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An Internet of Things Architecture for Lab-scale Prototypes
of Real-Time Simulation

Giovanni Lugaresi1, Vincenzo Valerio Alba1, Andrea Matta 1∗

Abstract— Recently, new technologies for data acquisition,
storing and communication enabled to improve the perfor-
mances of manufacturing systems with new production man-
agement and control policies. In the next years, we may expect
several architectures exploiting data exchange between a real
and a digital manufacturing system. This raises the issue
on how to test the frameworks since the availability of real
manufacturing systems to researchers is scarce or simply costly.
In this work, we propose a novel architecture which is suitable
for lab-scale models of manufacturing systems. The developed
architecture has been successfully applied to a test case which
will be used by an Italian SME as demonstrator for ERP
software capabilities.

I. INTRODUCTION

Production enterprises are deeply involved in the Industry
4.0 revolution. This phenomenon provided a set of technolo-
gies to be exploited in the industrial context, such as Internet
of Things (IoT), cloud computing, simulation, Big Data
Analytics, Augmented and Virtual Reality, Radio Frequency
Identification (RFID), Artificial Intelligence and Machine
Learning [1], [2]. Thanks to these enabling technologies,
several innovative solutions have been developed, such as
Digital Twins (DT) [3], Cyber Physical Systems (CPS)
[4], and Virtual Factories [5]. In general, it is possible for
physical systems to be increasingly interconnected with their
digital counterparts.

The system formed by the union of a physical system and a
digital substrate can be called Cyber Physical System (CPS),
and Cyber Physical Production System (CPPS) are CPSs
featured by high interconnection between production assets
and computational tools [4]. Hence, all the decisions taken
within such systems can benefit from data and information
coming from both shop-floor measurements and management
software (e.g. Customer Relationship Management, Material
Requirements Planning). Moreover, these data and infor-
mation are shared in a quasi-instantaneous way, allowing
managers and automated systems to take real-time data-
driven decisions. When CPSs gain the possibility to sense
and analyze data in real time, a set of new opportunities
for production management has arisen. Data-driven decisions
bring along unquestionable advantages when compared with
static arrangements. Indeed, production policies defined a-
priori may be optimal within a precise set of boundaries,
but turn out to be detrimental on system performances when
applied in actual scenarios because real systems are always
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subject to some degree of stochasticity. A possible coun-
termeasure is to design solutions which are robust against
many different scenarios, although never really optimal for
any particular condition rather for the average performance of
the system. On the contrary, online decisions can be tailored
exactly for the circumstances of the very moment they are
examined, hence they can suit a particular system status.

The easiness of communication between and within shop
floors, enterprises managing level, suppliers and clients is
generally associated with the concept of integration. Internet
of Things technologies such as embedded electronics, soft-
wares, sensors, networks and communication protocols that
allow different objects to communicate and share data are at
the root of systems integration [7].

The literature on architectures and frameworks related to
the interplay between real and digital manufacturing systems
is rich and we may expect several other contributions in
the future [1]. Meanwhile, it is hard for researchers and
practitioners to test these architectures on real manufacturing
systems. Indeed, providing a real case validation of such
algorithms and policies is not easy. The proposed algorithms
and policies could be compared and validated in two ways:

1) By using a real system. In this case, it is necessary to
allocate an entire production system and to change the
already established production strategies. The risk is
to spend a lot of time and resources in setting up the
system to reproduce the desired behavior, rather than
iterating the proposed logic.

2) By exploiting digital models of production systems.
In this case, several issues related to the physical
system might not be considered. For instance, data
handling between the real and digital model must be
designed properly to retrieve the desired information
(e.g., current number of parts in a buffer).

In this work, a lab-scale CPPS is introduced. Both the
physical and the software parts of the CPPS are developed.
The physical systems are models of industrial production
lines, built with LEGO R© components1. The goal is to obtain
a setting that allows for testing several iterations of real-
time simulation algorithms logic, while maintaining the
physical dimension and the interplay between a digital model
and the real production system. The rest of the paper is
organized as follows: section II discusses about the industrial
context of production management; section III introduces the
architecture for lab-scale prototypes, and section IV shows

1LEGO, the LEGO logo, MINDSTORMS, and EV3 are trademarks and
copyrights of the LEGO Group.



Fig. 1. ISA95 levels from [9].

an application example; conclusions are in section V.

II. INDUSTRIAL CONTEXT

One of the most established standards for production
management and control is the ANSI/ISA95 [8]. It is based
on five hierarchical levels as shown in Fig. 1. Level 0
is associated with the physical process of manufacturing;
level 1 to actuators and sensors governing and recording
the process; level 2 to the control logic and supervision of
the underlying Supervisory Control And Data Acquisition
(SCADA) activities; level 3 to the management of man-
ufacturing operations (MES); level 4 to the management
of the entire firm (ERP). These levels are often seen as a
pyramid, with the lowest level connected to the physical
process and the highest level linked to the enterprise man-
agement. According to ISA95 standard, each level is able
to communicate only to adjacent levels [9], [10]. However,
recent research claims that this pyramidal vision is no longer
a dogma in industrial IT systems [11]. CPPSs are disrupting
this hierarchical view of the production system thanks the
data sharing capabilities made possible by IoT and cloud
computing. The integration of functionalities is promising
to bring benefits to production systems such as increased
flexibility, easier capability to respond to unexpected events
and higher horizontal and vertical integration of the system
[10].

A high level of integration enables the creation of Digital
Twins [6]. A Digital Twin is the virtual and computerized
counterpart of a physical system [6]. Digital Twins allow to
make smarter decisions and improve performances such as
productivity, efficiency, flexibility, reconfigurability and inte-
gration. Digital Twins are based on automatic data exchange
in both ways between the physical and the digital objects.
Hence, we may state that a DT is able to: (1) mirror the
status of the physical object, (2) simulate its future behavior
in several scenarios, and (3) select the most promising one
and directly communicate them to the physical system [3].

Automated data acquisition and communication paved the
way for a real-time exploitation of simulation [12], [13]. In
Real-time Simulation (RTS) applications, data are acquired
from a real system and are used to synchronize a purposely
built simulation model to the real system state. Then, al-
ternative scenarios are simulated and the one that leads to
best performances is applied online [14]. Fig. 2 explains the
role of RTS within a CPS structure: the digital twin is the

Fig. 2. Simple illustration of a DT exploiting real time simulation-
optimization (adapted from [12]).

whole entity composed by both the physical and the cyber
spaces; the physical space is able to share in real time the
measured data with the cyber space; the cyber space contains
simulation and optimization tools able to quickly implement
actions on the physical space. Synchronization between the
physical systems and their simulation-based DTs is necessary
for obtaining the right boundary conditions and correctly
simulating the system future behavior [15]. By simulating
different scenarios and policies it is then possible to take
those decisions that are able to optimize the performance of
a production system within specific time frames [3].

In this work, we develop a lab-scale model of a production
system and the related software architecture. The introduc-
tion of physical production systems model in a laboratory
allows for investigating hardware-related issues such as data
sharing between the various layers composing a CPPS, while
being able to implement and iterate the proposed logic in
reasonable times. Further, an architecture for generic lab-
scale models of a production system is a tool for validating
several management algorithms and rules for production
planning and control which are based on data exchange with
a real system.

III. PROPOSED ARCHITECTURE

The developed architecture consists of the physical level
and three software levels (Fig. 3). The physical level (section
III-A) is built with LEGO MINDSTORMS, namely both
structural components and sensors, actuators, and PLCs (EV3
intelligent bricks). The first two software levels are coded in
python and are purposely built for the lab-scale environment.
The choice of python as programming language is not
restrictive and the proposed architecture can be extended
to other languages. The Execution Level (section III-B.1)
controls the PLCs. It is associated with the actuators and
sensors which control the manufacturing system. The Logic
Level (section III-B.2) dictates the system logic. The logic
level is associated with SCADA functions of monitoring and
supervising the process and the Manufacturing Execution
System (MES) services of management of the operations and
release of production orders. The fourth level has been called
Overlying Software (section III-B.3). It can be composed



Fig. 3. The developed architecture in comparison with the ISA95 levels.

Fig. 4. Example of station model in a Lego Manufacturing System (LMS).

by several software tools, for instance dedicated to firm
management and Enterprise Resource Planning (ERP), or
simulation-optimization tools. All the levels are integrated
thanks to messages exchanged via the Message Queue
Telemetry Transport (MQTT) communication protocol (sec-
tion III-C).

A. Physical System

In this work, the physical models of production systems
are built with LEGO MINDSTORMS components, which
include not only structural pieces such as beams, shafts and
conveyor belts, but also actuators, sensors and PLCs (EV3
intelligent bricks). These models can be used to replicate the
behavior of a real production line by moving parts such as
spheres or discs through the different stations of the line,
following the proper route and reproducing operations times
by holding pieces for a specific time span. Fig. 4 shows an
example of a station built with LEGO. Notice that the ability
to retrieve the system state at any moment in time depends
on the number and position of the sensors along the system.
In this work, the open-source EV3DEV operating system
(www.ev3dev.org) has been exploited. EV3DEV is based
on Debian Linux. This OS allows the execution of python
scripts for controlling the EV3 sensors and motors through
dedicated libraries. Further details on Lego Manufacturing

Fig. 5. The developed classes for the Execution Level: (a) Ev3, (b) Motor,
and (c) Sensor.

Systems (LMS) can be found in previous related works [16],
[17], [18].

B. Software Levels

1) The Execution Level: this level represents the software
running on the PLCs that controls the physical system,
which consists in a script running on each EV3 device. The
execution level is responsible of two tasks: (1) releasing
run/stop commands to the motors whenever required; (2)
acquiring and communicating the sensor outputs. The motors
activation is triggered by specific messages that communicate
the actions that the motors should perform and releases
the proper run/stop orders only when these messages are
received. Similarly, the sensors outputs can be communicated
“On Demand” or “On Change” via specific messages written
in the JavaScript Object Notation (JSON) format. The code
of the execution level is object-oriented. Three classes rep-
resent the three available pieces of hardware: the PLCs (i.e.
the EV3 intelligent bricks), the motors, and the sensors. Fig.
5 summarizes the classes that have been developed:

• The Ev3 class (Fig. 5a) represents the logic controller.
At its instantiation, all the motors and sensors executed
by the EV3 are contextually instantiated.

• The Motor class (Fig. 5b) has the attributes name
and ev3motor. ev3motor is an object available in the
EV3DEV library that allows for running the motors
through python commands.

• The Sensor class (Fig. 5c) has the attributes name,
ev3sensor and color seen. ev3sensor is an object avail-
able in the EV3DEV library that allows running the
motors through python commands. color seen is an
attribute that indicates the last color seen by the sensor.

2) The Logic Level: this level manages the structure,
execution rules, constraints and characteristics of the manu-
facturing system. It is composed by the following basic parts
which are always present:

www.ev3dev.org


Fig. 6. The classes developed for the Logic Level: (a) Motor, (b) Sensor,
and (c) ColorSensor.

• A description of the physical system layout (motors
and sensors) and the configurations of the EV3s. This
description is sent as a message to the EV3s in order
to configure each of them at startup.

• The messages definition for being able to communicate
with the execution level and the EV3s and also to export
significant data towards other management services.

• The definition of the system logic. This includes the
number and type of stations and the actions which
should be performed. Notice that this part may differ-
entiate a lot depending on different production systems.

In this work, the logic level is a python script running on a
central controller (for instance, an Industrial PC). The code
is object-oriented and consists of the following classes (Fig.
6):

• The Motor class (Fig. 6a) has the attributes name
and ev3. ev3 is the name of the PLC device that
controls the motor. Motor instances also possess meth-
ods corresponding to the executable actions (section
III-C). Whenever one of these methods is called, a
corresponding message requesting the motor activation
is published, this message will then be processed by
the execution level which will perform the prescribed
operation.

• The Sensor class (Fig. 6b) possesses an attribute which
is a list of all the instantiated Sensors objects. Moreover,
each Sensor instance has the attributes name and output.

• The ColorSensor class (Fig. 6c) is a subclass of the
class Sensor, with the addition of an instance attribute
ev3 representing the name of the EV3 that is connected
to the sensor. Hence, it is possible to locate the position
of each sensor along the line.

3) Overlying Software: this level includes software which
may exploit the data from the system to perform several
high-level operations, such as updating a production plan or
calibrating the digital twin of the physical system. Following
we list some examples.

• Data Flows Management Tools are intermediary ser-
vices to transfer data between software utilities.

TABLE I
SUMMARY OF THE MESSAGES EXCHANGED ACROSS DIFFERENT LEVELS

OF THE DEVELOPED ARCHITECTURE.

Message Topic Sent From - Received By Purpose

data Logic Level - Overlying SW Data extraction

ev3 config Logic Level - Execution Level EV3s configuration

hello Execution Level - Logic Level EV3s configuration

sensor/request Logic Level - Execution Level Reading sensor output on demand

sensor/on demand Execution Level - Logic Level Reading sensor output on demand

sensor/on change Execution Level - Logic level Reading sensor output on change

motor/action/action name Logic Level - Execution Level Activating motors

stop Any - Execution/Logic Level Stopping software execution

• Database Management Systems (DBMS) allow the stor-
age, manipulation and query of the acquired data. After
raw data are measured and stored, they may be manip-
ulated and aggregated for obtaining useful information.
For instance, the time series of a machine state may be
used to derive both availability and reliability indicators.

• Dashboards are applications for the real-time visualiza-
tion of data as well as custom indicators and indexes.
These are useful in an industrial environment since
they allow managers and technical staff to have all
the relevant information they need for taking the right
decisions any time they have to.

• Simulation Models can be exploited for building digital
twins of physical systems. If properly aligned with
the system state, a simulation model can be used for
foreseeing the future performances of the same systems
in given scenarios [4]. It is thus possible to simulate
different production and management policies in order
to determine which one is optimal. Simulation models
need initial conditions for being able to run a simulation.
These initial conditions are generally the status of the
simulated system. The developed architecture allows to
communicate the data measured on the shop floor, hence
it is able to infer the system status.

• Cloud Computing is among the enabling technologies
of Industry 4.0 [19]. Cloud services also enable the
interface with software such as ERP, CRM, and MRP.

C. Communication

The communication between the software levels is pos-
sible thanks to an IoT infrastructure based on the MQTT
protocol. Table I summarizes the messages exchanged. All
messages are in the JSON format. This protocol allows all
the PLCs to send and receive messages to any kind of IoT-
compatible device connected to the network.

Hence, it is possible to communicate and store data from
the real system while exploiting the message-based Machine-
To-Machine communication between the single PLCs. Fol-
lowing we list two significant examples.

• The sensor/request messages are sent from the logic
level to the execution level and they contain the request
of reading a specific sensor output. In this case, the
payload of the message contains the sensor name and



Fig. 7. The logic layout of the designed part selector.

the name of the EV3 device which is controlling the
sensor.

• The motor/action messages are sent from the logic level
to the execution level and contain the actions that should
be executed by the motors. In our physical system
the possible actions are the following: run forever at
a certain speed; run for a certain amount of time
at a certain speed; turn the axis to a specific angle
value; run back-and-forth of a specific angle value; stop.
Notice that other actions can be designed accordingly
to specific system requirements. The payload is a JSON
object containing the motor name, the name of the EV3
that executes that motor and the value that describe how
to execute the prescribed action.

IV. TEST CASE

A. Introduction

The architecture proposed in this work has been tested
within the construction of a part selector station; the system
is part of a demo factory through which an Italian SME
tests ERP and MES software components. The demo factory
simulates a manual assembly line composed by several
successive stations. The pieces to be assembled are LEGO
boards on which different bricks are attached according to
the specific orders. In the first station, each LEGO brick
is marked with an unique RFID identifier. The bricks are
inserted in cave plastic spheres of different colors. Then,
they are clustered in batches of 50 pieces and stored in a
warehouse. When a production order arrives, a batch is sent
to the parts selector that collects the pieces needed for the
order completion, according to the color of the container
ball and to the brick RFID tag. Once the necessary pieces
have been selected, an operator proceeds to the manual
assembly of the bricks over the board and to a quality
verification through image recognition of the same board.
Finally, assembled boards are stored in the warehouse.

B. Part Selector System

The parts flow diagram of the Part Selector station is
showed in Fig. 7. The parts are charged into an upstream
buffer in groups of fifty. They are then processed, two at a
time. Non-useful pieces are treated as scraps and discarded.
The selector consists of two stages of verification: (1) color
check, where it is controlled that the plastic sphere is of the
right color. (2) RFID check, where it is verified that the brick

Fig. 8. The part selector physical system.

TABLE II
DATA EXTRACTED FROM THE PIECES SELECTOR MODEL.

Name Category (Type ) Description

counter in Counter (int) Number of pieces that have entered the system

counter out Counter (int) Number of pieces that have leaved the system

counter color Counter (int) Number of pieces that passed in Color Check station

counter rfid Counter (int) Number of pieces that passed in RFID Check station

counter color scrap Counter (int) Number of pieces discarded by Color Check station

counter rfid ord1 Counter (int) Number of pieces pushed into Order 1 slider

counter rfid ord2 Counter (int) Number of pieces pushed into Order 2 slider

counter rfid scrap Counter (int) Number of pieces discarded by RFID Check station

color station state State (bool) State of the Color Check station (idle or busy)

rfid station state State (bool) State of the RFID Check station (idle or busy)

color data State (str) Last seen color recorded by Color Check station

rfid data State (int) Last seen RFID tag ID recorded by RFID Check station

contained inside the sphere is effectively present in the order
to be completed.

In this work, the physical model has been built exploiting
LEGO components. In particular, the pieces selector model
takes advantage of the spherical shape of the pieces to
transport them over slides exploiting gravity. Fig. 8 shows
the selector with its components. Two EV3s control four
motors (A to D) and six sensors (1 to 6). Thanks to
the developed architecture, the pieces selector is controlled
and supervised by the software levels (section III-B). The
production plan is executed through appropriate messages
published whenever required by the orders received from the
management software. Moreover, useful data are extracted
from the system: (1) counters are used to keep track of
how many parts are in production and how many are left
to complete the production plan, (2) state variables can tell
the state of each selection stage (e.g., the RFID reader state),
(3) work-in-progress is monitored through memory of the last
piece seen by the sensor on the line. These data are saved
into a database and visualized on a dashboard for monitoring
the process. Table II summaries the published data. The test
has been performed using a PC equipped with an i5 CPU
1.6 GHz and 8 GB memory.

V. CONCLUSION

Industry 4.0 introduced a set of new possibilities for man-
ufacturing systems. For example, production planning prob-



lems may now be solved in real-time or updated with a very
high frequency. This work proposed a software architecture
based on lab-scale physical models which allows to study
several kinds of production systems. Indeed, several different
types of manufacturing systems can be turned into lab-scale
models developed in very short times thanks to the ease of
construction of the LEGO physical models. The introduction
of such lab-scale models with an IoT Architecture can change
the way manufacturing systems engineering research is done
and tested, since it enables to test production planning and
control algorithms exploiting real-time data communication
through real industrial components (e.g., PLCs, gateways,
sensors). Hence, the related research projects can reach a
higher Technology Readiness Level (TRL).

Several issues still need to be solved. The architecture has
been exploited for studying aggregate performance measures
(e.g., average waiting times). Further work is needed to
be able to investigate the influence of a specific process
parameter (e.g., clamping force, workpiece temperature) on
the performance of the system. In this case, a scaled physical
process on the parts is needed (e.g., 3D printing). In the
future, we aim to formalize the boundaries of application
of this work. Further, we plan to use the proposed archi-
tecture for Real-time Simulation experiments, such as real-
time scheduling. Last but not least, the architecture can be
extended to prescribe comparisons among simulation results
from models of real systems in similar settings, before the
identification of proper corrective actions.
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[7] A. Köksal, E. Tekin, Manufacturing execution through e-FACTORY
system, Procedia CIRP 3 (1) (2012) 591–596. doi:10.1016/j.
procir.2012.07.101.

[8] C. Johnsson, ISA 95 - How and where can it be applied?, in: Technical
Papers of ISA, Vol. 454, 2004, pp. 399–408.

[9] B. S. De Ugarte, A. Artiba, R. Pellerin, Manufacturing execution
system - A literature review, Production Planning and Control 20 (6)
(2009) 525–539. doi:10.1080/09537280902938613.
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