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Tewodros Weldebirhan Arega(�), Stéphanie Bricq, and Fabrice Meriaudeau
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Abstract. Automatic and accurate segmentation of the left atrial (LA)
cavity and scar can be helpful for the diagnosis and prognosis of patients
with atrial fibrillation. However, automating the segmentation can be
difficult due to the poor image quality, variable LA shapes, and small
discrete regions of LA scars. In this paper, we proposed a fully-automatic
method to segment LA cavity and scar from Late Gadolinium Enhance-
ment (LGE) MRIs. For the loss functions, we propose two different losses
for each task. To enhance the segmentation of LA cavity from the multi-
center dataset, we present a hybrid loss that leverages Dice loss with a
polynomial version of cross-entropy loss (PolyCE). We also utilize dif-
ferent data augmentations that include histogram matching to increase
the variety of the dataset. For the more difficult LA scar segmentation,
we propose a loss function that uses uncertainty information to improve
the uncertain and inaccurate scar segmentation results. We evaluate the
proposed method on the Left Atrial and Scar Quantification and Seg-
mentation (LAScarQS 2022) Challenge dataset. It achieves a Dice score
of 0.8897 and a Hausdorff distance (HD) of 16.91mm for LA cavity and
a Dice score of 0.6406 and sensitivity of 0.5853 for LA scar. From the
results, we notice that for LA scar segmentation, which has small and
irregular shapes, the proposed loss that utilizes the uncertainty estimates
generated by the scar yields the best result compared to the other loss
functions. For the multi-center LA cavity segmentation, we observe that
combining the region-based Dice loss with the pixelwise PolyCE can
achieve a good result by enhancing the segmentation result in terms of
both Dice score and HD. Furthermore, using moderate-level data aug-
mentation with histogram matching improves the model’s generalization
capability. Our proposed method won the Left Atrial and Scar Quantifi-
cation and Segmentation (LAScarQS 2022) Challenge.

Keywords: Cardiac MRI · Late Gadolinium Enhancement MRI · Left
Atrium · Scar quantification · Segmentation · Deep learning · PolyLoss ·
Uncertainty

1 Introduction

Atrial fibrillation (AF) is an irregular and often very rapid heart rhythm (ar-
rhythmia). During atrial fibrillation, the heart’s upper chambers (the atria) beat
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irregularly and out of synchronization with the heart’s lower chambers (the ven-
tricles). AF increases the risk of stroke, heart failure, and other heart-related
complications [6]. One of the most commonly used techniques to treat AF pa-
tients is radio-frequency catheter ablation using the pulmonary vein (PV) isola-
tion [27].

Late Gadolinium Enhancement (LGE), sometimes called delayed-enhancement
MRI, is a gold standard imaging technique to visualize and quantify the left
atrial (LA) scars. In a clinical routine, human experts generally segment the
LA anatomy and LA scars manually. Manual segmentation is time-consuming
and suffers from intra- and inter-observer variability. This problem can be ad-
dressed by automating the segmentation. However, automatic segmentation of
LA anatomy and LA scars from LGE MRI is still challenging due to poor image
quality, variable LA shapes, thin LA walls, and small isolated regions of the LA
scars [16].

Few studies have been proposed to segment LA cavity from LGE MR images.
Gao et al. (2010) [7] and Zhu et al. (2013) [32] utilized region-based active-
contour and variational region growing with shape prior respectively to segment
LA cavity. Tao et al. (2016) [25] used atlas-based methods leveraging auxiliary
images with better anatomical information to help the LA cavity segmentation
from LGE MRI [17]. However, accurately segmenting LA cavity using these
conventional methods depend on additional information such as shape prior
or auxiliary images [17]. Recently, deep learning-based algorithms have been
successfully applied to segment LA cavity from LGE MRI. Vesal et al. (2018) [26]
proposed a 3D U-Net with dilated convolutions at the bottleneck of the network
and residual connections between the encoder blocks to incorporate local and
global information. Chen et al. (2018) [5] adopted multi-task learning to perform
both LA cavity segmentation and pre/post ablation classification. Other works
[10, 28, 30] utilized a two-stage cascaded segmentation framework to first locate
the region of interest (ROI) that covers the atrial cavity, then used a second
network to segment LA cavity from the cropped ROI. The main problem with
these cascaded approaches is that they can be time- and resource-intensive.

Recently, semi-automatic and fully-automatic deep learning based methods
have been widely used to segment scar [1, 21, 31]. For LA scar segmentation,
some studies proposed to use non-deep learning based methods such as thresh-
olding [22, 24], clustering [23], deformable and graph-based methods [11, 12].
Although these conventional methods have shown encouraging results, they rely
on initial manual segmentation of the LA cavity. Deep learning methods have
been presented to automatically segment LA scar from LGE MRIs. Li et al. [14]
proposed to use graph-cuts with multi-scale CNNs to automatically segment LA
scar. Other works utilized multi-task learning to jointly segment LA cavity and
scar [16,29].

In this paper, we proposed a fully automatic deep learning based method that
leverages a polynomial loss and an uncertainty based loss to segment LA cav-
ity from multi-center LGE MRIs and LA scar from single-center LGE MRIs,
respectively. To increase the variety of the dataset, we also employ various
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data augmentation techniques, including histogram matching. We evaluated our
method on Left Atrial and Scar Quantification and Segmentation (LAScarQS
2022) Challenge dataset. The proposed losses achieve the best result compared
to other losses in both the multi-center LA cavity segmentation and the highly
imbalanced LA scar segmentation. In addition, the employed data augmentation
techniques improve the model’s generalization on the LA cavity segmentation
from multi-center images.

2 Dataset

The Left Atrial and Scar Quantification and Segmentation Challenge (LAS-
carQS 2022) 1 consists of 200 LGE MRIs acquired in a real clinical environment
from patients suffering Atrial fibrillation (AF). All the LGE MRIs were collected
from three different clinical centers. The images from the first center (Univer-
sity of Utah) were acquired using Siemens Avanto 1.5T or Vario 3T. The voxel
resolution of the images was 1.25 × 1.25 × 2.5 mm. The LGE MRIs from the sec-
ond center (Beth Israel Deaconess Medical Center) were acquired with Philips
Achieva 1.5T. The spatial resolution of the images was 1.4 × 1.4 × 1.4 mm.
Similar to the second center, the images from the third center (King’s College
London) were acquired with a Philips Achieva 1.5T. The spatial resolution of the
LGE MRI scan was 1.3 × 1.3 × 4.0 mm. The challenge has two tasks. The first
one focuses on left atrial blood pool segmentation from multi-center LGE MRIs.
The second task focuses on segmentation of left atrial scar [15–17]. We declare
that the segmentation method implemented for participation in the LAScarQS
2022 challenge has not used any pre-trained models nor extra MRI datasets other
than those given by the organizers.

3 Methods

3.1 Network Architecture

For both LA cavity and LA scar segmentation, we employed a 3D segmentation
network. The network architecture is based on 3D nnU-Net framework [9]. As
demonstrated in Fig. 1, we altered the standard nnU-Net network architecture
by adding Dropout at the network’s middle layers [3] to lessen overfitting and
improve generalization. The U-Net’s encoder and decoder consist of 10 convolu-
tional layers where each convolution is followed by instance normalization and
Leaky ReLU (negative slope of 0.01) activation function. The kernel size of the
convolution is 3 × 3 × 3. During pre-processing, we resampled all the volumes
to 0.625mm × 0.625mm × 1.0mm and 0.625mm × 0.625mm × 2.5mm for LA
cavity segmentation and LA scar segmentation respectively (the median voxel
spacing of the training cases). The intensity of every volume was normalized to
have zero-mean and unit-variance.

1 https://zmic.fudan.edu.cn/lascarqs22
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Fig. 1. Overview of the network architecture.

3.2 Loss functions

Recently, Leng et al. (2022) [13] proposed PolyLoss, a new loss function that
expresses the commonly used loss functions such as cross-entropy (Eq. 1) and
focal loss (Eq. 3) as a linear combination of polynomial functions. Using Taylor
expansion, cross-entropy can be represented as sum of polynomial bases (1−p)j ,
as shown in Eq. 2, where p is the prediction probability of the target class [13].
By dropping the higher-order polynomials and adding terms that perturb the
polynomial coefficients, they came up with a simplified version of the polynomial
loss called Poly-1. This loss function modifies the cross-entropy by only adding
one hyper-parameter (ϵ) [13], as can be seen in Eq. 2. PolyLoss has shown good
performance on computer vision tasks by outperforming cross-entropy and focal
losses [13].

Inspired by [13], in this paper, we proposed a loss function that uses Dice
loss with PolyLoss (Eq. 5) for a LA cavity and scar segmentation. Dice loss is
a region based loss that directly optimizes the Dice coefficient metric as shown
in Eq. 4. We hypothesized that by combining the region based Dice loss with
the polynomial version of the cross-entropy (PolyCE) (Eq. 5) can improve the
segmentation of LA cavity from multi-center LGE MRIs.

LCE = −log(p) =

∞∑
n=1

1

n
(1− p)n, (1)

LPolyCE = LCE + ϵ(1− p), (2)

LFocal = −(1− p)γ log(p), (3)

LDice = 1− 2|Y ∩G|
|Y |+ |G|

, (4)

LDicePolyCE = LDice + LPolyCE , (5)
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where Y and G represent the predicted and manual segmentation maps,
respectively.

Arega et al. (2021) [2] proposed a segmentation model that generates un-
certainty estimates (sample variance) during training using the Monte-Carlo-
dropout Bayesian method and utilizes the uncertainty information to enhance
the segmentation results by incorporating it into the segmentation loss func-
tion [2]. During training, the model is sampled N times, and the mean of these
samples is used as the final segmentation. The sample variance (uncertainty)
(σi) is computed as a variance of the N Monte-Carlo prediction samples of each
pixel i [2]. Since sample variance is a pixel-wise uncertainty measure, to deter-
mine the image-level uncertainty the mean of the pixel-wise uncertainty values
is computed as shown in Eq. 7, where I is the total number of pixels of the
image [2]. This image-level uncertainty is considered as uncertainty loss. Then,
it is added to a segmentation loss with a hyper-parameter value alpha (α) that
controls the contribution of the uncertainty loss to the total loss as shown in
Eq. 8. They have shown that uncertainty information can be advantageous, par-
ticularly to improve the segmentation of semantically and visually challenging
pathologies such as scars which generate higher epistemic uncertainty [2].

In this paper, we proposed to adopt the uncertainty loss in combination
with the hybrid loss of Dice and Focal (DiceFocal) loss [33] (Eq. 6) for LA scar
segmentation. We hypothesized that by fusing DiceFocal loss, which has shown
good performance on highly imbalanced dataset [20], with the uncertainty loss
(Uncertainty DiceFocal Loss) (Eq. 8) can enhance the segmentation of the more
challenging LA scar segmentation.

LSeg(DiceFocal) = LDice + LFocal, (6)

LUncertainty =
1

I

∑
i

(σ2
i ), (7)

LTotal(UncertaintyDiceFocalLoss) = LSeg(DiceFocal) + α× LUncertainty, (8)

3.3 Data Augmentations

We applied a variety of data augmentations to improve the generalization and
robustness of the models in the multi-center dataset, including intensity-based
data augmentation, spatial data augmentation, and histogram matching aug-
mentation [3, 9]. Histogram matching is the transformation of an image so that
the histogram of a source image matches the histogram of a reference image [8].
Mathematically, it is the process of altering one image so that the cumulative
distribution function (CDF) of values in each band corresponds to the CDF of
bands in another image.

In the LAScarQS 2022 challenge, there was no specific information about
each training image regarding the clinical center from which they came from.
In this work, we used histogram matching by taking random training images
and matching them to a selected low performing training images which had the
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worst performance in terms of Dice. The matched images were then added to
the training dataset to enhance the generalizability of the model on LA cavity
segmentation from multi-Center LGE MRIs.

3.4 Training

The segmentation models were trained for 1000 epochs in a 5-fold cross-validation
scheme. Stochastic gradient descent (SGD) with Nesterov momentum (µ = 0.99)
with an initial learning rate of 0.01 was used to optimize the network’s weights.
The learning rate was decayed using the ”poly” learning rate policy [9]. We em-
ployed a mini-batch size of 2. We used a value of 1 for epsilon (ϵ) in PolyLoss
(Eq. 2) and a value of 2 for gamma (γ) in Focal loss (Eq. 3). For the uncertainty
loss, the weighting factor (α) (in Eq. 8) is empirically selected to be 2.0. For
histogram matching, we utilized Simple ITK’s python library [19]. The training
was done on NVIDIA GPUs using Pytorch deep learning framework based on
nnU-Net implementation [9].

4 Results and Discussion

To evaluate LA cavity segmentation, Dice coefficient, average surface distance
(ASD) and Hausdorff distance (HD) metrics were used. For LA scar segmenta-
tion and quantification, accuracy, specificity, sensitivity, Dice coefficient of the
scar, and generalized Dice score of the cavity and scar were used [16]. All the
comparisons were done on the validation set provided by the challenge. The val-
idation dataset for LA scar segmentation consists of 10 cases from center 1, the
same center as the training dataset. For LA cavity segmentation which focuses
on a multi-center problem, the validation dataset contains 10 cases from center
1, the same center as the training dataset, and 10 cases from center 2.

The baseline method is the standard nnU-Net network [9] with Dropout
layers added at the middle layers of the segmentation network as mentioned
in Section 3.1. It uses light data augmentation that includes rotation, scaling,
Gaussian blur and noise. In terms of the loss function, the baseline method
employs a hybrid loss of Dice loss with cross-entropy Loss (DiceCE).

Regarding the data augmentation, we separated the experiments into light
data augmentation (baseline), moderate data augmentation and histogram match-
ing augmentation. The same network architecture was used during the compar-
ison. The moderate data augmentation uses elastic deformation, rotation, scal-
ing, mirroring, additive brightness, Gaussian noise and blurring. For histogram
matching (HM) augmentation, the matched images were added to the training
dataset as mentioned in Section 3.3.

Comparing the data augmentation experiments’ performance in Table 1, it
can be observed that moderate data augmentation improved the segmentation
performance from 17.1836mm to 16.8721mm in terms of HD. However, it yielded
a bit worse result in both Dice and ASD compared to the baseline (light data



Using Uncertainty Information for Left Atrial and Scar Segmentation 7

augmentation). Similarly, the histogram matching-based data augmentation sig-
nificantly decreased the HD from 17.1836mm to 16.6851mm. However, its per-
formance was slightly lower in terms of Dice score and ASD.

Comparing the performance of the loss functions on the segmentation of
LA cavity, the proposed loss outperformed the other loss functions as shown
in Table 1. The baseline (DiceCE loss) yielded a Dice score of 0.8884, ASD of
1.74629 and HD of 17.18363 mm whereas DiceFocal loss achieved a Dice score
of 0.8885, ASD of 1.7474 and HD of 17.2035 mm. Using only the polynomial
version of cross-entropy loss (PolyCE) enhanced the segmentation result mainly
in terms of Dice score and HD. When PolyCE is combined with Dice loss, the
segmentation result of LA cavity was improved further from 0.8884 to 0.8897,
from 1.7463 to 1.7203, and from 17.1836 to 16.9067 mm in terms of Dice score,
ASD and HD respectively compared to the baseline which uses DiceCE loss.

Table 2 shows the comparison of the different loss functions on LA scar
segmentation. Compared to LA cavity segmentation, it has imbalanced classes
because the scar is very small compared to the cavity. Due to this, we have com-
pared the proposed loss not only to the baseline but also to other loss functions
which are commonly used for imbalanced segmentation. For example, hybrid loss
functions such as DiceFocal loss [33], and DiceTopK loss [4] which combines Dice
loss with Focal loss and TopK loss respectively to mitigate class imbalance [20].
In the comparison, we have also included Focal loss [18], a loss function that was
designed to deal with foreground-background class imbalance by focusing more
on the hard examples.

Table 1. Comparison of LA cavity segmentation performance using various data aug-
mentations and compound loss functions on validation set (n = 20) of the challenge.
Dice: Dice score, ASD: average surface distance, HD: Hausdorff distance. The bold
values are the best.

Method Dice ASD HD (mm)

Baseline 0.8884 1.7463 17.1836

Moderate DataAug 0.8868 1.7755 16.8721

HM DataAug 0.8867 1.7536 16.6851

DiceFocal 0.8885 1.7474 17.2035

OnlyPolyCE 0.8893 1.7413 17.0053

Proposed (DicePolyCE) 0.8897 1.7203 16.9067

As shown in Table 2, the baseline, which combines Dice loss with cross-
entropy loss (DiceCE) [9], yielded an accuracy of 0.7764, sensitivity of 0.5529,
Dice score of 0.6258 and generalized Dice score 0.9187 for scar segmentation.
The DicePolyCE loss enhanced the performance of baseline as it increased the
accuracy, sensitivity, Dice and generalized Dice of scar by 22%, 1%, 0.5%, 0.01%,
respectively. DiceTopK loss [4] achieved an accuracy of 0.7751, sensitivity of
0.5503, Dice score of 0.6222 and generalized Dice score 0.9183 which is lower
than the baseline. Using only Focal loss [18] achieved the worst result as can
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be seen in Table 2. The other commonly used loss function for an imbalanced
dataset that is DiceFocal loss [33] yielded much better result compared to the
baseline, DicePolyCE and DiceTopK loss with an accuracy of 0.9999, sensitivity
of 0.5749, Dice score of 0.6363 and generalized Dice score 0.9199. The proposed
loss, where uncertainty loss is combined with DiceFocal loss achieved the best
result outperforming the other loss functions. In terms of specificity, all the loss
functions achieved a similar score of 0.9999.

From the results, we observed that a compound loss that utilizes Dice loss
with the polynomial version of cross-entropy loss (DicePolyCE) consistently im-
proves the performance of the most common compound loss that combines Dice
loss with cross-entropy loss. The performance enhancement was in both the
mildly imbalanced LA cavity segmentation and the highly imbalanced LA scar
segmentation. This shows the robustness of the proposed loss in LA cavity and
scar segmentation.

In LA scar segmentation, the second proposed loss function which utilizes un-
certainty information outperformed the commonly used loss functions for highly
imbalanced segmentation such as DiceTopK [4] and Focal loss [18] functions [20],
DiceFocal loss [33]. This confirms the importance of incorporating uncertainty
information as part of the learning process to enhance particularly the segmen-
tation of pathologies with irregular structures like scars.

Table 2. Comparison of LA scar segmentation performance using different compound
loss functions on validation set (n = 10) of the challenge. GDice: generalized Dice score
of cavity and scar. The bold values are the best.

Method Accuracy Specificity Sensitivity Dice GDice

Baseline 0.7764 0.9999 0.5529 0.6258 0.9187

DiceTopK Loss 0.7751 0.9999 0.5503 0.6222 0.9183

DiceFocal Loss 0.9999 0.9999 0.5749 0.6363 0.9199

Focal Loss 0.9999 0.9999 0.5095 0.6047 0.9139

DicePolyCE Loss 0.9999 0.9999 0.5605 0.6301 0.9187

Proposed (Uncertainty+
DiceFocal Loss)

0.9999 0.9999 0.5853 0.6406 0.9205

In terms of data augmentation, the experiments were mainly focused on the
multi-center LA cavity segmentation. From the results, we can say that using
moderate data augmentation and histogram matching can enhance the model’s
generalization as it improved the segmentation result, particularly in terms of
HD compared to the light data augmentation.

5 Conclusion

In this paper, we proposed a fully automatic deep learning method that uti-
lizes a novel hybrid loss function that combines Dice loss with a polynomial
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version of cross-entropy loss to segment LA cavity from multi-center LGE MRIs
and an uncertainty-based loss function to segment scar from single-center LGE
MRIs. We also employed various data augmentation techniques, which include
histogram matching, to increase the size and variety of the training dataset. In
the experiments, we have compared the proposed loss function with the com-
monly used losses in the multi-center LA cavity segmentation and in the highly
imbalanced LA scar segmentation. We observe that the proposed losses yield
the best result outperforming the other losses in both LA cavity and scar seg-
mentation. From the results, we can say that using the polynomial version of
cross-entropy in combination with Dice loss can be a better alternative loss func-
tion for anatomical segmentation such as LA cavity. For segmentation such as LA
scar, which generates high epistemic uncertainty due to its small and complex
structure, utilizing a loss function that incorporates uncertainty information can
be useful for robust segmentation. Additionally, applying moderate-level data
augmentation with histogram matching can improve the results and increase
the model’s generalization capability.
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