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Abstract
This paper focuses on optimizing collective self-consumption in an energy community composed

of households and premises (stadium) by scheduling loads of electrical appliances owned by the mem-
bers. The corresponding community remains connected to the public grid, and each member can
produce and/or store photovoltaic energy. Furthermore, they can exchange this energy with the
public grid or other energy community members. The proposed strategy aims at implementing a
Demand Side Management program by taking advantage of the controllable loads’ characteristics.
A MILP formulation of the problem allows, on the one hand, to give the optimal planning of the
operation of the electrical devices. On the other hand, it provides the optimal solutions for manag-
ing the storage units and the energy exchanges between community members and the public grid to
minimize the energy flows from the public grid to the community over the time horizon. However,
this MILP does not allow us to efficiently solve the large instances of the problem. Thus, we develop
a column generation-based heuristic to find solutions for large problem instances. Our numerical ex-
periments based on real data collected in the south of France, show that joining an energy community
saves money on energy bills and reduces the total energy drawn from the primary grid by at least 15%.

keywords: Energy communities, Loads scheduling, Column generation heuristic

1 Introduction
The increasing environmental concerns and the European Union’s commitment to sustainability have led
to the approval of the Clean Energy Package by the European Commission in 2019 [5]. This package
provides a regulatory framework for Renewable Energy Communities and Citizens Energy Communities.
Instead of operating as a single Renewable self-consumer and dealing with the disadvantages of this status
(loss of surplus energy, for example), economic agents evolving in the same locality can form an energy
community and share advantages and disadvantages. Since the approval of the Clean Energy package,
projects in member countries like France, Spain and Portugal are trying to implement the directives of the
package. Therefore, we are assisting the multiplication of efforts by legislators, researchers, practitioners,
and citizens to implement projects aimed at the generation, management, and consumption of locally
produced electricity to support the energy transition.

1.1 Renewable Energy Communities
An energy community can be defined as a grouping of two or more physical or legal persons who combine
their efforts to make the best use of the energy they produce locally. Here, we are interested in RECs.
RECs involve groups of citizens, social entrepreneurs, public authorities, and community organizations
participating directly in the energy transition by jointly investing in, producing, consuming, selling, and
distributing renewable energy. Some benefits of RECs are: more efficient storage and sharing of green
energy. Indeed, when a green energy producer operates alone, i.e., produces, consumes, and injects energy
surplus into the primary grid, the energy surplus after charging the batteries is necessarily injected into
the primary energy grid. Therefore, this energy may not be consumed locally. Being in the community
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increases the storage capacities because instead of systematically injecting in the network, one can prefer
to inject in the batteries of the community. In addition, community members can exchange energy at more
attractive rates than those offered by the public grid. The authors of [16] have highlighted the advantages
of sharing the outputs of the collective system between consumers. Specifically, the maximization of load
matching through the aggregation of heterogeneous demand profiles induces a smooth load curve that
can imply an increase in the self-consumption rate of about 20% [14]. Similarly, [17] shows that the
aggregation of individual loads leads to a global load curve more adapted to the solar energy production
profile and thus increases the collective self-consumption. The members of an energy community, unlike
classical consumers, are therefore more involved in decision-making, especially in energy sharing.

We are witnessing a continuous increase in global energy demand. It is estimated that residential
consumption alone accounts for 40% of global energy consumption [6]. Energy communities are an
alternative way to reduce the carbon footprint of members. The expansion of energy communities would
reduce the consumption of fossil fuels and increase the use of green energy. However, this requires the
construction of smart buildings in which almost all devices are remotely manageable. It also involves
the conduct of studies leading to the development of advanced solutions to support the paradigm shift
from the traditional energy systems paradigm of “generation-follows-load” to the new paradigm of “load-
follows-generation”, which have led to the development of Demand Side management methodologies [4].

1.2 Demand side management
Demand-side management (DSM) is the planning, implementation, and monitoring (by a power system
operator) of activities to induce a change in consumer behavior to modify its consumption profile. It is a
function that allows the involvement of consumers in the management of smart grids through informed
decision-making regarding their energy consumption, which helps the energy providers reduce the peak
load demand and reshape the load profile [13]. Appeared in the 70s in response to rising energy costs,
the concept has been approached in different ways. The first approach is based on an agreement between
the consumer and the network operator. Through this agreement, the consumer authorizes the network
operator to disconnect a selection of devices when the cumulative consumption reaches a threshold.
This approach is called Direct Load Control (DLC), which may be effective in some cases but not in
cases where the network operator manages several consumers for obvious reasons. Hence, the second
approach is where the operator, through various mechanisms, encourages consumers to consume or not
during specific periods (Decentralized Control, DC). Among these mechanisms are the energy prices
that variate according to different parameters: the general state of the market, the global load level,
and the global level of energy production. The consumer is thus periodically confronted with arbitration
between consuming or making savings. Contrary to the DLC, DC allows the consumer to manage loads
through the circulation of information. However, although advantageous for both parties, this second
approach may not be very effective if it is not accompanied by the consumer’s efficient scheduling of
energy generation, storage, and consumption. Therefore, developing planning algorithms integrated into
a management system would allow autonomous and optimal management of all production, consumption,
and storage activities.

This paper focuses on community members’ simultaneous planning, consumption, and storage ac-
tivities. The community remains connected to the public grid, and the members may or may not own
a green energy production system and energy storage system. Moreover, each member performs a set
of controllable loads (i.e., with flexible and programmable execution) and non-controllable loads (i.e.,
with fixed power profile) [4] during a given time horizon. Finally, community members who generate
photovoltaic energy can exchange their surplus with others and/or feed it into the public grid.

The main objective for the community is to maximize the auto-consumption of renewable energies,
or in other words, to minimize the exchanges with the public grid. Therefore, we focus on scheduling
members’ loads by taking advantage of the specific characteristics of these loads.

1.3 Related works
Loads scheduling to optimize energy efficiency is a well-assimilated practice in the industrial context. It is
the case, for example, of [9] where the authors study a multi-objective flow shop minimizing the tardiness
and the total energy cost. Likewise, the literature on load scheduling in residential, microgrid, and energy
communities is abundant. Typically, the approaches for solving the problems can be categorized into
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two types: offline and online. In the online planning approach, the decision at period h is revealed at
the beginning of that period. That approach, which requires increased consumer participation, may be
ineffective because of the fatigue phenomenon described by [18]. In the offline approach, the optimization
is performed once before the planning horizon starts. The members execute their tasks during horizon
according to the returned scheme. Our work belongs to the class of offline approaches.

Energy communities can take several forms. There members may consist of prosumers, consumers, a
mix of prosumers and consumers [10], whether these members have individual storage units or a central
storage unit [22], only prosumers not having batteries [11], etc. As shown in Figure 1, the community
considered here is composed of a mix of prosumers and consumers, and each of them may or may not own
a storage unit. In addition, the works related to energy communities seek answers to various questions
and the technical solving tools that are used strongly depend on these questions. These tools include
linear programming, mixed-integer programming, bi-level programming, game theory.

When game theory or bi-level models are involved, it is often under the form of Stackelberg games.
The latter consist of a leader and a follower, where the leader (level 1) is an entity similar to the primary
grid that sets the energy buying/selling prices to optimize the gain (positive or negative) or incite the
followers to prioritize green energy consumption. Then, the followers (level 2) make their decisions to
optimize their earnings and ensure their comfort regarding the leader’s decisions.

Among the works that adopt a bi-level approach, we have [11], where is presented a model for energy
management in a community of prosumers and trading among peers. There is no individual storage
system; instead, a centralized storage entity that can buy surplus generation exists. The energy surplus
of individuals can be sold/purchased to a neighbor, the centralized storage entity, or the main grid.
Similarly, [23] presents an energy system composed of energy suppliers and small microgrids. Microgrids
can have batteries but require an energy supplier in case of production or demand surplus. The paper
considers a supplier named Genco that interacts with the microgrids via power purchase/sale contracts.
Genco aims to offer the best contracts to avoid losing customers to competitors. The microgrids seek
to minimize the total cost of interactions with Genco. First, a deterministic model is formulated, then
a stochastic model considering the uncertainty of intermittent energy sources. In [1], the authors con-
sider an environment composed of an energy-sharing system involving a set of consumers and a system
operator. The system operator’s goal is to maximize its payoff. Consumers have loads that can be
delayed but executed within specific time windows, with certain penalties. So, consumers’ objective is to
minimize their objective function composed of energy bills and inconvenience, which conflicts with the
system operator’s goal. In addition to the bi-level model, they propose a single-level reformulation and
two heuristics that provide good solutions by relying on the structure of the problem.

Regarding game theory, [22] proposes a peer-to-peer trading scheme for a community of prosumers
and consumers. Consumers draw their needs from the main network. The primary grid sets buying
and selling prices so that prosumers have the least incentive to trade with it. The followers respond by
forming coalitions of neighbours who will trade their surplus with those in need of energy. The paper
studies the properties of the Stackelberg game and show in particular that prosumers have no interest
in going it alone, that prosumers will only form two coalitions. They finally show that there is a stable
Stackelberg equilibrium.

Turning to linear programming approaches, [10] seeks the percentage of prosumers to include in a
community that maximizes the financial gain. To answer such a question, the authors introduce a cost-
optimization model for peer-to-peer energy-sharing communities, making continuous decisions while using
a forecast for the input data. Based on real-world data, they deduce that we can achieve cost-saving
and increased collective self-consumption for small communities of 2-5 members. Similarly, [21] proposes
a data-driven flexibility optimizer model for day-ahead energy profile scheduling. First, this optimizer
estimates the green energy production and energy consumption of heat pumps and cooling appliances,
using a prediction model based on the fully connected neural network architecture. Then, an optimization
problem is formulated to minimize flexibility procurement to reduce peak demand and increase green
energy consumption. Finally, day-ahead scheduling is performed according to the optimization model
results. Also, [7] proposes load planning in hospital, sensitive to electrical failures. The network comprises
hospital beds, PV generation, and repurposed EV storage system. The presented model is tested under
different scenarios; the results show that electricity bill reduction of 9.4% and energy reduction drawn
from the main grid are achievable.
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1.4 Contributions
In this work, we seek to optimize collective self-consumption by scheduling the controllable electric
devices’ loads of community members, energy exchanges between peers, and battery storage. Unlike
many models from the literature, where one seeks to optimize profit, this work aims at optimizing the
energy drawn from the public grid. In other words, we wish to minimize the consumption of non-green
energy.

The problem is modelled as a Mixed-Integer Linear programming Model (MILP), which, in addition
to returning optimal schedules, gives a plan of energy exchanges and a management scheme for electricity
storage units installed in the community during the considered planning horizon. Our starting is the
model proposed in [15], which we significantly enrich by considering more realistic modelling of the
temperature evolution in the rooms and water heaters, following Newton’s cooling law. As the resulting
MILP is hardly solvable to optimality, even for small instances, we developed a column generation-based
heuristic that convexifies the set of feasible schedules for the heating tasks.

Experiments reported in this paper show that the amount of energy drawn from the network is
reduced by at least 15% when individuals operate as a community compared to the cumulative energy
drawn from the primary grid when they act individually. They also show that the MILP method is more
efficient for solving small problem instances, while the heuristic provides high-quality solutions for large
problem instances.

The remainder of the paper is organized as follows: after describing the problem under study in
Section 2, Section 3 presents the mixed-integer programming model to acquire the exact solutions to the
problem. Section 4 presents the heuristic based on column generation, returning the efficient solution
of large problem instances. Section 6 presents the experimental results. The paper concludes with a
conclusion and perspectives for future works in Section 8.

2 Problem description
We study the following planning problem in this paper: Consider a set of N agents (residences, businesses,
schools, stadiums, etc.) forming an energy community. Each community member may or may not have
power generation and energy storage assets. During a time horizon H sliced into periods of equal length,

Figure 1: Community architecture (CC represents the Community Coordinator).

each member wishes to perform a set of tasks with electrical devices. Each task belongs to one of the
following categories based on its characteristics.

2.1 Loads categorization
According to [4], controllable loads have flexible and programmable operations. The controllable loads
are grouped into two categories: type A, B loads. The reorganization of controllable loads over time
allows increasing the energy efficiency of the community. We use the same loads nomenclature as [15].
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Type A loads are related to tasks whose execution allows regulating the temperature of certain envi-
ronments to ensure human comfort. They include heating, ventilation, air conditioning, and water
heaters. The execution of these tasks may be interrupted for certain periods before being resumed
while ensuring that the targeted temperature objectives are met. In practice, an individual regu-
lates the temperature of a room to reach a comfort zone and maintains this comfort zone until a
specific time of the day. For example, an individual may want the temperature of a space to be
between 22 °C and 24 °C from 6 pm to 11 pm. The solution proposed in this paper for scheduling
type A loads determines the starting time and periodic consumption levels for the tasks during the
planning horizon.

Type B loads must be executed within some given time windows and with fixed periodic electrical
consumption levels. They are generated using electric appliances such as washing machines, dryers,
and electric vehicles. For each corresponding task, the user indicates the time windows during which
the task could be executed and also gives the periodic consumption levels in each time window. The
model returns the best schedule to operate the tasks while respecting the community’s operating
constraints.

Type C loads have an uncontrollable starting time and periodic consumption levels. In other words,
these loads must be executed without delay after the request and necessarily with the required
electrical consumption levels. Examples of type C tasks include lighting, cooking, television, fridge,
internet box, and appliances on standby. Therefore, each member has to estimate the periodic
accumulation of the consumption of the corresponding tasks on the planning horizon.

Here are some examples of type B tasks in a planning horizon of 24h, sliced into periods of 1 hour.
Three tasks are required: charging an electric vehicle (green), using a washing machine (gray), and a
dryer (blue). We have two schedules for each task, as presented in Figure 2. The first plan is for the
washing in three periods: in the first period, the washing machine will use 2kWh and then 1 kWh in the
following periods. The second plan foresees to do the washing in two periods, with 2 kWh per period.
The reasoning is the same for the two other tasks.

Tasks 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Washing 2 1 1
2 2

Dryer 2 2
2 2

EV 2 2 2 2
2 2 2 1 1

Figure 2: Example of type B tasks.

According to this categorization, the problem is determining two types of decisions. First, we must
decide when to start the type A tasks and which power levels to use periodically to reach the temperature
objective. Second, we must choose the best schedules provided by the members to execute the type B
tasks. These decisions must satisfy the individual and global constraints of the community. Recall that
tasks of type C are uncontrollable, so no further decision is required for these.

2.2 Energy network model
Figure 1 presents the considered community members’ asset ownership characteristics. The members
can exchange green energy (Peer-to-Peer electricity transactions) at fixed rates known by all members.
Indeed, members owning green energy generation tools can sell their surplus to the other community
members or the green energy supplier. Furthermore, a green energy generator owning a storage unit can
store the surplus and consume or sell it later. However, members holding only storage units cannot sell
energy. Instead, they buy energy for their usage. Each individual is directly linked to the public grid
and can subtract/inject energy from/into it when needed. Let Cih be the amount of energy drawn from
the network by member i ∈ N at time period h ∈ H. The objective is to minimize the sum of the powers
drawn from the primary grid by all the community members over the planning horizon H.

Section 3 presents the problem’s formulation as mixed-integer linear program.
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3 Loads scheduling model
This section introduces a mixed-integer linear program to get the exact solutions of the loads scheduling
problem. The data used in the model are:

Sets
N set of members in the community
Bi set of batteries of member i ∈ N

JiA set of tasks of type A of member i ∈ N

JiB set of tasks of type B of member i ∈ N

H set of the periods in the planning horizon
KA

ij set of rooms of member i where task j ∈ JiA can be performed
Sij set of schedules given by i ∈ N for the execution of task j ∈ JiB

P A
ijk set of the power levels available to perform task j ∈ JiA in room k ∈ KA

ij of i ∈ N

Params
∆h length of period h (hour)
πi subscribed power level of member i ∈ N

Γib capacity of battery b ∈ Bi of member i ∈ N

ξbi initial amount of electricity in battery b ∈ Bi of member i ∈ N

ηbi automatic discharge rate of battery b ∈ Bi of member i ∈ N

ϕbi maximum number of cycles for the battery b ∈ Bi of member i ∈ N

β maximum spending degradation threshold allowed (%)
Ωi equal to 1 if member i is allowed to exchange electricity, 0 otherwise
dbih, cbih discharge and charging efficiencies of battery b ∈ Bi of member i ∈ N at period h (%)
νijk equal 1 if task j ∈ JiA is executed by member i in room k ∈ KA

ij 0, otherwise
θj(p) function modeling the temperature variation when performing task j ∈ JiA according to power p

[tlow
ijk , tup

ijk] comfort temperature targeted by member i when performing task j ∈ JiA in room k (°C)
[hlow

ijk , hup
ijk] time where memberi’s confort zone must must be reached when performing task j ∈ JiA

T̄ room
i1k initial temperature of room k ∈ KA

i1 where member i wants to perform task for j = 1
T̄ water

i2k initial water’s temperature in heater k ∈ KA
i2 where member i wants to perform task for j = 2

T̄ all
ijk T̄ all

ijk = T̄ room
i1k if j = 1, T̄ all

ijk = T̄ water
i2k if j = 2

T out
h outside temperature at time period h ∈ H (°C)

T room
kh ambient temperature of the room where is placed the water heater k ∈ KA

i2 at period h ∈ H (°C)
P Gen

ih energy production of member i at period h (kW)
P B

ijhs power consumption of task j ∈ JiB of member i at period h in the schedule s ∈ Sij (kW)
P in

bih, P out
bih charging and discharging power of battery b ∈ Bi of member i ∈ N at time period h (kW)

pC
ih cumulative power consumption of type C tasks at time period h ∈ H

Gi gain of member i ∈ N when operating outside a community(€)
vMG

h unit purchase price of electricity from the primary grid during period h ∈ H (€/kWh)
ṽMG

h unit sale price of electricity to the primary grid during period h ∈ H (€/kWh)
vCom

h unit purchase price of electricity in the community during period h ∈ H (€/kWh)
ṽCom

h unit sale price of electricity in the community during period h ∈ H (€/kWh)
vGES

h unit purchase price of electricity to the green energy supplier at period h ∈ H (€/kWh)
ṽGES

h unit sale price of electricity to the green energy supplier at time period h ∈ H (€/kWh)

Note that the prices ṽGES
h and vGES

h apply when individuals are in the community. In addition, ṽMG
h and
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vMG
h are the selling and buying prices when the members are outside the community. Prices with index

C are intra-member transaction prices.
Type A tasks are heating tasks, performed to regulate the temperature. Without loss of generality,

we consider two types of heating tasks: houserooms and water heaters. We model the variation of
temperature for a task according to the power level as follows. Let ph be the power level at which the
device operates at time period h.

• For a house room, based on Newton’s law of cooling [2], the temperature variation function θ1 can
be written as

θ1(ph) = θ1(ph−1) + ∆
Cr

(ph − U(θ1(ph−1) − T out
h )),

where Cr is heat capacity (J/K), parameter U designates the heat loss coefficient of a room in
(W/K), and ∆ is the heating time in second. T out

h is the external temperature at period h ∈ H.

• For a water heater, using the method from [19], the temperature variation function θ2 is given by

θ2(ph) = ∆h

Mcp

(
− S

R
[θ2(ph−1) − T room

h ] − 1000Mwcp[θ2(ph−1) − Tin] + υph

)
+ θ2(ph−1),

where cp is the isobaric specific heat capacity of water (kcal/kg.°C), υ is the efficiency of the
electricity-to-heat transformation, M is the weight of the water (kg). The data S designates the
exchange surface of the water container with the external area, R is the thermal resistance of the
tank insulation in m2.°C/W and Mw is the average hot water demand rate during the time interval,
which we assume to be equal to zero since we don’t have that information. Parameter Tin is the
supply domestic cold water temperature, and recall that T room is the temperature of the ambient
environment. Finally, ∆h heating time in seconds.

Notice that schedules start at period 1. We have the initial period h = 0 where no decision is required,
i.e., p0 = 0. The initial state of house rooms (T̄ room) and water heaters (T̄ water) are known. In addition,
each task j ∈ JiA that is performed in room k of member i has a power p∗

ijk > 0 in kW. Thus, in
practice, the device’s used power is continuous on interval [0, p∗

ijk]. In this work, we discretize [0, p∗
ijk] by

considering only the integer values in [1, p∗
ijk] (notice that 0 is not considered as in that case, the device

is turned off). Our numerical experiments consider devices with p∗
ijk = 2.

Given these data and heating model, our problem can be formulated with the following variables:

xA
ijkhp ∈ {0, 1} is equal to 1 if and only if task j ∈ JiA is in progress at period h ∈ H in room

k ∈ KA
ij of member i ∈ N , and the devise is on power level p,

xs
ij ∈ {0, 1} is equal to 1 if and only if schedule s ∈ Sij is chosen for the execution of task j ∈ JiB

of community’s member i,
zbih ∈ {0, 1} is equal to 1 if and only if battery b ∈ Bi of member i ∈ N is charging in time

period h ∈ H,
wbih ∈ {0, 1} is equal to 1 if and only if the operation of battery b ∈ B of i ∈ N changes from

discharging or inactive to charging in period h ∈ H,
Tijkh ≥ 0 represents the temperature in room k of member i ∈ N reached by performing task

j ∈ JiA in period h ∈ H,
qbih ∈ R is the amount of energy injected into/out of battery b ∈ Bi of i ∈ N in time period

h ∈ H, with qbih ≤ 0 if b discharges, qbih ≥ 0 if b charges, and qbih = 0 if b is
inactive,

Ebih ≥ 0 is the amount of electricity available in battery b ∈ Bi of member i ∈ N at the end
of period h,

fieh ≥ 0 is the amount of energy produced by member i and sent to member e in period
h ∈ H,

Iih ≥ 0 is the amount of photovoltaic energy injected in the public grid by member i ∈ N
in period h ∈ H,

Cih ≥ 0 is the amount of energy withdrawn from the grid by member i ∈ N in period h ∈ H,
G̃i ∈ R is the gain of member i ∈ N when operating in the community.
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The load scheduling problem is formulated as :

min
∑
i∈N

∑
h∈H

Cih (1a)

s.t.
∑

j∈JiA

∑
k∈KA

ij

∑
p∈P A

ijk
|

p · xA
ijkhp +

∑
j∈JiB

∑
s∈Sij

P B
ijhsxs

ij + pC
ih +

∑
b∈Bi

qbih

∆h

= P Gen
ih +

∑
i′∈N
i′ ̸=i

(fi′ih − fii′h) + Cih − Iih i ∈ N, h ∈ H (1b)

∑
p∈P A

ijk

xA
ijkhp ≤ 1 i ∈ N, j ∈ JiA, k ∈ KA

ij , h ∈ H (1c)

∑
s∈Sij

xs
ij = 1 j ∈ JiB , i ∈ N (1d)

∑
i′∈N,i′ ̸=i

fii′h + Iih ≤ P Gen
ih +

∑
b∈Bi

Ebih

∆h
Ωi i ∈ N, h ∈ H (1e)

G̃i =
∑
h∈H

 ∑
i′∈N
i′ ̸=i

(vCom
h fii′h − ṽCom

h fi′ih) + vGES
h Iih − ṽGES

h Cih

 ∆h i ∈ N (1f)

G̃i − Gi

|Gi|
≥ β i ∈ N (1g)∑

i′∈N,i′ ̸=i

fi′ih + Cih ≤ πi i ∈ N, h ∈ H (1h)

∑
i′∈N,i′ ̸=i

fii′h + Iih ≤ πi i ∈ N, h ∈ H (1i)

Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 i ∈ N, j ∈ JiA, k ∈ KA
ij , h ∈ H (1j)

tlow
ijk ≤ Tijkh ≤ tup

ijk i ∈ N, j ∈ JiA, k ∈ KA
ij , h ∈ [hlow

ijk , hup
ijk] : νijk = 1 (1k)

Tijk0 = T̄ all
ijk i ∈ N, j ∈ JiA, k ∈ KA

ij (1l)
∆hdbihP out

bih (zbih − 1) ≤ qbih ≤ ∆hcbihP in
bihzbih i ∈ N, b ∈ Bi, h ∈ H (1m)

zbih − zbi(h−1) ≤ wbi(h−1) i ∈ N, b ∈ Bi, h ∈ 2, . . . , |H| (1n)
Ebih − qbi(h−1)

Ebi(h−1)
= ηbi i ∈ N, b ∈ Bi, h ∈ 1, . . . , |H| (1o)∑

h∈H

wbih ≤ ϕbi i ∈ N, b ∈ Bi (1p)

Ebih ≤ Γbi i ∈ N, b ∈ Bi, h ∈ H (1q)
Ebi0 = ξbi i ∈ N, b ∈ Bi (1r)
Ebih = ξbi i ∈ N, b ∈ Bi (1s)
xA

ijkhp ∈ {0, 1} i ∈ N, j ∈ JiA, h ∈ H, p ∈ P A
ijk, k ∈ KA

ij (1t)
xs

ij ∈ {0, 1} i ∈ N, j ∈ JiB , s ∈ Sij (1u)
zbih, wbih ∈ {0, 1} i ∈ N, b ∈ Bi, h ∈ H (1v)
Ebih ≥ 0 i ∈ N, b ∈ B, h ∈ H (1w)
Cih ≥ 0 i ∈ N, h ∈ H (1x)
Iih ≥ 0 i ∈ N, h ∈ H (1y)
fii′h ≥ 0 i, i′ ∈ N, h ∈ H. (1z)
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The MILP’s is to minimize the cumulative energy collected by community members over the planning
horizon, expressed in the objective function (1a). Constraints (1b) enforce that for each member i ∈ N ,
at any time period h, the sum of the energies received, and the energy produced is equal to the energy
consumed plus the energy injected into the grids (public and community). On the left-hand side of the
equality, the two sums represent respectively the consumption of type A and B tasks, pC

ih is the total
consumption of type C tasks in period h. The third sum represents the extractions into/out of batteries.
The right-hand side represents the energy exchanges between the community members. Constraints (1c)
impose that at most one power level is chosen in period h ∈ H to regulate the temperature of room
k ∈ KA

ij of member i ∈ N . Constraints (1d) guarantee that only one schedule is selected to perform
task j ∈ JiB of member i during planning horizon H. Community members can only feed photovoltaic
energy into the public grid. Therefore, a member who does not produce green energy should only receive
the energy needed for instant consumption or for charging the batteries. Hence, Constraints (1e) enforce
that an individual who does not produce energy does not send energy. Constraint (1f) calculates the
economic gain G̃i for each member i in the community. In addition, membership in the energy community
should not degrade an individual’s situation beyond a certain threshold. Constraints (1g) enforce that
a member’s gain can deteriorate by at most β%. Constraints (1h) and (1i) are related to the subscribed
power levels of members. Indeed, a member can only inject or withdraw a predefined amount of energy
per period.

The next constraints are related to type A tasks for temperature regulation. Constraints (1j) define
the temperature for each room and each period. Constraints (1k) enforce that the temperature of a
room must be in a specific interval during a given time interval. Finally, Constraints (1l) set the initial
temperature of the rooms.

We then turn to battery usage. Constraints (1m) ensures that qbih lies between the minimum and
maximum power levels allowed for discharging/charging battery b of member i at period h ∈ H. The
number of cycles allowed is limited to limit the degradation of a battery. Constraints (1n) set variables
wbih to track the changes in zbih. Constraint (1o) is related to the batteries’ state. The energy in the
battery is equal to the remaining energy after the automatic discharge plus the energy charged/discharged
at each period. Constraints (1p) enforce the desired maximum number of cycles. Constraints (1q) enforce
capacity constraints on batteries, and Constraints (1r) and (1s) imply that the initial and final states of
batteries are the same.

Finally, Constraints (1t) to (1z) define the domain of the variables.

Remark. Note that nothing prevents an individual i from selling to the community member i′ energy
drawn from the main grid. However, if such a solution is returned by the model, one can readily obtain
a solution that is not less efficient by letting i′ draw that energy directly in the main grid instead of i.

4 Column generation-based heuristic
The proposed MILP can hardly be solved optimally for large problem instances, often not even finding
feasible solutions. To overcome this, we propose a column generation-based heuristic, in which the
columns are the schedules for executing type A tasks. That heuristic allows us to generate only the
schedules with minimum costs (through a pricing problem) that are likely to improve the restricted
master problem (RMP) instead of explicitly generating them. The approach we propose is a heuristic
because new columns are generated only at the root node of the branch-and-bound tree.

4.1 Dantzig-Wolfe reformulation
The column generation-based algorithm relies on a Dantzig-Wolfe reformulation [8] where the scheduling
constraints related to the type A loads are put into a pricing problem, in this case, the temperature
constraints (1j), (1k) and (1l). All other constraints of the load scheduling MILP are placed into the
restricted master problem. It includes the same variables of the loads scheduling MILP except for those
associated with the type A tasks. Indeed, instead of choosing a power level at each period, we will have
to determine which schedule to select among those returned by the pricing problem over the iterations.

Let Xijk denotes the set of feasible schedules for the requested task j ∈ JiA in room k ∈ KA
ij of
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member i ∈ N i.e. such that the temperature constraint is satisfied:

Xijk =

xA ∈ {0, 1}H : Tijk0 = T̄ all
ijk , Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 and tlow
ijk ≤ Tijkh ≤ tup

ijk, ∀h ∈ [hlow
ijk , hup

ijk]


∀i ∈ N, j ∈ JiA, k ∈ KA

ij . Let us introduce a binary variable σχA

ijk that is equal to 1 if schedule χA ∈ Xijk

has been selected to perform task j in the kth-room of member i. Performing a Dantzig-Wolfe reformu-
lation of the constraints corresponding to Xijk, namely (1j)-(1l), we obtain the following reformulation:

min
∑
i∈N

∑
h∈H

Cih

(2a)

s.t.
∑

j∈JiA

k∈KA
ij

∑
p∈P A

ijk

p ·

 ∑
χA∈Xijk

χA
ijkhpσχA

ijk

 +
∑

j∈JiB

s∈Sij

P B
ijhsxs

ij + pC
ih +

∑
b∈Bi

qbih

∆h
= P Gen

ih +
∑
i′∈N
i′ ̸=i

(fi′ih − fii′h)

+Cih − Iih ∀i ∈ N, h ∈ H (2b)∑
χA∈Xijk

σχA

ijk = 1 ∀i ∈ N, j ∈ JiA, k ∈ KA
ij : νijk = 1

(2c)
(1d) to (1i), (1m) to (1z),

σχA

ijk ∈ {0, 1} ∀i ∈ N, j ∈ JiA, k ∈ KA
ij (2d)

where we denote respectively the dual values of constraints (2b) and (2c) by {αih}i∈N,h∈H and {τijk}i∈N,j∈JiA,k∈KA
ij

.
The Restricted Master Problem (RMP) is obtained from the above reformulation by considering only
subsets of elements in Xijk, which we denote X̃ijk.

The pricing problem aims at determining the feasible schedules for the required type A tasks in
the planning horizon. In other words, it aims at determining schedules that satisfy the temperature
constraints of these tasks. Mathematically, the pricing problem searches for the cheapest vector in Xijk

based on the reduced costs obtain from RMP. The reduced cost associated to σχA

ijk for i ∈ N, j ∈ JiA, k ∈
KA

ij is
∑

h∈H

∑
p∈P A

ijk
(−p · αih · χA

ijkhp) − τijk. Therefore, the pricing problem is defined by (3).

min

∑
h∈H

∑
p∈P A

ijk

−αih · p · χA
ijkhp − τijk s.t. χA ∈ Xijk

 ∀i ∈ N, j ∈ JiA, k ∈ KA
ij . (3)

To optimize over Xijk, it is convenient to re-introduce variables xA and T from the original formu-
lation, leading to the following pricing problem for each i ∈ N, j ∈ JiA, k ∈ KA

ij :

min
∑
h∈H

∑
p∈P A

ijk

−αih · p · xA
ijkhp − τijk (4a)

s.t. Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 ∀h ∈ H (4b)

tlow
ijk ≤ Tijkh ≤ tup

ijk ∀h ∈ [hlow
ijk , hup

ijk] : νijk = 1 (4c)
Tijk0 = T̄ all

ijk (4d)∑
p∈P A

ijk

xA
ijkhp ≤ 1 ∀h ∈ H (4e)

xA
ijkhp ∈ {0, 1} ∀h ∈ H, p ∈ P A

ijk. (4f)
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It can possibly improve the restricted master problem if z̃ijk < 0. In this case, the corresponding
column is added to the restricted master problem.

4.2 The algorithm
This section describes the column generation-based heuristic detailed in Algorithm 1, which starts by
determining an initial solution. We determine initial feasible schedules by solving (1) with fii′h for each
i, i′ ∈ N and h ∈ H, that correspond to the case where there are no internal links between members.
We add these schedules to X̃ and solve RMP to recover the dual values α and τ . That concludes the
initial phase.

The following instructions are repeated until a stopping criterion is satisfied: solve the pricing prob-
lem, which returns the feasible schedules of all required tasks. For each feasible schedule, if the corre-
sponding reduced cost is negative, add that planning to the relaxed RMP and solve it to get the dual
values.

We consider two stopping criteria. First, if the pricing problem returns only schedules with positive
or null reduced costs. Or if a fixed maximum number maxIter of iteration is reached. When a stopping
criterion is satisfied, the last step consists of solving the RMP with the integrality constraints so as to
get the final solution of the heuristic.

Due to the number of members and type A tasks, instead of solving the pricing problem for each
task j ∈ JiA, in each room k ∈ KA

ij of each member i ∈ N , we may solve a unique pricing problem. We
will see later which is the most efficient way to proceed. After solving the pricing problem at once, we
get a feasible schedule for each required task. Only those with negative reduced cost will be kept. The
pricing problem is then:

min
∑
i∈N

j∈JiA

∑
k∈KA

ij

h∈H

∑
p∈P A

ijk

−αih · p · xA
ijkhp − τijk (5a)

s.t. Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 ∀i ∈ N, j ∈ JiA, k ∈ KA
ij , h ∈ H (5b)

Tijkh ∈ [tlow
ijk , t

up
ijk] ∀i ∈ N, j ∈ JiA, k ∈ KA

ij , h ∈ [hlow, hup]ijk : νijk = 1 (5c)

Tijk0 = T̄ all
ijk ∀i ∈ N, j ∈ JiA, k ∈ KA

ij (5d)∑
p∈P A

ijk

xA
ijkhp ≤ 1 ∀i ∈ N, j ∈ JiA, k ∈ KA

ij , h ∈ H (5e)

xA
ijkhp ∈ {0, 1} ∀i ∈ N, j ∈ JiA, k ∈ KA

ij , h ∈ H, p ∈ P A
ijk. (5f)

The algorithm is schematized in Algorithm 1, in which c, and PP denote respectively the matrix of
reduced costs and the pricing problem. F MILP refers to the MILP formulation presented in Section 3.

4.3 Complexity of the pricing problem
Let us now study the complexity of PP.
Proposition 1. PP is polynomially solvable if |H| = 1.
Proof. Suppose that m ≥ 1 tasks are required by a single member to heat houserooms, j = 1. Thus, to
alleviate notations, we drop indices i, j and h in the rest of the proof. The problem comes to choose one
power in the set P A

k of available powers for each houseroom k. By assuming that the required temperature
variation is feasible, an answer of the decision problem is obtained by performing at most

∑k=m
k=1 3|P A

k |
operations.

We consider next the special case with a unique member and a unique type of tasks to be executed,
so we drop indexes i and j. A unique task is considered then, we also drop index k. We further assume
that tlow = tup = θ̃, hlow = hup = |H| and T̄ all = 0. We also consider that (∆/Cr) = 1 for the room, so
the temperature variation function θ turns to:

Th = T(h−1) + ph − T loss
h ,
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Algorithm 1: Column generation-based heuristic’s algorithm.
input : maxIter
output : best solution found
Function Main( maxIter):

solve F MILP without internal links to get Xinit, a tuple of feasible schedules, add Xinit to
X̃; iter = 0;

do
iter + +;
solve (RMP ) to get the dual values α and τ ;
solve (PP ) with these dual values to get tuple Xiter and matrix c;
for i ∈ N , j ∈ JiA, k ∈ KA

ij do
if νijk > 0 then

if cijk < 0 then
add Xiter

ijk to X̃ijk;
end

end
end

while iter ≤ maxIter or (c ≥ 0) == 0;
solve (RMP ) with integrality constraints to get Solution;

return Solution.

where ph is the power used to perform the task in the room at period h and T loss
h is the heat lost by the

room at period h. Then,
T|H| =

∑
h∈H

(ph − T loss
h ),

which must be equal to θ̃. With these simplifications, PP becomes:

z̃ = min
∑
h∈H

∑
p∈P A

−αh · p · xA
hp − τ (6a)

s.t.
∑
h∈H

(
∑

p∈P A

p · xA
hp − T loss

h ) ≥ θ̃ (6b)

∑
p∈P A

xA
hp ≤ 1 ∀h ∈ H (6c)

xA
hp ∈ {0, 1} ∀h ∈ H, p ∈ P A. (6d)

Proposition 2. If |H| > 1, PP is NP-hard even if a single task has to be planned.

Proof. We will show that the well-known Multiple-Choice Subset Sum Problem (MCSSP) (known to be
NP-hard [12]) is polynomially reducible to the pricing problem. Recall that, given a set of m classes
N1, . . . , Nm, each class containing weights wi1, . . . , wini , the MCSSP aims at selecting at most one
weight from each class such that the total weight sum is maximized without exceeding the capacity c.
Introducing binary variables xij denoting which weights are taken, MCSSP can be cast as

W = max
m∑

i=1

∑
j∈Ni

wijxij (7a)

s.t.
m∑

i=1

∑
j∈Ni

wijxij ≤ c (7b)

∑
j∈Ni

xij ≤ 1 ∀i = 1, . . . , m (7c)

xij ∈ {0, 1} ∀i = 1, . . . , m, j ∈ Ni. (7d)
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The maximization form of MCSSP may be transformed into minimization form by finding for each
class Ni: w̄i = minj∈Ni

wij , by setting w̃ij = wij − w̄i ∀j ∈ Ni, and c̃ = c −
∑m

i=1 w̄i. The minimization
problem is defined in w̃ and c̃.

Let us now consider an instance of PP with c̃ = θ̃, m = |H|, Ni = P A ∀i = 1, . . . , m, τ = 0, αh = −1
∀h ∈ H, and T loss

h = 0 ∀h ∈ H. Finally, w̃ij = w̃hp where w̃hp denotes the power selected in Nh. PP
formulated in (6) becomes:

z̃ = min
m∑

h=1

∑
p∈Nh

w̃hpxA
hp (8a)

s.t.
m∑

h=1

∑
p∈Nh

w̃hpxA
hp ≥ c̃ (8b)

∑
p∈Nh

xA
hp ≤ 1 ∀t = 1, . . . , m (8c)

xA
hp ∈ {0, 1} ∀t = 1, . . . , m, p ∈ Nh. (8d)

We see that the above instance of PP corresponds to the considered instance of MCSSP, written in
the minimization form, proving the reduction and thus, the hardness of PP.

5 Extension to multiple days
This section is devoted to solving the problem of planning loads over several successive days.

Note that this study is only relevant if accurate energy production and consumption forecasts are
available. Indeed, the temperature variation functions are continuous, and the temperature preferences
of individuals are predictable. Furthermore, predictions can be made for the other two load categories.
Thus, let D be the set of successive days over which we wish to solve the planning problem. Solving
the multiple-day load scheduling problem can be approached in two ways. The first approach consists
in adding an index d indexing day d ∈ D to the decision variables of the previously described MILP (1),
while ensuring the continuity of the room temperature and the state of charge of the batteries. The
result is a unique MILP to be solved over the horizon of several days.

The second method is a heuristic approach, where we solve the initial MILP by modifying the objective
function for each day of time horizon |D|. Indeed, in the model described in Section 3, there is a
trade-off between injecting into the public grid or charging the batteries each time there is a surplus
of global energy production of the community. However, since we do not have a view on the events
of days d + 1, . . . , |D|, it would be better to prioritize battery charging in such a case. We do this
prioritization using

∑
i∈n

∑
h∈H(Cih + Iih) as the objective function for each day d ∈ D.

Algorithm 2 describes how that heuristic works. Each day d one solves the MILP when there is no
exchange between the members to acquire data Gi ∀i ∈ N because we must ensure that constraint (1g)
is satisfied each day. Then, the initial model is solved for day d, with the initial temperature and state of
charge of the batteries equal to their final state on day d − 1. Furthermore, for the water heaters, since
the water of day d − 1 is consumed, and we do not have a hot water consumption function, we assume
that the water temperature is reset at period, hρ = 10 of each day.

In that algorithm, G, E, TH represent, respectively, the vector of earnings, the vector of final state
of charge of the batteries, and the final temperature vectors of day d when there is no exchange between
the members. The model when there is no exchange between the members corresponds to the case where
fieh = 0 ∀i, e ∈ N, h ∈ H. Furthermore, Ẽ and T̃H represent respectively the state of charge vector of
the batteries and the final temperature vector of day d when the individuals exchange energy.

In the following section we report the results we obtain with the two approaches to solving the
problem written in this section as well as a comparison between these approaches.

6 Experimental results
We present in this section the experimental results of the solution approaches presented previously. We
adopt the following notations in what follows.
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Algorithm 2: Heuristic for solving the scheduling problem on several days.
for d in D do

include data for day d;
solve the model when there are no exchanges between members to get G, E, TH ;
solve the model when the members exchange their energy surplus to get vectors Ẽ, T̃Hd;
update the data for next day by adding G, E, TH , Ẽ and T̃Hd ;
return the best solution found for day d

end

• F MILP : The mixed-integer linear program formulation presented in Section 3.

• F MILP
index : Refers to the several consecutive days solving approach presented in Algorithm 2.

We propose a column generation-based heuristic to solve the large scheduling problems. The pricing
problem is separable by member. As we show later, separating by member is time and memory consum-
ing. Thus, we compare two pricing problem solving approaches, PPo and PPs. In PPs we solve a pricing
problem for each member per column generation’s iteration. In PPo we solve a unique global pricing
problem per iteration. Thus,

• CGP P o: Refers to the column generation-based heuristic presented in Algorithm 1 while using PPo
to solve the pricing problem.

• CGP P s: Refers to the column generation-based heuristic presented in Algorithm 1 while using PPs
to solve the pricing problem.

To assess the impact of joining a collective self-consumption community, we compare two scenarios:
community with and without internal links between members.

• The community scenario without internal links corresponds to the case when no link exists between
the members except the main grid. In this case, the photovoltaic energy producers inject their
surplus directly into the main grid.

• The community scenario with internal links corresponds to the case where the individuals operate
in a community. They can exchange their surplus with other members of the community. They
then have to make arbitrage between injecting into the community or injecting into the grid.

This section is divided into two subsections. In the first subsection, we present the instance used to assess
the solving approaches. The instance is based on realistic data from Smart Lou Quila (figure 3 present
the members’ locations in the Cailar). The second subsection presents the numerical results obtained on
these instances. Notice that the latter subsection also contains scalability experiments that assess the
MILP and the column generation heuristics on larger instances obtained by multiplying the available
data several times.

6.1 Instance
6.1.1 Storage and generation assets

The instance is generated over one day in steps of 30 minutes. The community is composed of seven
members, each with equipment whose characteristics are presented in Table 1. Members 1 and 2 possess
both energy production assets and storage units. The third member has only a battery. The three
members, 4, 5, and 6, have only the energy generation asset. The last member does not have any
equipment. Finally, the subscribed power per member in kVa is, respectively, 6, 36, 6, 9, 9, 6, and 9. To
ensure model consistency, we fix the parameter Ωi ∈ N so that Ωi = 1 if and only if the member i has a
power generation system.

Figure 4 presents the periodic real productions of the members of Smart Lou Quila [3], composed of
seven members: 6 residences and a municipal stadium located in the south of France. It also presents
the community’s total energy production. The data are taken from date January the 08 and 09, 2022.
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Figure 3: Community’s members’ locations.

Member 1 Member 2
Photovoltaic (PV) Yes PV Yes
PV Capacity 3.2kWp PV Capacity 6.12kWp
Battery Yes Battery Yes
Number 1 unit Number 1 unit
Capacity 9.8kWh Capacity 9.8kWh
Initial state of charge 4.5kWh Initial state of charge 4.5kWh
Efficiency 97.5% Efficiency 97.5%
Power 3.7kW Power 5kW
Periodic discharge rate 1% Periodic discharge rate 1%

Member 3 Member 4
PV No PV Yes
PV Capacity 0kWp PV Capacity 3.2kWp
Battery yes Battery No
Number 1 unit Number 0 unit
Capacity 9.8kWh Capacity 0kWh
Initial state of charge 4.5kWh Initial state of charge 0kWh
Efficiency 97.5% Efficiency 0%
Power 3.7kW Power 0kW
Periodic discharge rate 1% Periodic discharge rate 0%

Member 5 Member 6
PV Yes PV Yes
PV Capacity 3.2kWp PV Capacity 3.2kWp
Battery No Battery No

Member 7
PV No
Battery No

Table 1: Production and storage assets description in the community.
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Figure 4: Smart Lou Quila’s total production in kW on two time horizons.

6.1.2 The loads

We present in this section realistic data for the loads, built up together with our partner Smart Lou
Quila and inquiries realized among the members of the demonstrator. We present next the requested
tasks by the members during the planning horizon according to the three described loads categories.
The planning horizon consists of a day sliced into 48 equal-length periods. As mentioned previously,
we consider two type A tasks: room and water heating. Each member has at most three rooms. The
following array ν indicates the requested type A tasks by the members. Member 1 (in bold) wants to
regulate the temperature of three rooms and one water heater. Member 2 did not request any type A
task during the horizon. Member 3 has three tasks, two-room heating, one water heating, and so on
for the next members. Thus, νijk is equal to 1 if task j ∈ JiA is executed by member i in room k, 0
otherwise. In addition, j = 1 means that the corresponding task is room heating, and j = 2 means that
the requested task is water heating.

νij1=[1 1 ; 0 0 ; 1 1 ; 1 1 ; 1 1 ; 0 1 ; 1 1 ]
νij2=[1 0 ; 0 0 ; 0 0 ; 0 0 ; 1 0 ; 1 0 ; 1 0 ]
νij3=[1 0 ; 0 0 ; 1 0 ; 0 0 ; 0 0 ; 1 0 ; 1 0 ]

∀i ∈ N, j ∈ JiA. The following matrices tlow and tup represent the desired temperature of the members in
their corresponding rooms during intervals [hlow

ki , huki] knowing that the initial temperature in the rooms
is depicted in T̄ room.

tlow =

 19 0 16 17 20 22 19
22 0 19 22 23 22 19
16 0 19 17 20 22 19

 tup =

 22 24 19 20 21 24 21
24 24 24 23 24 24 21
20 21 24 20 22 24 21



hlow =

 20 1 20 20 34 18 20
20 1 20 20 34 18 20
20 1 20 20 34 18 20

 hup =

 30 48 40 40 47 34 42
30 48 40 40 47 34 42
30 48 40 40 47 34 42


T̄ room =

 12 14 16 12 14 12 15
15 14 12 11 14 12 8
12 14 10 12 14 12 10


We now present the physical characteristics of the rooms in Table 2, while Table 3 presents these

for the water heaters. In Table 2, column Surface designates the room’s surface of rooms, Cr the heat
capacity, and U the heat loss coefficient. We calculate Cr and U according to the information given by
the members.

We collect the external temperature data for the considered time horizons, July 23 to 25 and January
08 to 09, 2022 on [20], which reports the weather data of the closest station to the community. The
temperature data T out

h ∀ h ∈ H is presented in Figure 5.
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Member room Surface Cr U Member room Surface Cr U

Member 1

room 1 9m2 297 12

Member 3

room 1 18m2 594 24
room 2 15m2 495 20 room 2 9m2 297 12
room 3 18m2 594 24 room 3 9m2 297 12

Member 4

room 1 12m2 396 16

Member 5

room 1 25m2 825 33.3
room 2 20m2 660 26.6 room 2 10m2 330 13.3
room 3 12m2 396 16 room 3 12m2 396 16

Member 6

room 1 18.5m2 610.5 24.6

Member 7

room 1 15m2 495 20
room 2 9m2 297 12 room 2 10m2 330 13.3
room 3 10m2 330 13.3 room 3 14m2 462 18.6

Table 2: Rooms physical characteristics.
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Figure 5: External temperatures for January 08 to 09, 2022, and July 23 to 25, 2021.

Each member has a single water heater; the following table presents their physical characteristics.
The parameter cp = 1 is the specific heat capacity of water. Column M shows the weight of the
water (kg), column S designates the exchange surface of the water container with the external area, K
is the exchange coefficient (kcal/hm2°C). Finally, recall that T room is the temperature of the ambient
environment and the efficiency of the electricity-to-heat transformation υ = Mcp/(Mcpr + ∆SKr).

Member S M K r
1 15 75 1 1.2
2 7 350 1 1.2
3 2 100 1 1.2
4 3.75 200 1 1.2
5 2.4 150 1 1.2
6 2 100 1 1.2
7 2.6 150 1 1.2

Table 3: Water heaters characteristics.

At period hwater = 36, the water’s temperature in the heater of each member must be between 55
and 60 °C for initial temperatures represented in T̄ water = [9; 8; 8; 9; 5; 8; 9] for the winter instance, and
T̄ water = [15; 17; 18; 19; 10; 10; 8] for summer instance. For simplicity, we set the ambient temperature
T room

kh = 17 °C for each member at period h in room k ∈ KA
i2. For these instances, we don’t have type

B tasks without lost of generality. As periodic cumulative consumption of type C tasks, we take 10%
of the real energy consumption of the considered days for each member. Finally, the energy buying and
selling prices per kWh are:

vMG
h = 0.1685, ṽMG

h = 0.1
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vCom
h = 0.1400, ṽCom

h = 0.12
vGES

h = 0.1685, ṽGES
h = 0.065.

and the threshold of economic degradation which must not be exceeded is β = 15.

6.1.3 Instance 7 ex

Here we present a seven members instance called: 7 ex, which we use to illustrate our remarks. Instance
7 ex characteristics in terms of assets possession, is described in Table 1. The planning horizon is 24
hours sliced into periods of 30 minutes. The periodic total production and the external temperature for
instance 7 ex are presented by Figure 6.
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Figure 6: Values for illustrative instance.

Each member has at most three houserooms of 9 m2 and three water heater of 100 litres. The array
ν present the required type A task by members.

νij1=[1 1 ; 0 0 ; 1 1 ; 1 1 ; 1 1 ; 0 1 ; 1 1 ]
νij2=[1 0 ; 0 0 ; 0 0 ; 0 0 ; 1 0 ; 1 0 ; 1 0 ]
νij3=[1 0 ; 0 0 ; 1 0 ; 0 0 ; 0 0 ; 1 0 ; 1 0 ]

∀i ∈ N, j ∈ JiA. The temperature preferences values for houserooms are: hlow=[22 12 22 22 22 22 19]
hup=[24 24 24 24 24 24 24] tlow=[10 16 20 20 34 18 20] tup=[30 46 40 40 47 34 42]

Next section presents the results of the solution approaches on the described instance and the instance
obtained by duplicating the real instance of seven community members.

6.2 Experimental results
This section reports the computational tests conducted to evaluate the two solution approaches presented
in the previous sections. These tests have been carried out on a processor Intel Xeon E312 (Sandy
Bridge) CPU2.29GHz, the MILP’s solving time is tl = 5600s, the column generation’s pricing problem
has a maximum time time_limit =200s, and the maximum number of column generation iterations
is maxIter =10 for each instance. Finally, the RMP with integrality constraints has a time limit of
time_limit =3600s. Notice that we consider two ways of solving the pricing problem: solving the
pricing problem for all tasks at once or solving one pricing problem per task at each iteration. Let us
denote these approaches as PPo and PPs, respectively. We limit the cumulative time of the CG iterations
in both cases to time_limit =2000s, which includes an initialization time of 200s.

The experiment shows that CGP P o quickly finds a good solution. However, the method does not
converge because, from one iteration to the other, the objective value of the RMP improves very little,
as can be seen in Figure 7, which presents the evolution of the said value for instance 7 ex. For CGP P s,
which consists, at each iteration of solving the pricing problem for each task, the solution is improved
quickly, and we can even find an optimal solution if the total number of tasks to be performed is small.
The disadvantage is that solving a pricing problem for each task can be time-consuming. It is, therefore,
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necessary to make a trade-off between time and quality of the solution. If there is a need to save time,
CGP P o may be more appropriate, while CGP P s may be interesting for small instances for which one
may want to wait longer to get a better solution.
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Figure 7: Objective value variation for the pricing problem solve ways.

We conducted a scalability experiment by constructing larger instances and duplicating the members
characteristics up to 32 times, leading to |N | = 224 members in the community. For these larger instances,
the MILP returns no integer solution after the time limit. On the other hand, the heuristic based on
the column generation algorithm can return good solutions, even for the largest problem instances. The
results of the solving approaches are reported in Table 4 where |N | denotes the number of members in the
community. obj and objCG represent, respectively, the sum of the electricity extracted from the primary
grid during the planning horizon returned by the MILP and the column generation-based heuristic. Bb
is the best bound obtained when executing F MILP on the instances. Columns Gap are the gap between
the objective and the best bound. Output “***” means that no feasible solution has been found after
the time limit.

F MILP ’s solutions CGP P o’s solutions CGP P s’s solutions
|N | obj kWh Gap % Bb kWh CPU (s) objCG kWh CPU (s) Gap % objCG kWh CPU (s) (s) Gap %
7 ex 107.74 0.56 107.18 tl 108.53 1078.52 1.33 107.73 300.01 0.55

7 233.74 1.26 230.79 tl 234.24 2010.31 1.54 234.24 577.73 1.54
28 938.96 1.19 927.81 tl 940.98 2023.66 1.41 938.96 2394.09 1.19
56 1877.92 1.20 1855.44 tl 1881.94 2036.56 1.41 1877.94 2381.98 1.20
112 *** *** 3598.52 tl 3675.90 2188.07 2.11 3663.03 2419.62 1.76
224 *** *** 7198.23 tl 7360.32 2362.23 2.20 7321.15 2464.65 1.68

Table 4: Comparison between the solutions of the resolution approaches.

Figure 8 presents in detail all the results obtained by the discussed methods on instance 7 ex. Figure 8a
corresponds to the first scenario: there are no energy exchanges between the community members. So,
when a prosumer has surplus energy at a period h, it is injected into that battery or into the primary
grid. Individuals who do not have production assets draw all their consumption from the public grid.
When there are no internal links between members, the total amount collected from the primary grid
equals 132.11 kWh. When they form a community in the second scenario (Figures 8b to 8d), in this
example, there is almost no injection into the primary grid, the photovoltaic energy produced by the
community members is consumed locally. As a result, the community collects 107.75, corresponding to
a decrease of almost 18.5% in non-green power. The members make savings because the purchase price
in the community is more attractive than the purchase price in the primary grid.
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(a) Community without internal links.
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(b) Community with internal links: F MILP .
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(c) Community with internal links: CGP P o.
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(d) Community with internal links: CGP P s.

Figure 8: Solutions for instance 7 ex.

6.3 Several consecutive days
In what follows we present the results of the models when the number of time periods increases. We
compare the results of the different solution approaches: F MILP with the index of the day, the heuristic
presented in Algorithm 2: F MILP

index and the column generation-based heuristics CGP P o and CGP P s. We
compare the models for three instances for which the number of time period |H| is in {48, 96, 144} and
data collected from January 8 to 9, 2022, and from July 23 to 25, 2021. Table 5 presents these results
where time_limit = tl = 5600s for each approach.

For January 8 to 9,2022
F MILP ’s solutions with day index 1 F MILP

index ’s solutions CGP P o’s solutions CGP P s’s solutions
|H| obj kWh Gap % Bb kWh CPU (s) objH kWh CPU (s) objCG kWh CPU (s) objCG kWh CPU (s)
48 233.74 1.26 230.79 tl 233.74 0.5tl 234.74 2010.31 234.24 577.73
96 431.05 0.99 426.78 tl 432.04 tl 431.97 2014.65 431.46 2279.72

For July 23 to 25, 2021
F MILP ’s solutions with day index F MILP

index ’s solutions CGP P o’s solutions CGP P s’s solutions
|H| obj kWh Gap % Bb kWh CPU (s) objH kWh CPU (s) objCG kWh CPU (s) objCG kWh CPU (s)
48 109.17 0.31 108.83 tl 109.17 0.5tl 114.83 2824.74 109.17 1924.12
96 521.14 0.17 520.26 tl 521.04 0.5tl 523.37 2001.81 521.27 1639.83
144 614.60 0.32 612.63 tl 613.54 0.5tl 621.73 2056.48 614.20 2358.28

Table 5: Comparison between the solutions of the resolution approaches.

Summer instances sometimes are easier to solve than winter ones. Indeed, the external temperatures
are not too far from the target temperatures when type A tasks are performed, except for heat waves.

1The case where we add the day index to the decision variables.
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Moreover, knowing that the problem’s difficulty comes from planning, the problem is easier in this case
because no planning is required. Besides, CGP P s remains more efficient concerning solution quality if
one is willing to allow more solution time, while the quality of CGP P o’s solutions degrades as the time
horizon increases. On the other hand, Algorithm 2 can be used for small communities but not for large
problem instances for the previously discussed reasons.

7 Numerical improvements
7.1 Special Ordered Set variables
We discuss here an enhancement that reduces the solving times of the previous model. Notice that at
each period and for each task we can choose at most one power level to perform type A tasks. We can
thus replace inequality constraint (1c) by an equality constraint by adding a dummy power level p0 = 0
in each set P A

ijk. Then, we sort the powers in ascending order and introduce a binary variable x̂ijkh(pos(p))
for p ∈ P A

ijk ∪ {0} that is related to variables xA
ijkhp through the relations:

xA
ijkhp = x̂ijkh(pos(p)) − x̂ijkh(pos(p)+1) ∀i ∈ N, j ∈ JiA, k ∈ KA

ij , h ∈ H, p ∈ P A
ijk. (9)

Thus, constraint (1c) is replaced by constraints (10) and (11),

x̂ijkh(pos(p)) ≥ x̂ijkh(pos(p)+1) ∀i ∈ N, j ∈ JiA, k ∈ KA
ij , h ∈ H, p ∈ P A

ijk (10)
x̂ijkh0 = 1 ∀i ∈ N, j ∈ JiA, k ∈ KA

ij , k ∈ T (11)

Finally, constraint (1j) becomes constraint (12) where v(p) is the power level directly superior to p (that
is, pos(v(p)) = pos(p) + 1)

Tijkh = θj

 ∑
p∈P A

ijk

(p − v(p))x̂ijkh(pos(p))

 ∀i ∈ N, j ∈ JiA, k ∈ KA
ij , h ∈ H. (12)

Table 6 reports the results obtained with the different solving approaches after that replacement.

F MILP ’s solutions CGP P o’s solutions CGP P s’s solutions
|N | obj kWh BB kWh Gap % CPU (s) objCG kWh CPU (s) Gap % objCG kWh CPU (s) Gap%
7 ex 107.73 107.25 0.45 tl 108.80 226.32 1.53 107.73 339.85 0.45

7 233.74 231.79 0.83 tl 233.74 241.82 0.83 233.74 2242.34 0.83
28 938.96 931.28 0.82 tl 938.96 243.18 0.82 939.47 2221.61 0.88
56 1877.92 1861.71 0.82 tl 1877.92 312.17 0.82 1878.95 2358.13 0.92
112 3659.84 3624.90 0.95 tl 3659.84 412.75 0.95 3659.90 2244.12 0.95
224 *** 7219.16 *** tl 7380.25 2464.28 2.18 7334.55 2425.97 1.57

Table 6: Comparison between the solutions of the resolution approaches.

By comparing Table 6 with the previous Table 4, we notice an improvement in the solving time and
the solution’s quality of heuristic PPo, in opposition to PPs. We also see that F MILP ’s Best bound are
slightly better than before.

7.2 Heuristic enhancement
An improving track for the column generation-based heuristics is to return the first integer solution
returned by the pricing problems. Since an improving solution for a task must have a negative reduced
cost, we add constraints A ≤ ϵ, where A represents the reduced costs. Then, we set up CPLEX to return
the first integer solution. Table 7 contains the results of that improving track, where maxIter = 10, and
ϵ = 10−2.

Comparing to Tables 4 and 6 we note that the resolution times are generally improved as shown in
Table 7. Specifically, CGP P o is more efficient regarding time before and after replacing xA by x̂. However,
we notice a difference for CGP P o according to whether we consider xA or x̂, indeed, the replacement of
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Before replacing xA by x̂

CGP P o’s solutions CGP P s’s solutions
|N | objCG kWh CPU (s) Gap % objCG kWh CPU (s) Gap %
7 233.74 430.93 0.83 233.74 413.14 0.83
28 938.96 447.52 0.82 938.96 475.88 0.82
56 1877.84 491.71 0.82 1877.82 482.83 0.82
112 3674.84 698.4 1.36 3659.92 624.29 0.95
224 7319.67 789.88 1.37 7353.02 1093.38 1.82

After replacing xA by x̂

CGP P o’s solutions CGP P s’s solutions
|N | objCG kWh CPU (s) Gap % objCG kWh CPU (s) Gap %
7 233.74 426.09 0.83 233.74 419.22 0.83
28 938.96 436.09 0.83 938.96 474.24 0.82
56 1877.92 456.77 0.82 1877.92 478.07 0.82
112 3659.84 606.99 0.95 3659.92 404.53 0.82
224 7320.08 1239.01 1.38 7319.87 1031.89 1.37

Table 7: Returning the first integer solution found by PP.

xA by x̂ increases the CPU. Also CGP P s is faster with this track compared to Tables 4 and 6, however,
PPs does not find better solutions at relatively small iteration numbers. This track does not improve
the quality of the solutions of either CGP P o or CGP P s. Moreover, the quality of the solutions degrades
more when xA is replaced by x̂ for both CGP P o and CGP P s.

To summarize, we assumed that introducing SOS could induce an improvement of the problem
resolution. After the experiments, we notice on the one hand, that the resolution times are significantly
improved for CGP P o and CGP P s. On the other hand, by returning the first integer solution for the
heuristic we notice an improvement of the resolution time before and after replacing xA by x̂ compared
to Table 4. However, the quality of CGP P s’s solution is deteriorated when xA is replaced.

8 Conclusions and perspectives
In this paper, we addressed the optimization of collective self-consumption in an energy community. We
assumed that the scheduling of the operation of electrical appliances coupled with a smooth simulation
of the process of electric devices owned by the community members would allow modifying the global
consumption curve while satisfying the global constraints of the community and the individual constraints
of the energy community members. We then developed a mixed-integer linear programming model to
obtain the optimal schedules for the resulting planning problem. Then, faced with the inability of the
MILP to solve large instances of the problem, we implemented a heuristic based on the column generation
algorithm to overcome this problem. The tests demonstrate that the assumed strategy of scheduling loads
can bring significant advantages (economic, sustainable, and social). This validates the Smart Lou Quila
demonstrator on realistic instances and ensures that a bigger community will still collect benefice from
this technology.

We consider a community of |N | individuals, and we encounter difficulties when |N | is large, which
is predictable. One solution is to consider m sub-communities. While optimizing each community
separately does not lead to optimized management of the large community, this may lead to more realistic
decentralized implementations, so this would be an interesting avenue for future research. On the other
hand, our current work assumes that everything takes place in a certain environment. Nevertheless, in
practice, the uncertainty on the energy generation and/or demand can significantly impact the members’
behaviors making the day-ahead obsolete. Another line for future work could consider uncertainty and
explore stochastic optimization counterparts of our models.
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