model created
from PNadj is over-estimating the System Time of the LMS
model, while the Work-in-progress average levels are under-
estimated. However, we have to take into account that this
is due to the lower buffer capacities that have been mined
(Table IV).

V. CONCLUSIONS

In this work, we proposed a Manufacturing Systems
Mining (MSM) approach that is effective for discovering
a production system configuration starting from an event
log composed by only three data-type labels. The identified
system time and work-in-progress are still not comparable
with the real system (Table III). Indeed, if data sampling is
performed with an non-saturated line, the buffer capacities
of the generated simulation model will be underestimated
(Table IV) and eventually the performances estimated by the
simulation model will be lower than the real ones. Future
research shall aim to overcome this issues, for instance by
increasing the amount of input information to allow for
a further improvement in the accuracy of the generated
simulation models.



Property System Mean St. Dev. SE Mean 95% CI for Difference P-Value Result

Layout LMS - - - - - - reference -
PNadj - - - - - Correct

Cycle Time [s] LMS 10.92 4.74 0.31 [-0.56, 0.67] 0.87 - reference -
PNadj 10.86 0.40 0.03 Correct

System Time [s] LMS 182.8 68.2 4.5 [-207.54, -189.63] 0.00 - reference -
PNadj 381.4 12.4 0.88 Over-estimated

Work-in-Progress [parts] LMS 16.67 6.67 0.31 [7.69, 8.93] 0.00 - reference -
PNadj 8.35 0.99 0.07 Under-estimated

TABLE III: Test Case – Results comparison between system performances of the LMS and the generated simulation model.

Station s Tw (PNadj ) Buffer Bs LMS PNadj

1 ∼ N(9.6, 1.6) B1 5 5
2 ∼ N(10.3, 0.9) B2 9 2
3 ∼ N(9.4, 1.8) B3 3 2
4 ∼ N(8.6, 1.8) B4 9 4
5 ∼ N(10.3, 1.8) B5 3 2
6 ∼ N(8.5, 1.6)

TABLE IV: Test Case – Processing times and buffer capac-
ities found through the proposed procedure.
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