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Abstract
This paper focuses on optimizing the collective self-consumption rate in energy communities by

scheduling members’ loads. The community remains connected to the public grid and comprises pro-
sumers, traditional consumers, and distributed storage units. Prosumers can exchange their energy
with the public grid or other members. The proposed strategy aims at implementing a Demand Side
Management program taking advantage of controllable loads’ characteristics. A MILP formulation
of the problem allows, on the one hand, to give the optimal planning for electrical devices’ opera-
tions. On the other hand, it provides optimal solutions for managing the storage units, peer-to-peer
exchanges, and interactions with the public grid to minimize the energy flows from the public grid
over time. However, this MILP only allows for solving small problem instances. Thus, we develop
a column generation-based heuristic for large problem instances. Our numerical experiments based
on real data collected in the south of France show that joining an energy community saves money
on energy bills and reduces the total energy drawn from the primary grid by at least 15%.

keywords: Energy communities, Loads scheduling, Column generation heuristic

1 Introduction
Increasing environmental concerns and European Union’s commitment to sustainability have led to the
Clean Energy Package’s approval in 2019 [5], which provides a regulatory framework for Renewable and
Citizens Energy Communities. Instead of operating as a single Renewable self-consumer and dealing
with the associated disadvantages, economic agents in the same locality can form energy communities
and share the impacts. Since the package’s approval by the European Commission, projects in member
countries like France, Spain, and Portugal try to implement the package’s directives. Therefore, we
assist in increasing efforts by legislators, researchers, practitioners, and citizens to implement projects to
generate, manage, and consume locally produced electricity to support the energy transition.

1.1 Renewable Energy Communities
An energy community is a group of at least two physical or legal persons who combine their efforts to
make the best use of locally produced energy. We focus on RECs, which involve entities that jointly
invest in producing, consuming, selling, and distributing renewable energy. Some benefits of RECs are
efficient storage and peer-to-peer exchanges. Indeed, when a producer operates alone, i.e., produces,
consumes, and injects the surplus into the primary grid, the surplus is necessarily injected into the
primary grid after charging the batteries. Being in a community helps increase storage capacities. In
addition, members can exchange in the community at more attractive rates than the public grid offers.
The authors of [16] highlight the advantages of sharing outputs of collective systems between consumers.
In [14], the authors aggregate heterogeneous demand profiles to maximize load matching, which induces
a smooth load curve that increases the self-consumption rate by about 20%. Similarly, [17] shows that
aggregating individual loads leads to a global load curve more adapted to the photovoltaic generation
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profile and thus increases collective self-consumption. Unlike classical consumers, the members are more
involved in decision-making, especially in energy-sharing.

We are witnessing a continuous increase in global energy demand. Residential consumption alone
accounts for 40% of global energy consumption [6]. Energy communities are an alternative way to reduce
the carbon footprint for members. Indeed, expanding energy communities would help reduce fossil fuel
consumption by increasing the use of green energy. However, this requires building smart buildings in
which almost all devices are remotely manageable. It also involves studies to develop advanced solutions
to support the paradigm shift from the traditional energy systems paradigm of “generation-follows-load”
to the new paradigm of “load-follows-generation”, which has led to the development of Demand Side
management methodologies [4].

1.2 Demand side management
Demand-side management (DSM) plans, implements, and monitors activities to incentivize consumption
profile modification. It allows consumers’ involvement in grid management through informed decision-
making regarding their energy consumption, which helps the energy providers reduce the peak load
demand and reshape the load profile [13]. DSM was first introduced in the 70s in response to rising energy
costs and has been used in different ways. The first approach is based on mutual agreement between
consumers and the network operator. Through this agreement, some consumers authorize network
operators (NO) to disconnect some devices when the cumulative consumption reaches a threshold. This
approach is called Direct Load Control (DLC) and may be effective in some cases, but not where NO
manages several consumers. Hence, the second approach is where NO, through various mechanisms,
encourages consumers to consume during specific periods (Decentralized Control, DC). Among these
mechanisms are the energy prices that variate according to different parameters: the general state of the
market, the global load level, and the global level of energy production. The consumer is thus periodically
confronted with arbitration between consuming or making savings. Unlike the DLC, DC allows consumers
to base their decisions on information. However, although advantageous for both parties, this second
approach may only be effective if it is accompanied by the consumer’s efficient scheduling of energy
generation, storage, and consumption. Therefore, integrating planning algorithms into a management
system would allow autonomous and optimal production, consumption, and storage management.

This paper focuses on community members’ simultaneous planning, consumption, and storage activ-
ities. The community remains connected to the public grid, and members may own a green generation
and storage system. Moreover, each member performs a set of controllable loads (i.e., with flexible and
programmable execution) and non-controllable loads (i.e., with fixed power profile) [4] during a given
time horizon. Finally, members who generate energy can exchange their surplus with others and/or feed
it into the public grid.

The community’s main objective is to maximize the local consumption of renewable energy, or in other
words, to minimize the exchanges with the public grid. Therefore, we focus on scheduling members’ loads
by taking advantage of these loads’ specific characteristics.

1.3 Related works
Load scheduling to optimize energy efficiency is a well-assimilated practice in the industrial context.
Authors of [9] study a multi-objective flow shop to minimize tardiness and the total energy cost. Likewise,
the literature abounds with works on load scheduling in residential, microgrid, and energy communities.
Typically, the approaches for solving the problems can be categorized into offline and online. The
online approach reveals the decisions at period h at the beginning of that period. That approach,
which requires increased consumer participation, may be ineffective because of the fatigue phenomenon
described by [18]. In the offline case, the optimization is performed once before the planning horizon
starts. Thus, members execute their tasks during horizon according to the returned scheme. Our work
belongs to the offline approach. Energy communities can take several forms. Their members may consist
of a mix of prosumers and consumers [10], whether members have individual storage units or a central
storage unit [22], only prosumers not having batteries [11], etc. As shown in Figure 1, the community
in this paper is composed of prosumers and consumers, each of whom may own a storage unit. In
addition, the works related to energy communities seek answers to various questions, and the technical
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solving tools that are used strongly depend on these questions. These tools include linear programming,
mixed-integer programming, bi-level programming, and game theory.

When game theory or bi-level models are involved, it is often as Stackelberg games. The latter consists
of a leader and followers’ interactions where the leader is an entity similar to the primary grid that sets
the energy buying/selling prices to optimize the gain (positive or negative) or incentivize followers to
prioritize green energy consumption. Then, followers decide to optimize their earnings and ensure their
comfort regarding the leader’s decisions.

Among the works that adopt a bi-level approach, [11] presents a model for a community of prosumers
who trade among peers. There is no individual storage system; a centralized storage entity can buy sur-
plus generation. The prosumers can exchange their surplus with neighbors, the centralized storage unit,
or the main grid. Similarly, [23] presents a system comprising energy suppliers and small microgrids.
Microgrids can have batteries but require an energy supplier in case of production or demand surplus.
The paper considers a supplier named Genco that interacts with the microgrids via power purchase/sale
contracts. Genco aims to offer the best contracts to avoid losing customers to competitors. The micro-
grids seek to minimize the total cost of interactions with Genco. A deterministic model is formulated,
then a stochastic model considers the uncertainty of intermittent energy sources. In [1], authors consider
an environment composed of consumers and a system operator (SO). SO’s goal is to maximize its payoff.
Consumers have loads that can be delayed but executed within specific time windows, with certain penal-
ties. Thus, consumers’ aim to minimize their costs composed of energy bills and inconvenience, which
conflicts with SO’s goal. In addition to the bi-level model, they propose a single-level reformulation and
two heuristics relying on the problem’s structure.

Regarding game theory, [22] proposes a peer-to-peer trading scheme for a community of prosumers
and consumers. Consumers draw their needs from the main network. The primary grid sets buying
and selling prices so that prosumers have the least incentive to trade with it. The followers respond by
forming coalitions of neighbors who trade their surplus with those needing energy. The paper studies the
properties of the Stackelberg game and shows that prosumers have no interest in going it alone and that
prosumers will only form two coalitions. They finally show that there is a stable Stackelberg equilibrium.

Turning to linear programming, [10] seeks the percentage of prosumers to include in a community that
maximizes the financial gain. To answer such a question, the authors introduce a cost-optimization model
for peer-to-peer energy-sharing communities, making continuous decisions while using a forecast for the
input data. Based on real-world data, they deduce that we can achieve cost-saving and increased collective
self-consumption for small communities of 2-5 members. Similarly, [21] proposes a data-driven flexibility
optimizer model for day-ahead energy profile scheduling. First, this optimizer estimates the green energy
production and energy consumption of heat pumps and cooling appliances using a prediction model based
on the fully connected neural network architecture. Then, an optimization problem is formulated to
minimize flexibility procurement to reduce peak demand and increase green energy consumption. Finally,
day-ahead scheduling is performed according to the optimization model results. Also, [7] proposes load
planning in hospital sensitive to electrical failures. The network comprises hospital beds, PV generation,
and repurposed EV storage system. The presented model is tested under different scenarios; the results
show that an electricity bill reduction of 9.4% and energy reduction drawn from the main grid are
achievable.

1.4 Contributions
In this paper, we seek to optimize the collective self-consumption rate by scheduling: controllable devices’
loads, exchanges between peers, and storage. Unlike many models from the literature, where one seeks
to optimize profit, this work aims at optimizing the energy drawn from the public grid. In other words,
we wish to minimize the consumption of non-green energy.

The problem is modelled as a mixed-integer linear programming model (MILP), which, in addition
to returning optimal schedules, gives a plan of energy exchanges and a management scheme for the
storage units during a given planning horizon. Our starting point is the model proposed in [15], which
we significantly enrich by considering more realistic modelling of the temperature evolution in the rooms
and water heaters, following Newton’s cooling law. As the resulting MILP is hardly solvable to optimality,
even for small instances, we developed a column generation-based heuristic that convexifies the set of
feasible schedules for the heating tasks.

Experiments reported in this paper show that the amount of energy drawn from the network is
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reduced by at least 15% when individuals operate as a community compared to the cumulative energy
drawn from the primary grid when they act individually. They also show that the MILP method is more
efficient for solving small problems, while the heuristic provides high-quality solutions for large instances.

The remainder of the paper is organized as follows: after describing the problem under study in
Section 2, Section 3 presents the mixed-integer programming model to acquire the exact solutions to the
problem. Section 4 presents the heuristic based on column generation, returning the efficient solution
of large problem instances. Section 6 presents the experimental results, Section 7 presents numerical
improvements of the models. The paper concludes with a conclusion and perspectives for future works
in Section 8.

2 Problem description
Consider a set of N agents forming an energy community. Each member may have power generation
and/or storage assets. During a time horizon H sliced into periods of equal length, each member wishes

Figure 1: Community architecture (GES: green energy supplier).

to perform a set of tasks with electrical devices. Each task belongs to one of the following categories
based on its characteristics.

2.1 Loads categorization
According to [4], controllable loads have flexible and programmable operations. The controllable loads
are grouped into two categories: type A and B loads. The reorganization of controllable loads over time
increases the community’s energy efficiency. We use the same loads nomenclature as [15].

Type A loads are related to tasks whose execution allows regulating the temperature of certain envi-
ronments for human comfort. This type includes heating, ventilation, air conditioning, and water
heaters. The execution of these tasks may be interrupted for certain periods before being resumed
while ensuring that the targeted temperature objectives are met. In practice, an individual reg-
ulates the temperature of a room to reach a comfort zone and maintains it until a specific time.
For example, an individual may want the temperature of a space to be between 22 °C and 24 °C
from 6 pm to 11 pm. This paper aims to determine each type A load’s starting time and periodic
consumption levels during the planning horizon.

Type B loads must be performed within some given time windows with fixed periodic consumption
levels. These loads are related to appliances such as washing machines, dryers, and electric vehicles.
For each task, the user indicates the time windows during which the task could be performed and
the periodic consumption levels in each time window. The model returns the best schedule to
operate the tasks while respecting the community’s constraints.

Type C loads have an uncontrollable starting time and consumption levels. In other words, these
loads must be executed without delay after the request and necessarily with the required electrical

4



consumption levels. Type C tasks include lighting, cooking, television, fridge, internet box, and
appliances on standby. Therefore, each member has to estimate the periodic accumulation of the
consumption of the corresponding tasks on the planning horizon.

Figure 2 presents an example of three type B tasks in a planning horizon of 24h, sliced into periods of
1 hour. These tasks correspond to charging an electric vehicle (green), using a washing machine (gray)
and a dryer (blue), and two schedules for each task, as presented in Figure 2. The first plan is for washing
in three periods: in the first period, the washing machine will use 2kWh and then 1 kWh in the following
periods. The second plan foresees washing in two periods, with 2 kWh per period. The reasoning is the
same for the two other tasks.

Tasks 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Washing 2 1 1
2 2

Dryer 2 2
2 2

EV 2 2 2 2
2 2 2 1 1

Figure 2: Example of type B tasks.

According to this categorization, the problem has to determine two types of decisions. First, decide
when to start the type A tasks and which power levels to use periodically to reach the comfort zones.
Second, choose the best schedules the members provide to perform type B tasks. These decisions must
satisfy individual and global operational constraints. Recall that type C tasks are uncontrollable; no
further decision is required.

2.2 Energy network model
In this paper, members can have different generation and storage asset ownership characteristics, as shown
by Figure 1. The members generating energy can exchange their surplus at fixed rates known by all
members. Indeed, these members, called prosumers, can sell their surplus to other community members or
green energy supplier. Furthermore, a generator owning a storage unit can store the surplus and consume
or sell it later. However, members holding only storage units cannot sell energy. Instead, they buy energy
for their usage. Each individual is directly linked to the public grid and can subtract/inject energy
from/into it when needed. Let Cih be the amount of energy drawn from the network by member i ∈ N
at time period h ∈ H. The objective is to minimize the amount drawn from the primary grid by the
members over the planning horizon H.

Section 3 presents the problem’s formulation as mixed-integer linear program.

3 Loads scheduling model
This section introduces a mixed-integer linear program to get the exact solutions of the loads scheduling
problem. The data used in the model are:

Sets
N set of members in the community
Bi set of batteries of member i ∈ N

JA set of types of type A tasks
JB

i set of tasks of type B of member i ∈ N

H set of the periods in the planning horizon
KA

ij set of rooms of member i where task j ∈ JA can be performed
Sij set of schedules given by i ∈ N for the execution of task j ∈ JB

i

P A
ijk set of the power levels available to perform task j ∈ JA in room k ∈ KA

ij of i ∈ N

Params
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∆h length of period h (hour)
πi subscribed power level of member i ∈ N

Γib capacity of battery b ∈ Bi of member i ∈ N

ξbi initial amount of electricity in battery b ∈ Bi of member i ∈ N

ηbi automatic discharge rate of battery b ∈ Bi of member i ∈ N

ϕbi maximum number of cycles for the battery b ∈ Bi of member i ∈ N

β maximum spending degradation threshold allowed (%)
Ωi equal to 1 if member i is allowed to exchange electricity, 0 otherwise
dbih, cbih discharge and charging efficiencies of battery b ∈ Bi of member i ∈ N at period h (%)
νijk equal 1 if task j ∈ JA is executed by member i in room k ∈ KA

ij 0, otherwise
θj(p) function modeling the temperature variation when performing task j ∈ JA according to power p

[tlow
ijk , tup

ijk] comfort temperature targeted by member i when performing task j ∈ JA in room k (°C)
[hlow

ijk , hup
ijk] time where memberi’s confort zone must must be reached when performing task j ∈ JA

T̄ room
i1k initial temperature of room k ∈ KA

i1 where member i wants to perform task for j = 1
T̄ water

i2k initial water’s temperature in heater k ∈ KA
i2 where member i wants to perform task for j = 2

T̄ init
ijk T̄ init

ijk = T̄ room
i1k if j = 1, T̄ init

ijk = T̄ water
i2k if j = 2

T out
h outside temperature at time period h ∈ H (°C)

T room
kh ambient temperature of the room where is placed the water heater k ∈ KA

i2 at period h ∈ H (°C)
P Gen

ih energy production of member i at period h (kW)
P B

ijhs power consumption of task j ∈ JB
i of member i at period h in the schedule s ∈ Sij (kW)

P in
bih, P out

bih charging and discharging power of battery b ∈ Bi of member i ∈ N at time period h (kW)
pC

ih cumulative power consumption of type C tasks at time period h ∈ H

Gi gain of member i ∈ N when operating outside a community(€)
vMG

h unit purchase price of electricity from the primary grid during period h ∈ H (€/kWh)
ṽMG

h unit sale price of electricity to the primary grid during period h ∈ H (€/kWh)
vCom

h unit purchase price of electricity in the community during period h ∈ H (€/kWh)
ṽCom

h unit sale price of electricity in the community during period h ∈ H (€/kWh)
vGES

h unit purchase price of electricity to the green energy supplier at period h ∈ H (€/kWh)
ṽGES

h unit sale price of electricity to the green energy supplier at time period h ∈ H (€/kWh)

Note that the prices ṽGES
h and vGES

h apply when individuals are in the community. In addition, ṽMG
h and

vMG
h are the selling and buying prices when the members are outside the community. Prices with index

C are intra-member transaction prices.
Type A tasks are heating tasks, performed to regulate the temperature. Without loss of generality,

we consider two types of heating tasks: heating houserooms and water heaters i.e. |JA| = 2. We model
the variation of temperature for a task according to the power level as follows. Let ph be the power level
at which the device operates at time period h.

• For a house room, j ∈ JA equals 1. Based on Newton’s law of cooling [2], the temperature variation
function θ1 can be written as

θ1(ph) = θ1(ph−1) + ∆
Cr

(ph − U(θ1(ph−1) − T out
h )),

where Cr is heat capacity (J/K), parameter U designates the heat loss coefficient of a room in
(W/K), and ∆ is the heating time in second. T out

h is the external temperature at period h ∈ H.

• For a water heater (j = 2), using the method from [19], the temperature variation function θ2 is
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given by

θ2(ph) = ∆h

Mcp

(
− S

R
[θ2(ph−1) − T room

h ] − 1000Mwcp[θ2(ph−1) − Tin] + υph

)
+ θ2(ph−1),

where cp is the isobaric specific heat capacity of water (kcal/kg.°C), υ is the efficiency of the
electricity-to-heat transformation, M is the weight of the water (kg). Parameter S is related to
the exchange surface of the water container with the external area, R is the thermal resistance of
the tank insulation in m2.°C/W and Mw is the average hot water demand rate during the time
interval, which we assume to be equal to zero since we don’t have that information. Parameter
Tin is the supply domestic cold water temperature, and recall that T room is the temperature of the
ambient environment. Finally, ∆h is the heating time in seconds.

Notice that schedules start at period 1. We have a initial period h = 0 where no decision is required,
i.e., p0 = 0. The initial state of house rooms (T̄ room) and water heaters (T̄ water) are known. In addition,
each task j ∈ JA performed in room k of member i has a power p∗

ijk > 0 in kW. Thus, in practice,
the device’s used power is continuous on interval [0, p∗

ijk]. We discretize [0, p∗
ijk] by considering only the

integer values in [1, p∗
ijk] (notice that 0 is not considered as in that case, the device is turned off). Our

numerical experiments consider devices with p∗
ijk = 2.

Given these data and heating model, our problem can be formulated with the following variables:

xA
ijkhp ∈ {0, 1} is equal to 1 if and only if task j ∈ JA is in progress at period h ∈ H in room k ∈ KA

ij

of member i ∈ N , and the devise is on power level p,
xs

ij ∈ {0, 1} is equal to 1 if and only if schedule s ∈ Sij is chosen for the execution of task j ∈ JB
i

of community’s member i,
zbih ∈ {0, 1} is equal to 1 if and only if battery b ∈ Bi of member i ∈ N is charging in time

period h ∈ H,
wbih ∈ {0, 1} is equal to 1 if and only if the operation of battery b ∈ B of i ∈ N changes from

discharging or inactive to charging in period h ∈ H,
Tijkh ≥ 0 represents the temperature in room k of member i ∈ N reached by performing task

j ∈ JA in period h ∈ H,
qbih ∈ R is the amount of energy injected into/out of battery b ∈ Bi of i ∈ N in time period

h ∈ H, with qbih ≤ 0 if b discharges, qbih ≥ 0 if b charges, and qbih = 0 if b is
inactive,

Ebih ≥ 0 is the amount of electricity available in battery b ∈ Bi of member i ∈ N at the end
of period h,

fieh ≥ 0 is the amount of energy produced by member i and sent to member e in period
h ∈ H,

Iih ≥ 0 is the amount of photovoltaic energy injected in the public grid by member i ∈ N
in period h ∈ H,

Cih ≥ 0 is the amount of energy withdrawn from the grid by member i ∈ N in period h ∈ H,
G̃i ∈ R is the gain of member i ∈ N when operating in the community.

The load scheduling problem is formulated as :

min
∑
i∈N

∑
h∈H

Cih (1a)

s.t.
∑
j∈JA

∑
k∈KA

ij

∑
p∈P A

ijk

p · xA
ijkhp +

∑
j∈JB

i

∑
s∈Sij

P B
ijhsxs

ij + pC
ih +

∑
b∈Bi

qbih

∆h

= P Gen
ih +

∑
i′∈N
i′ ̸=i

(fi′ih − fii′h) + Cih − Iih i ∈ N, h ∈ H (1b)

∑
p∈P A

ijk

xA
ijkhp ≤ 1 i ∈ N, j ∈ JA, k ∈ KA

ij , h ∈ H (1c)

∑
s∈Sij

xs
ij = 1 j ∈ JB

i , i ∈ N (1d)
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∑
i′∈N,i′ ̸=i

fii′h + Iih ≤ P Gen
ih +

∑
b∈Bi

Ebih

∆h
Ωi i ∈ N, h ∈ H (1e)

G̃i =
∑
h∈H

[ ∑
i′∈N
i′ ̸=i

(vCom
h fii′h − ṽCom

h fi′ih) + vGES
h Iih − ṽGES

h Cih

]
∆h i ∈ N (1f)

G̃i − Gi

|Gi|
≥ β i ∈ N (1g)∑

i′∈N,i′ ̸=i

fi′ih + Cih ≤ πi i ∈ N, h ∈ H (1h)

∑
i′∈N,i′ ̸=i

fii′h + Iih ≤ πi i ∈ N, h ∈ H (1i)

Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 i ∈ N, j ∈ JA, k ∈ KA
ij , h ∈ H (1j)

tlow
ijk ≤ Tijkh ≤ tup

ijk i ∈ N, j ∈ JA, k ∈ KA
ij , h ∈ [hlow

ijk , hup
ijk] : νijk = 1 (1k)

Tijk0 = T̄ init
ijk i ∈ N, j ∈ JA, k ∈ KA

ij (1l)
∆hdbihP out

bih (zbih − 1) ≤ qbih ≤ ∆hcbihP in
bihzbih i ∈ N, b ∈ Bi, h ∈ H (1m)

zbih − zbi(h−1) ≤ wbi(h−1) i ∈ N, b ∈ Bi, h ∈ 2, . . . , |H| (1n)
Ebih − qbi(h−1)

Ebi(h−1)
= ηbi i ∈ N, b ∈ Bi, h ∈ 1, . . . , |H| (1o)∑

h∈H

wbih ≤ ϕbi i ∈ N, b ∈ Bi (1p)

Ebih ≤ Γbi i ∈ N, b ∈ Bi, h ∈ H (1q)
Ebi0 = ξbi i ∈ N, b ∈ Bi (1r)
Ebih = ξbi i ∈ N, b ∈ Bi (1s)
xA

ijkhp ∈ {0, 1} i ∈ N, j ∈ JA, h ∈ H, p ∈ P A
ijk, k ∈ KA

ij (1t)
xs

ij ∈ {0, 1} i ∈ N, j ∈ JB
i , s ∈ Sij (1u)

zbih, wbih ∈ {0, 1} i ∈ N, b ∈ Bi, h ∈ H (1v)
Ebih ≥ 0 i ∈ N, b ∈ B, h ∈ H (1w)
Cih ≥ 0 i ∈ N, h ∈ H (1x)
Iih ≥ 0 i ∈ N, h ∈ H (1y)
fii′h ≥ 0 i, i′ ∈ N, h ∈ H. (1z)

The MILP’s objective is to minimize the cumulative energy collected from the main grid over the planning
horizon (1a). Constraints (1b) enforce that, for each member i ∈ N , at any time period h, the sum of
the energies received, and the energy produced is equal to the energy consumed plus the energy injected
into the grids (public and community). On the left-hand side of the equality, the two sums represent
respectively the consumption of type A and B tasks, pC

ih is the total consumption of type C tasks in period
h. The third sum represents the extractions into/out of batteries. The right-hand side represents the
energy exchanges between the community members. Constraints (1c) impose that at most one power level
is chosen in period h ∈ H to regulate the temperature of room k ∈ KA

ij of member i ∈ N . Constraints (1d)
guarantee that only one schedule is selected to perform task j ∈ JB

i of member i during planning horizon
H. Community members can only feed photovoltaic energy into the public grid. Therefore, members
who do not generate energy should only receive the amount needed for instant consumption or charging
the batteries. Hence, constraints (1e) enforce that non-generator do not send energy. Constraint (1f)
calculates the economic gain G̃i for each member i. In addition, membership in the energy community
should not degrade an individual’s situation beyond a certain threshold. Constraints (1g) enforce that
a member’s gain can deteriorate by at most β%. Constraints (1h) and (1i) are related to the subscribed
power levels of members. Indeed, a member can only inject or withdraw a predefined amount of energy
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per period. Constraints (1j)-(1l) are related to type A tasks for temperature regulation. Constraints (1j)
define the temperature for each room and each period. Constraints (1k) enforce that the temperature of
a room must be in a specific interval during a given time interval. Finally, constraints (1l) set the initial
temperature of the rooms.

Turning to battery usage, constraints (1m) ensure that qbih lies between the minimum and maximum
power levels allowed for discharging/charging battery b of member i at period h ∈ H. The number of
cycles allowed is limited to limit the degradation of a battery. Constraints (1n) set variables wbih to
track the changes in zbih. Constraint (1o) is related to the batteries’ state. The energy in the battery
is equal to the remaining energy after the automatic discharge plus the energy charged/discharged at
each period. Constraints (1p) enforce the desired maximum number of cycles. Constraints (1q) enforce
capacity constraints on batteries, and constraints (1r) and (1s) imply that the initial and final states of
batteries are the same. Finally, constraints (1t) to (1z) define the domain of the variables.
Remark. Note that nothing prevents an individual i from selling to the community member i′ energy
drawn from the main grid. However, if such a solution is returned by the model, one can readily obtain
a solution that is not less efficient by letting i′ draw that energy directly in the main grid instead of i.

4 Column generation-based heuristic
MILP (1) can hardly be solved optimally for large problem instances, often not even finding feasible
solutions. To overcome this, we propose a column generation-based heuristic, in which the columns
are the schedules to perform the type A tasks. This heuristic allows us to generate the schedules with
minimum costs (through a pricing problem) that are likely improve the restricted master problem (RMP)
instead of explicitly generating them. The approach we propose is a heuristic because new columns are
generated only at the root node of the branch-and-bound tree.

4.1 Dantzig-Wolfe reformulation
The heuristic relies on a Dantzig-Wolfe reformulation [8] where the scheduling constraints related to type
A loads are put into a pricing problem, in this case, the temperature constraints (1j), (1k) and (1l). All
other constraints of (1) are placed into the restricted master problem. The latter includes the same
MILP variables except those associated with type A tasks. Indeed, instead of choosing a power level at
each period, we must determine which schedule to select among those returned by the pricing problem
over the iterations.

Let Xijk denotes the set of feasible schedules for the requested task j ∈ JA in room k ∈ KA
ij of

member i ∈ N i.e. such that the temperature constraint is satisfied:

Xijk =
{

χA ∈ {0, 1}H : Tijk0 = T̄ init
ijk , Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 and tlow
ijk ≤ Tijkh ≤ tup

ijk,

h ∈ [hlow
ijk , h

up
ijk]

}

∀i ∈ N, j ∈ JA, k ∈ KA
ij . Let us introduce a binary variable σχA

ijk that is equal to 1 if schedule χA ∈ Xijk

has been selected to perform task j in the kth-room of member i. Performing a Dantzig-Wolfe reformu-
lation of the constraints corresponding to Xijk, namely (1j)-(1l), we obtain the following reformulation:

min
∑
i∈N

∑
h∈H

Cih

(2a)

s.t.
∑
j∈JA

k∈KA
ij

∑
p∈P A

ijk

p ·

 ∑
χA∈Xijk

χA
ijkhpσχA

ijk

 +
∑
j∈JB

i
s∈Sij

P B
ijhsxs

ij + pC
ih +

∑
b∈Bi

qbih

∆h
= P Gen

ih +
∑
i′∈N
i′ ̸=i

(fi′ih − fii′h)
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+Cih − Iih ∀i ∈ N, h ∈ H (2b)∑
χA∈Xijk

σχA

ijk = 1 ∀i ∈ N, j ∈ JA, k ∈ KA
ij : νijk = 1

(2c)
(1d) to (1i), (1m) to (1z),

σχA

ijk ∈ {0, 1} ∀i ∈ N, j ∈ JA, k ∈ KA
ij (2d)

where we denote respectively the dual values of constraints (2b) and (2c) by {αih}i∈N,h∈H and
{τijk}i∈N,j∈JA,k∈KA

ij
. The Restricted Master Problem (RMP) is obtained from the above reformulation

considering only subsets of elements in Xijk, which we denote X̃ijk.
The pricing problem aims at determining the feasible schedules for the required type A tasks in

the planning horizon. In other words, it aims at determining schedules that satisfy the temperature
constraints of these tasks. Mathematically, the pricing problem searches for the cheapest vector in Xijk

based on the reduced costs obtain from RMP. The reduced cost associated to σχA

ijk for i ∈ N, j ∈ JA, k ∈
KA

ij is
∑

h∈H

∑
p∈P A

ijk
(−p · αih · χA

ijkhp) − τijk. Therefore, the pricing problem is defined by (3).

min

∑
h∈H

∑
p∈P A

ijk

−αih · p · χA
ijkhp − τijk s.t. χA ∈ Xijk

 ∀i ∈ N, j ∈ JA, k ∈ KA
ij . (3)

To optimize over Xijk, it is convenient to re-introduce variables xA and T from the original formu-
lation, leading to the following pricing problem for each i ∈ N, j ∈ JA, k ∈ KA

ij :

z̃ijk = min
∑
h∈H

∑
p∈P A

ijk

−αih · p · xA
ijkhp − τijk (4a)

s.t. Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 ∀h ∈ H (4b)

tlow
ijk ≤ Tijkh ≤ tup

ijk ∀h ∈ [hlow
ijk , hup

ijk] : νijk = 1 (4c)
Tijk0 = T̄ init

ijk (4d)∑
p∈P A

ijk

xA
ijkhp ≤ 1 ∀h ∈ H (4e)

xA
ijkhp ∈ {0, 1} ∀h ∈ H, p ∈ P A

ijk. (4f)

A schedule xA∗
ijk returned by (4) possibly improves the restricted master problem if z̃∗

ijk < 0. In this
case, the corresponding column is added to the restricted master problem.

4.2 The algorithm
This section describes the column generation-based heuristic detailed in Algorithm 1. We determine
initial feasible schedules by solving (1) with fii′h = 0 for each i, i′ ∈ N and h ∈ H; it corresponds to the
case where there are no internal links between members. We add these schedules to X̃ and solve RMP
to recover the dual values α and τ . That concludes the initial phase. The following instructions are
repeated until a stopping criterion is met: solve the pricing problem, which returns the feasible schedules
of all required tasks. If the reduced cost of a feasible schedule is negative, add this schedule to the relaxed
RMP and solve it to get the dual values.

Algorithm 1 stops if the pricing problem returns only schedules with positive or null reduced costs, or
if a fixed maximum iteration number maxIter is reached. When a stopping criterion is satisfied, the last
step consists of solving the RMP with the integrality constraints to get the final solution of the heuristic.

Due to the community’s size and the number of type A tasks, instead of solving the pricing problem
for each task j ∈ JA, in each room k ∈ KA

ij of each member i ∈ N , we may solve a unique pricing
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problem. We will see later which is the most efficient way to proceed. After solving the pricing problem
at once, we get a feasible schedule for each required task. Only those with negative reduced cost will be
kept. The pricing problem is then:

min
∑
i∈N
j∈JA

∑
k∈KA

ij

h∈H

∑
p∈P A

ijk

−αih · p · xA
ijkhp − τijk (5a)

s.t. Tijkh = θj

 ∑
p∈P A

ijk

p · xA
ijkhp

 ∀i ∈ N, j ∈ JA, k ∈ KA
ij , h ∈ H (5b)

Tijkh ∈ [tlow
ijk , tup

ijk] ∀i ∈ N, j ∈ JA, k ∈ KA
ij , h ∈ [hlow, hup]ijk : νijk = 1 (5c)

Tijk0 = T̄ init
ijk ∀i ∈ N, j ∈ JA, k ∈ KA

ij (5d)∑
p∈P A

ijk

xA
ijkhp ≤ 1 ∀i ∈ N, j ∈ JA, k ∈ KA

ij , h ∈ H (5e)

xA
ijkhp ∈ {0, 1} ∀i ∈ N, j ∈ JA, k ∈ KA

ij , h ∈ H, p ∈ P A
ijk. (5f)

The algorithm is schematized in Algorithm 1, in which c, and PP denote, respectively, the matrix of
reduced costs and the pricing problem. F MILP refers to the MILP formulation presented in Section 3.

Algorithm 1: Column generation-based heuristic’s algorithm.
input : maxIter
output : best solution found
Function Main( maxIter):

solve F MILP without internal links to get Xinit, a tuple of feasible schedules, add Xinit to
X̃; iter = 0;

do
iter + +;
solve (RMP ) to get the dual values α and τ ;
solve (PP ) with these dual values to get tuple Xiter and matrix c;
for i ∈ N , j ∈ JA, k ∈ KA

ij do
if νijk > 0 then

if cijk < 0 then
add Xiter

ijk to X̃ijk;
end

end
end

while iter ≤ maxIter or (c ≥ 0) == 0;
solve (RMP ) with integrality constraints to get Solution;

return Solution.

4.3 Pricing problem’s complexity
Let us now study the complexity of PP.

Proposition 1. PP is polynomially solvable if |H| = 1.

Proof. Suppose that m ≥ 1 tasks are required by a single member to heat houserooms, j = 1. Thus, to
alleviate notations, we drop indices i, j and h in the rest of the proof. The problem comes to choose
one power in the set P A

k of available powers for each houseroom k. Assuming the required temperature
variation is feasible, an answer of the decision problem is obtained by performing at most

∑k=m
k=1 3|P A

k |
operations.
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We consider next the special case with a unique member and a unique type of tasks to be executed,
so we drop indexes i and j. A unique task is considered then, we also drop index k. We further assume
that tlow = tup = θ̃, hlow = hup = |H| and T̄ init = 0. We also consider that (∆/Cr) = 1 for the room, so
the temperature variation function θ turns to:

Th = T(h−1) + ph − T loss
h ,

where ph is the power used to perform the task in the room and T loss
h is the heat lost by the room at

period h. Then,
T|H| =

∑
h∈H

(ph − T loss
h ),

which must be equal to θ̃. With these simplifications, PP becomes:

z̃ = min
∑
h∈H

∑
p∈P A

−αh · p · xA
hp − τ (6a)

s.t.
∑
h∈H

(
∑

p∈P A

p · xA
hp − T loss

h ) ≥ θ̃ (6b)

∑
p∈P A

xA
hp ≤ 1 ∀h ∈ H (6c)

xA
hp ∈ {0, 1} ∀h ∈ H, p ∈ P A. (6d)

Proposition 2. If |H| > 1, PP is NP-hard even if a single task has to be planned.

Proof. We will show that the well-known Multiple-Choice Subset Sum Problem (MCSSP) (known to be
NP-hard [12]) is polynomially reducible to PP. Recall that, given a set of m classes N1, . . . , Nm, each class
containing weights wi1, . . . , wini

, the MCSSP aims at selecting at most one weight from each class such
that the total weight sum is maximized without exceeding the capacity c. Introducing binary variables
xij denoting which weights are taken, MCSSP can be cast as

W = max
m∑

i=1

∑
j∈Ni

wijxij (7a)

s.t.
m∑

i=1

∑
j∈Ni

wijxij ≤ c (7b)

∑
j∈Ni

xij ≤ 1 ∀i = 1, . . . , m (7c)

xij ∈ {0, 1} ∀i = 1, . . . , m, j ∈ Ni. (7d)

The maximization form of MCSSP may be transformed into minimization form by finding for each
class Ni: w̄i = minj∈Ni

wij , by setting w̃ij = wij − w̄i ∀j ∈ Ni, and c̃ = c −
∑m

i=1 w̄i. The minimization
problem is defined in w̃ and c̃.

Let us now consider an instance of PP with c̃ = θ̃, m = |H|, Ni = P A ∀i = 1, . . . , m, τ = 0, αh = −1
∀h ∈ H, and T loss

h = 0 ∀h ∈ H. Finally, w̃ij = w̃hp where w̃hp denotes the power selected in Nh. PP
formulated in (6) becomes:

z̃ = min
m∑

h=1

∑
p∈Nh

w̃hpxA
hp (8a)

s.t.
m∑

h=1

∑
p∈Nh

w̃hpxA
hp ≥ c̃ (8b)

∑
p∈Nh

xA
hp ≤ 1 ∀t = 1, . . . , m (8c)

xA
hp ∈ {0, 1} ∀t = 1, . . . , m, p ∈ Nh. (8d)

We see that the above instance of PP corresponds to the considered instance of MCSSP, written in
the minimization form, proving the reduction and thus, the hardness of PP.
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5 Extension to multiple days
This section is devoted to load scheduling over several successive days. This study is relevant if accurate
energy production and consumption forecasts are available. Indeed, the temperature variation functions
are continuous, and members’ temperature preferences are predictable. Furthermore, predictions can
be made for the other load categories. Thus, let D be the set of successive days we wish to solve the
planning problem. Solving the multiple-day load scheduling problem can be approached in two ways.
The first approach adds an index d indexing day d ∈ D to the decision variables of the previously
described MILP (1) while ensuring rooms’ and the batteries’ state of charge continuity. The result is a
unique MILP to be solved over several days.

The second method is a heuristic approach, where we solve the initial MILP by modifying the objective
function for each day of time horizon |D|. Indeed, in the model described in Section 3, there is a
trade-off between injecting into the public grid or charging the batteries each time there is a surplus
of global energy production of the community. However, since we do not have a view on the events
of days d + 1, . . . , |D|, it would be better to prioritize battery charging in such a case. We do this
prioritization using

∑
i∈n

∑
h∈H(Cih + Iih) as the objective function for each day d ∈ D. Algorithm 2

describes how that heuristic works. Each day d one solves the MILP when there is no exchange between
the members to acquire data Gi ∀i ∈ N because we must ensure that constraint (1g) is satisfied each day.
Then, the initial model is solved for day d, with the initial temperature and state of charge of the batteries
equal to their final state on day d − 1. Furthermore, for the water heaters, since the water of day d − 1 is
consumed, and we do not have a hot water consumption function, we assume that the water temperature
is reset at period, hρ = 10 of each day. In Algorithm 2, G, E, TH represent, respectively, the vector of
earnings, the vector of batteries’ final state of charge, and the final temperature vectors of day d when
there is no exchange between the members. The model with no member exchange corresponds to the
case where fieh = 0 ∀i, e ∈ N, h ∈ H. Furthermore, Ẽ and T̃H represent the batteries’ state of charges
and the final temperature vectors at day d, respectively, when the individuals exchange energy. We

Algorithm 2: Heuristic for solving the scheduling problem on several days.
for d in D do

include data for day d;
solve the model when there are no exchanges between members to get G, E, TH ;
solve the model when the members exchange their energy surplus to get vectors Ẽ, T̃Hd;
update the data for next day by adding G, E, TH , Ẽ and T̃Hd ;
return the best solution found for day d

end

report and compare the numerical results returned by the approaches to solve the several days problem
in the next section.

6 Experimental results
We present in this section the experimental results of the solution approaches presented previously. We
adopt the following notations in what follows.

• F MILP : the mixed-integer linear program formulation presented in Section 3.

• F MILP
index : refers to the several consecutive days solving approach presented in Algorithm 2.

We propose a column generation-based heuristic to solve the large scheduling problems. The pricing
problem is separable by member. As we show later, separating by member is time and memory consum-
ing. Thus, we compare two pricing problem solving approaches, PPo and PPs. In PPs we solve a pricing
problem for each member per column generation’s iteration. In PPo we solve a unique global pricing
problem per iteration. Thus,

• CGP P o: refers to the column generation-based heuristic presented in Algorithm 1 while using PPo
to solve the pricing problem.
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• CGP P s: refers to the column generation-based heuristic presented in Algorithm 1 while using PPs
to solve the pricing problem.

To assess the impact of joining a collective self-consumption community, we compare two scenarios:
community with and without internal links between members.

• The scenario without internal links corresponds to the case when no link exists between the members
except the main grid. In this case, the photovoltaic energy producers inject their surplus directly
into the main grid.

• The scenario with internal links corresponds to the case where the individuals operate in a com-
munity. They can exchange their surplus with other members of the community. They then have
to make arbitrage between injecting into the community or injecting into the grid.

This section is divided into two subsections. In the first subsection, we present an instance used to assess
the solving approaches. The instances are based on realistic data from Smart Lou Quila (Figure 3 present
the members’ locations at “Le Cailar”, village, France). The input data and the formulations presented
in this paper are available at https://github.com/MsangL/schedEnergyCom. The second subsection
presents the numerical results obtained on these instances. Notice that the latter subsection also contains
scalability experiments that assess the MILP and the column generation heuristics on larger instances
obtained by multiplying the available data several times.

Figure 3: Smart Lou Quila’s inital members.

6.1 Instance
6.1.1 Storage and generation assets

Each instance is generated over a day of 24 hours sliced into periods of 30 minutes. The community
contains seven members, each with equipment whose characteristics are presented in Table 1. Mem-
bers 1 and 2 possess both energy production assets and storage units. The third member has only a
battery. The three members, 4, 5, and 6, have only the energy generation asset. The last member does
not have any equipment. Finally, the subscribed power per member in kVa is, respectively, 6, 36, 6, 9,
9, 6, and 9. To ensure model consistency, we fix the parameter Ωi ∈ N so that Ωi = 1 if and only if the
member i has a power generation system.
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Member 1 Member 2
Photovoltaic (PV) Yes PV Yes
PV Capacity 3.2kWp PV Capacity 6.12kWp
Battery Yes Battery Yes
Number 1 unit Number 1 unit
Capacity 9.8kWh Capacity 9.8kWh
Initial state of charge 4.5kWh Initial state of charge 4.5kWh
Efficiency 97.5% Efficiency 97.5%
Power 3.7kW Power 5kW
Periodic discharge rate 1% Periodic discharge rate 1%

Member 3 Member 4
PV No PV Yes
PV Capacity 0kWp PV Capacity 3.2kWp
Battery yes Battery No
Number 1 unit Number 0 unit
Capacity 9.8kWh Capacity 0kWh
Initial state of charge 4.5kWh Initial state of charge 0kWh
Efficiency 97.5% Efficiency 0%
Power 3.7kW Power 0kW
Periodic discharge rate 1% Periodic discharge rate 0%

Member 5 Member 6
PV Yes PV Yes
PV Capacity 3.2kWp PV Capacity 3.2kWp
Battery No Battery No

Member 7
PV No
Battery No

Table 1: Production and storage assets description in the community.

Figure 4 presents the periodic real total generation of Smart Lou Quila [3], initially composed of
seven members: 6 residences and a municipal stadium located in the south of France. It also presents
the community’s total energy production. The data are taken from date January 08 and 09, 2022.
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Figure 4: Smart Lou Quila’s total production in kW on two time horizons.

6.1.2 The loads

We present in this section realistic data for the loads, built up together with our partner Smart Lou Quila
and inquiries realized among Smart Lou Quila’s members. We present next the requested tasks by the
members during the planning horizon according to the three described loads categories. The planning
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horizon consists of a day sliced into 48 equal-length periods. As mentioned previously, we consider two
type A tasks: room and water heating. Each member has at most three rooms. The following array
ν indicates the requested type A tasks by the members. Member 1 (in bold) wants to regulate the
temperature of three rooms and one water heater. Member 2 did not request any type A task during
the horizon. Member 3 has three tasks, two-room heating, one water heating, and so on for the next
members. Thus, νijk is equal to 1 if task j ∈ JA is executed by member i in room k, 0 otherwise. In
addition, j = 1 means that the corresponding task is room heating, and j = 2 means that the requested
task is water heating.

ν1 =



1 1
0 0
1 1
1 1
1 1
0 1
1 1


ν2 =



1 0
0 0
0 0
0 0
1 0
1 0
1 0


ν3 =



1 0
0 0
1 0
0 0
0 0
1 0
1 0


.

Matrices tlow and tup represent the desired temperature of the members in their corresponding rooms
during intervals [hlow

ki , hup
ki] knowing that the initial temperature in the rooms is depicted in T̄ room.

tlow =

 19 0 16 17 20 22 19
22 0 19 22 23 22 19
16 0 19 17 20 22 19

 tup =

 22 24 19 20 21 24 21
24 24 24 23 24 24 21
20 21 24 20 22 24 21



hlow =

 20 1 20 20 34 18 20
20 1 20 20 34 18 20
20 1 20 20 34 18 20

 hup =

 30 48 40 40 47 34 42
30 48 40 40 47 34 42
30 48 40 40 47 34 42


T̄ room =

 12 14 16 12 14 12 15
15 14 12 11 14 12 8
12 14 10 12 14 12 10


We now present the physical characteristics of the rooms in Table 2, while Table 3 presents these

for the water heaters. In Table 2, column Surface designates the room’s surface of rooms, Cr the heat
capacity, and U the heat loss coefficient. We calculate Cr and U according to the information given by
the members.

Member room Surface Cr U Member room Surface Cr U

Member 1

room 1 9m2 297 12

Member 3

room 1 18m2 594 24
room 2 15m2 495 20 room 2 9m2 297 12
room 3 18m2 594 24 room 3 9m2 297 12

Member 4

room 1 12m2 396 16

Member 5

room 1 25m2 825 33.3
room 2 20m2 660 26.6 room 2 10m2 330 13.3
room 3 12m2 396 16 room 3 12m2 396 16

Member 6

room 1 18.5m2 610.5 24.6

Member 7

room 1 15m2 495 20
room 2 9m2 297 12 room 2 10m2 330 13.3
room 3 10m2 330 13.3 room 3 14m2 462 18.6

Table 2: Rooms physical characteristics.

We collect the external temperature data for the selected time horizons: July 23 to 25 and January
08 to 09, 2022 on [20], which reports the weather data of the closest station to the community. The
temperature data T out

h ∀ h ∈ H is presented in Figure 5.
Each member has a single water heater; the following table presents their physical characteristics.

The parameter cp = 1 is the specific heat capacity of water. Column M shows the weight of the
water (kg), column S designates the exchange surface of the water container with the external area, K
is the exchange coefficient (kcal/hm2°C). Finally, recall that T room is the temperature of the ambient
environment and the efficiency of the electricity-to-heat transformation υ = Mcp/(Mcpr + ∆SKr).
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Figure 5: External temperatures for January 08 to 09, 2022, and July 23 to 25, 2021.

Member S M K r
1 15 75 1 1.2
2 7 350 1 1.2
3 2 100 1 1.2
4 3.75 200 1 1.2
5 2.4 150 1 1.2
6 2 100 1 1.2
7 2.6 150 1 1.2

Table 3: Water heaters characteristics.

At period hwater = 36, the water’s temperature in the heater of each member must be between 55
and 60 °C for initial temperatures represented in T̄ water = (9, 8, 8, 9, 5, 8, 9) for the winter instance, and
T̄ water = (15, 17, 18, 19, 10, 10, 8) for summer instance. For simplicity, we set the ambient temperature
T room

kh = 17 °C for each member at period h in room k ∈ KA
i2. For these instances, we don’t have type

B tasks without lost of generality. As periodic cumulative consumption of type C tasks, we take 10%
of the real energy consumption of the considered days for each member. Finally, the energy buying and
selling prices per kWh are:

vMG
h = 0.1685, ṽMG

h = 0.1
vCom

h = 0.1400, ṽCom
h = 0.12

vGES
h = 0.1685, ṽGES

h = 0.065.

and the threshold of economic degradation which must not be exceeded is β = 15.

6.1.3 Instance 7 ex

Here we present a seven members instance called: 7 ex, which we use to illustrate our remarks. Instance
7 ex characteristics in terms of assets possession, is described in Table 1. The planning horizon is 24
hours sliced into periods of 30 minutes. The periodic total production and the external temperature for
instance 7 ex are presented by Figure 6.

Each member has at most three houserooms of 9 m2 and three water heater of 100 litres. The array
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Figure 6: Values for illustrative instance.

ν present the required type A task by members.

ν1 =



1 1
0 0
1 1
1 1
1 1
0 1
1 1


ν2 =



1 0
0 0
0 0
0 0
1 0
1 0
1 0


ν3 =



1 0
0 0
1 0
0 0
0 0
1 0
1 0


.

The temperature preferences values for houserooms are respectively hlow = (22, 12, 22, 22, 22, 22, 19),
hup = (24, 24, 24, 24, 24, 24, 24), tlow = (10, 16, 20, 20, 34, 18, 20), tup = (30, 46, 40, 40, 47, 34, 42).

Next section presents the results of the solution approaches on the described instance and the instance
obtained by duplicating the real instance of seven community members.

6.2 Experimental results
This section reports the computational tests to evaluate the solution approaches presented in the previous
sections. These tests have been carried out on a processor Intel Xeon E312 (Sandy Bridge) CPU2.29GHz,
the MILP’s solving time is tl = 5600s, the column generation’s pricing problem has a maximum time
time_limit = 200s, and the maximum number of column generation iterations is maxIter = 10 for each
instance. Finally, the RMP with integrality constraints has a time limit of time_limit = 3600s. Notice
that we consider two ways of solving the pricing problem: solving the pricing problem for all tasks at once
or solving one pricing problem per task at each iteration. Let us denote these approaches as PPo and PPs,
respectively. We limit the cumulative time of the CG iterations in both cases to time_limit = 2000s,
which includes an initialization time of 200s.

The experiment shows that CGP P o quickly finds a good solution. However, the method does not
converge because, from one iteration to the other, the objective value of the RMP improves very little,
as can be seen in Figure 7, which presents the evolution of the said value for instance 7 ex. For CGP P s,
which consists, at each iteration of solving the pricing problem for each task, the solution is improved
quickly, and we can even find an optimal solution if the total number of tasks to be performed is small.
The disadvantage is that solving a pricing problem for each task can be time-consuming. It is, therefore,
necessary to make a trade-off between time and quality of the solution. If there is a need to save time,
CGP P o may be more appropriate, while CGP P s may be interesting for small instances where one may
want to wait longer to get a better solution.

We conducted a scalability experiment by constructing larger instances, duplicating the initial mem-
bers up to 32 times, leading to |N | = 224 members in the community. The MILP returns no integer
solution for these larger instances after the time limit. On the other hand, the heuristic based on the
column generation algorithm can return good solutions, even for the largest problem instances. The re-
sults of the solving approaches are reported in Table 4 where |N | denotes the number of members in the
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Figure 7: Objective value variation for the pricing problem solve ways.

community. obj and objCG represent the sum of the electricity extracted from the primary grid during
the planning horizon by the MILP and the column generation-based heuristic. Bb is the best bound
obtained when executing F MILP on the instances. Columns Gap are the gap between the objective and
the best bound. Output “***” means no feasible solution has been found after the time limit.

F MILP ’s solutions CGP P o’s solutions CGP P s’s solutions
|N | obj kWh Gap % Bb kWh CPU (s) objCG kWh CPU (s) Gap % objCG kWh CPU (s) (s) Gap %
7 ex 107.74 0.56 107.18 tl 108.53 1078.52 1.33 107.73 300.01 0.55

7 233.74 1.26 230.79 tl 234.24 2010.31 1.54 234.24 577.73 1.54
28 938.96 1.19 927.81 tl 940.98 2023.66 1.41 938.96 2394.09 1.19
56 1877.92 1.20 1855.44 tl 1881.94 2036.56 1.41 1877.94 2381.98 1.20
112 *** *** 3598.52 tl 3675.90 2188.07 2.11 3663.03 2419.62 1.76
224 *** *** 7198.23 tl 7360.32 2362.23 2.20 7321.15 2464.65 1.68

Table 4: Comparison between the solutions of the resolution approaches.

Figure 8 presents the results of the discussed methods on instance 7 ex. Figure 8a corresponds to the
first scenario: there are no energy exchanges between the community members. In this case, prosumers
inject the surplus (if it happens) into the battery or the primary grid. Classical consumers draw their
needs from the public grid. When there are no internal links between members, the total amount
collected from the primary grid equals 132.11 kWh. Suppose they form a community (second scenario
Figures 8b to 8d), for instance 7 ex. In that case, there is almost no injection into the primary grid; the
prosumers’ surplus is locally consumed. As a result, the community collects 107.75 kWh, corresponding
to a decrease of almost 18.5% in non-green power. The members make savings because the purchase
price in the community is more attractive than the purchase price in the primary grid.

6.3 Several consecutive days
In what follows, we present the results when the planning horizon increases. We compare the solution
approaches: F MILP with the day’s index, the heuristic presented in Algorithm 2: F MILP

index , and the
column generation-based heuristics CGP P o and CGP P s. We compare consider three instances for which
the horizon’s size |H| is in {48, 96, 144} and data collected from January 8 to 9, 2022, and from
July 23 to 25, 2021. Table 5 presents these results for time_limit = tl = 5600s for each case.

Summer instances sometimes are easier to solve than winter ones. Indeed, the external temperatures
are a short distance from the target temperatures when type A tasks are performed, except for heat
waves. Moreover, knowing that the problem’s difficulty comes from planning, the problem is easier in
this case because no planning is required. Besides, CGP P s remains more efficient concerning solution

1The case where we add the day index to the decision variables.
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(a) Community without internal links.
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(b) Community with internal links: F MILP .
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(c) Community with internal links: CGP P o.
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(d) Community with internal links: CGP P s.

Figure 8: Solutions for instance 7 ex.

For January 8 to 9,2022
F MILP ’s solutions with day index 1 F MILP

index ’s solutions CGP P o’s solutions CGP P s’s solutions
|H| obj kWh Gap % Bb kWh CPU (s) objH kWh CPU (s) objCG kWh CPU (s) objCG kWh CPU (s)
48 233.74 1.26 230.79 tl 233.74 0.5tl 234.74 2010.31 234.24 577.73
96 431.05 0.99 426.78 tl 432.04 tl 431.97 2014.65 431.46 2279.72

For July 23 to 25, 2021
F MILP ’s solutions with day index F MILP

index ’s solutions CGP P o’s solutions CGP P s’s solutions
|H| obj kWh Gap % Bb kWh CPU (s) objH kWh CPU (s) objCG kWh CPU (s) objCG kWh CPU (s)
48 109.17 0.31 108.83 tl 109.17 0.5tl 114.83 2824.74 109.17 1924.12
96 521.14 0.17 520.26 tl 521.04 0.5tl 523.37 2001.81 521.27 1639.83
144 614.60 0.32 612.63 tl 613.54 0.5tl 621.73 2056.48 614.20 2358.28

Table 5: Comparison between the solutions of the resolution approaches.

quality if one is willing to allow more solution time, while the quality of CGP P o’s solutions degrades as
the time horizon increases. On the other hand, Algorithm 2 can be used for small communities but not
for large problem instances for the previously discussed reasons.

7 Numerical improvements
7.1 Special Ordered Set variables
We discuss here an enhancement that reduces the solving times of the models. Notice that at each
period and for each task we can choose at most one power level to perform type A tasks. We can thus
replace inequality constraint (1c) by an equality constraint by adding a dummy power level p0 = 0 in

20



each set P A
ijk. Then, we sort the powers in ascending order and introduce a binary variable x̂ijkh(pos(p))

for p ∈ P A
ijk ∪ {0} that is related to variables xA

ijkhp through the relations:

xA
ijkhp = x̂ijkh(pos(p)) − x̂ijkh(pos(p)+1) ∀i ∈ N, j ∈ JA, k ∈ KA

ij , h ∈ H, p ∈ P A
ijk. (9)

Thus, constraint (1c) is replaced by constraints (10) and (11),

x̂ijkh(pos(p)) ≥ x̂ijkh(pos(p)+1) ∀i ∈ N, j ∈ JA, k ∈ KA
ij , h ∈ H, p ∈ P A

ijk (10)
x̂ijkh0 = 1 ∀i ∈ N, j ∈ JA, k ∈ KA

ij , k ∈ T (11)

Finally, constraint (1j) becomes constraint (12) where v(p) is the power level directly superior to p (that
is, pos(v(p)) = pos(p) + 1)

Tijkh = θj

 ∑
p∈P A

ijk

(p − v(p))x̂ijkh(pos(p))

 ∀i ∈ N, j ∈ JA, k ∈ KA
ij , h ∈ H. (12)

Table 6 reports the results obtained with the different solving approaches after that replacement.

F MILP ’s solutions CGP P o’s solutions CGP P s’s solutions
|N | obj kWh BB kWh Gap % CPU (s) objCG kWh CPU (s) Gap % objCG kWh CPU (s) Gap%
7 ex 107.73 107.25 0.45 tl 108.80 226.32 1.53 107.73 339.85 0.45

7 233.74 231.79 0.83 tl 233.74 241.82 0.83 233.74 2242.34 0.83
28 938.96 931.28 0.82 tl 938.96 243.18 0.82 939.47 2221.61 0.88
56 1877.92 1861.71 0.82 tl 1877.92 312.17 0.82 1878.95 2358.13 0.92
112 3659.84 3624.90 0.95 tl 3659.84 412.75 0.95 3659.90 2244.12 0.95
224 *** 7219.16 *** tl 7380.25 2464.28 2.18 7334.55 2425.97 1.57

Table 6: Comparison between the solutions of the resolution approaches.

Comparing Table 6 to Table 4, we notice an improvement in the solving time and the solution’s
quality for heuristic PPo, in opposition to PPs. We also see that F MILP ’s Best bound are slightly better
than before.

7.2 Heuristic enhancement
An improving track for the heuristics is to return the first integer solution returned by the pricing
problems. Since an improving solution for a task must have a negative reduced cost, we add constraints
A ≤ ϵ, where A represents the reduced costs. Then, we set up CPLEX to return the first integer solution.
Table 7 contains the results of that improving track, where maxIter = 10, and ϵ = 10−2.

Comparing Table 7 to Tables 4 and 6 we note that the resolution times are generally improved.
Specifically, CGP P o is more efficient regarding time before and after replacing xA by x̂. However, we
notice a difference for CGP P o according to whether we consider xA or x̂. Indeed, the replacement of xA

by x̂ increases the CPU. Also CGP P s is faster with this trick compared to Tables 4 and 6. However,
PPs does not find better solutions at relatively small iteration numbers. This trick does not improve
the quality of the solutions of either CGP P o or CGP P s. Moreover, the quality of the solutions degrades
more when xA is replaced by x̂ for both CGP P o and CGP P s.

As expected, introducing SOS may improve the problem resolution. Specifically, we notice on the one
hand, that the resolution times are significantly improved for CGP P o and CGP P s. On the other hand,
by returning the first integer solution for the heuristic we notice an improvement of the resolution time
before and after replacing xA by x̂ compared to Table 4. However, the quality of CGP P s’s solution is
deteriorated when xA is replaced.

8 Conclusions and perspectives
This paper addresses the collective self-consumption rate’s maximization problem in energy communities.
We have illustrated how the operation scheduling of electrical appliances and the smooth simulation of
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Before replacing xA by x̂

CGP P o’s solutions CGP P s’s solutions
|N | objCG kWh CPU (s) Gap % objCG kWh CPU (s) Gap %
7 233.74 430.93 0.83 233.74 413.14 0.83
28 938.96 447.52 0.82 938.96 475.88 0.82
56 1877.84 491.71 0.82 1877.82 482.83 0.82
112 3674.84 698.4 1.36 3659.92 624.29 0.95
224 7319.67 789.88 1.37 7353.02 1093.38 1.82

After replacing xA by x̂

CGP P o’s solutions CGP P s’s solutions
|N | objCG kWh CPU (s) Gap % objCG kWh CPU (s) Gap %
7 233.74 426.09 0.83 233.74 419.22 0.83
28 938.96 436.09 0.83 938.96 474.24 0.82
56 1877.92 456.77 0.82 1877.92 478.07 0.82
112 3659.84 606.99 0.95 3659.92 404.53 0.82
224 7320.08 1239.01 1.38 7319.87 1031.89 1.37

Table 7: Returning the first integer solution found by PP.

electric devices’ owned by members modify the global consumption curve while satisfying members’
global and individual constraints. We developed a mixed-integer linear programming model to obtain
the optimal schedules for planning problems. Faced with the inability of this MILP to solve large problem
instances, we developed a column generation-based heuristic. Numerical experiments show the strategy
of scheduling loads brings significant advantages (economic, sustainable, and social), which validates
Smart Lou Quila’s economic model and ensures a bigger community will still collect benefice from this
technology.

We consider a community of |N | individuals, and we encounter difficulties when |N | is large, which
is predictable. One solution is to consider m sub-communities. While optimizing each community
separately does not lead to optimized management of the large community, this may lead to more realistic
decentralized implementations, so this would be an interesting avenue for future research. On the other
hand, our current work assumes that everything takes place in a certain environment. Nevertheless, in
practice, the uncertainty on the energy generation and/or demand can significantly impact the members’
behaviors making the day-ahead obsolete. Another line for future work could consider uncertainty and
explore stochastic optimization counterparts of our models.

References
[1] Sezin Afşar, Luce Brotcorne, Patrice Marcotte, and Gilles Savard. Revenue optimization in energy

networks involving self-scheduled demand and a smart grid. Computers & Operations Research,
134:105366, 2021.

[2] Anonymous. Scala graduum caloris. calorum descriptiones & signa. Philosophical Transactions,
22:824–829, 1701.

[3] Beoga/Le Cailar. External temperature. https://voir-plus.com/2021/05/26/
smart-lou-quila-la-premiere-communaute-energetique-de-la-start-up-beoga/.

[4] Raffaele Carli, Mariagrazia Dotoli, Jan Jantzen, Michael Kristensen, and Sarah Ben Othman. Energy
scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the ballen
marina in samsø. Energy, 198, 2020.

[5] European Commission. Clean energy for all europeans package. https://ec.europa.eu/energy/
topics/energy-strategy/clean-energy-all-europeans_en,(accessed:30.11.2021).

[6] Giuseppe Tommaso Costanzo, Guchuan Zhu, Miguel F. Anjos, and Gilles Savard. A system archi-
tecture for autonomous demand side load management in smart buildings. IEEE Transactions on
Smart Grid, 3(4):2157–2165, 2012.

22

https://voir-plus.com/2021/05/26/smart-lou-quila-la-premiere-communaute-energetique-de-la-start-up-beoga/
https://voir-plus.com/2021/05/26/smart-lou-quila-la-premiere-communaute-energetique-de-la-start-up-beoga/
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en, (accessed: 30.11.2021)
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en, (accessed: 30.11.2021)


[7] Guven Denizhan, Kayalica M. Ozgur, and Kayakutlu Gulgun. Critical power demand scheduling for
hospitals using repurposed ev batteries. Technology and Economics of Smart Grids and Sustainable
Energy, 6, 2021.

[8] Jacques Desrosiers, Franpis Sournis, and Martin Desrochers. Routing with time windows by column
generation. Networks, 14:545–565, 1984.

[9] Junwen Ding, Sven Schulz, Liji Shen, Udo Buscher, and Zhipeng Lü. Energy aware scheduling in
flexible flow shops with hybrid particle swarm optimization. Computers & Operations Research,
125:105088, 2021.

[10] Romaric Duvignau, Verena Heinisch, Lisa Göransson, Vincenzo Gulisano, and Marina Papatri-
antafilou. Benefits of small-size communities for continuous cost-optimization in peer-to-peer energy
sharing. Applied Energy, 301:117402, 2021.

[11] Edstan Fernandez, M.J. Hossain, Khizir Mahmud, Mohammad Sohrab Hasan Nizami, and Muham-
mad Kashif. A bi-level optimization-based community energy management system for optimal
energy sharing and trading among peers. Journal of Cleaner Production, 279:123254, 2021.

[12] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Introduction to NP-Completeness of Knapsack
Problems, pages 483–493. Springer Berlin Heidelberg, 2004.

[13] Thillainathan Logenthiran, Dipti Srinivasan, and Tan Zong Shun. Demand side management in
smart grid using heuristic optimization. IEEE Transactions on Smart Grid, 3(3):1244–1252, 2012.

[14] G. Pontes Luz, M.C. Brito, J.M.C. Sousa, and S.M. Vieira. Coordinating shiftable loads for collective
photovoltaic self-consumption: A multi-agent approach. Energy, 229:120573, 2021.

[15] Anjos F. Miguel, Luce Brotcorne, Martine Labbé, and Maria Restrepo Ruiz. Load Scheduling for
Residential Demand Response on Smart Grids. Optimization Online eprints (6384).

[16] Ricardo Moura and Miguel Centeno Brito. Prosumer aggregation policies, country experience and
business models. Energy Policy, 132:820–830, 2019.

[17] Vera Reis, Rita H. Almeida, José A. Silva, and Miguel C. Brito. Demand aggregation for photovoltaic
self-consumption. Energy Reports, 5:54–61, 2019.

[18] Miadreza Shafie-Khah and Pierluigi Siano. A stochastic home energy management system consider-
ing satisfaction cost and response fatigue. IEEE Transactions on Industrial Informatics, 14(2):629–
638, 2018.

[19] Gulai Shen, Zachary E. Lee, Ali Amadeh, and K. Max Zhang. A data-driven electric water heater
scheduling and control system. Energy and Buildings, 242:110924, 2021.

[20] Météo station Nîme/Courbessac. External temperature. https://prevision-meteo.ch/climat/
journalier/nimes-courbessac/2021-07(accessed:11.04.2022).

[21] Anuradha Tomar, D.S. Shafiullah, P.H. Nguyen, and Marcel Eijgelaar. An integrated flexibility
optimizer for economic gains of local energy communities — a case study for a university campus.
Sustainable Energy, Grids and Networks, 27:100518, 2021.

[22] Wayes Tushar, Tapan Kumar Saha, Chau Yuen, Thomas Morstyn, Nahid-Al-Masood, H. Vincent
Poor, and Richard Bean. Grid influenced peer-to-peer energy trading. IEEE Transactions on Smart
Grid, 11(2):1407–1418, 2020.

[23] Wim van Ackooij, Jérôme De Boeck, Boris Detienne, Stefania Pan, and Michael Poss. Optimizing
power generation in the presence of micro-grids. Eur. J. Oper. Res., 271(2):450–461, 2018.

23

https://prevision-meteo.ch/climat/journalier/nimes-courbessac/2021-07 (accessed: 11.04.2022)
https://prevision-meteo.ch/climat/journalier/nimes-courbessac/2021-07 (accessed: 11.04.2022)

	Introduction
	Renewable Energy Communities
	Demand side management
	Related works
	Contributions

	Problem description
	Loads categorization
	Energy network model

	Loads scheduling model
	Column generation-based heuristic
	Dantzig-Wolfe reformulation
	The algorithm
	Pricing problem's complexity

	Extension to multiple days
	Experimental results
	Instance
	Storage and generation assets
	The loads
	Instance 7 ex

	Experimental results
	Several consecutive days

	Numerical improvements
	Special Ordered Set variables
	Heuristic enhancement

	Conclusions and perspectives

