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Discovery and digital model generation for manufacturing systems with
assembly operations

Giovanni Lugaresi1 and Andrea Matta1

Abstract— Industry 4.0 determined the emergence of tech-
nologies which allow for data-based production planning and
control approaches. Digital twins can be used to take decisions
based on the current system state. Hence, their performance
strictly depends on the capability to correctly represent their
physical counterparts at any time. The development of digital
twins for manufacturing systems can be significantly accel-
erated by automated model generation techniques. However,
production systems including assembly stations suffer from
event records with multiple part identifiers, resulting in the
wrong finding of the system structure. In this paper, we define
the problem of the proper discovery of assembly operations.
Then, we describe an algorithm to generate a complete digital
model exploiting the new concept of object-centric process
mining. In a case study, a flow shop including assembly stations
is successfully discovered, allowing for the automated building
of a simulation model with the proper logical behavior.

I. INTRODUCTION

Recently, manufacturing environments have become sig-
nificantly complex in the attempt to satisfy a high de-
mand for customized products, while aggressive digitization
efforts have sponsored production enterprises to invest in
new technologies toward higher levels of automation [1].
In modern organizations, information systems are playing
a substantial role in the support of day-to-day operations.
Within the new industrial context, such systems must evolve
toward satisfying new and more demanding requirements.
Manufacturing Execution Systems need to be extended to-
ward advanced production planning and control, to allow
for the efficient online management of shop floors. Modern
decision support tools are based on the coexistence of the
real system with its digital counterpart, often called digital
twin [2]. In the planning and control phases, digital twins
can be represented by discrete event simulation models. The
addition of real-time streams of data can help production
planners to evaluate solutions that are optimal for the current
system state [3]. However, if the model is not a accurate
representation of the current system state and configuration,
simulation experiments will likely be biased and lead to
erroneous decisions [4].

Meanwhile, Industry 4.0 contributed also to the rise of
new technologies for data handling. Such devices can pro-
vide information about the shop floor status almost anytime
[5]. The consequent increased integration of functionalities
allows a closer coupling of previously separated decisional
levels [6]. Indeed, quicker data exchange capabilities allow
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for a tighter decisional loop, which can be based on current
streams of data from the shop floor, resulting in better
online decisions [7]. The availability of real-time data also
hints that if a model could be generated from the field
data in the manufacturing system, the development phase
may be significantly shortened, enabling digital twins to be
automatically aligned with their real counterparts [8].

Recent approaches use process mining techniques for
model generation [9], [10]. The exploitation of process
mining allows for an effective development of simulation
models for manufacturing systems such as flow lines [4].
However, the automated development of digital twins for
more complex manufacturing systems reaches the limita-
tions of the available methodologies. For instance, assembly
processes are very common in the production enterprises
(e.g., automotive industry). In such environments, several
material flows converge in assembly stations. During or after
the assembly of parts, it is common that new part IDs are
assigned to the just introduced assembled part. Traditional
process mining techniques assume a single case identifier
to derive the logical flows (e.g., activity precedences). As
a consequence, the production flows of components and
assemblies can be discovered only as separate models, and
the assembly logic is effectively lost in translation.

In this paper, we introduce a method to infer assembly op-
erations in manufacturing systems, aimed at the development
of an appropriate discrete event simulation model. The rest of
the paper is organized as follows. Section II summarizes the
state of the art for automated simulation model generation
in manufacturing systems. Section III outlines a graph-based
model mining procedure which is taken as reference in this
work and the problem of discovering assembly operations,
while section IV describes the proposed method to generate
complete digital models. Section V presents a test case
together with numerical results. Our final remarks are in
Section VI.

II. STATE OF THE ART

This section lists the significant contributions for gener-
ating simulation models of manufacturing systems, with a
focus on assembly processes.

A. Generation of Simulation Models for Manufacturing Ap-
plications

Process mining is a collection of approaches, techniques,
and tools, which provides a wide range of knowledge about
the processes inside the organizations based on available
datasets. It is mainly composed by three activities [9]: (1)



Fig. 1: Example of manufacturing system logical flow including assembly operations
(from [21]).

system discovery, that is finding the main logical relation-
ships between activities, (2) conformance checking, that
finds deviations from a standard model used for comparison,
and (3) enhancement, that is the process of strengthening
some properties of interest of the analyzed system model.
Process mining allows not only to estimate parameters and
causal relationships, but also logical connections such as
precedences among activities. Thus, it may be used to infer
the topological structure of a manufacturing system and
support the generation of simulation models [11].

Several contributions in the literature exploited process
mining to develop forward-looking models (i.e., simulation)
for manufacturing applications. Rozinat [11] firstly proposed
to exploit process mining for developing models able to
predict the future behavior with respect to the performance
of a system. Bergmann et al. [12] introduced a methodol-
ogy for recognizing the production policies applied on a
manufacturing system. Milde and Reinhart [13] developed
an approach for discovering the material flow, estimating
parameters, and identifying the control policies from man-
ufacturing event logs. Lugaresi and Matta [4] developed a
method for generating simulation models with a proper level
of detail. In other applications, process mining has been used
to retrieve specific parameters of a manufacturing system
such as interarrival times [14], determinants of process delays
[15], resource availabilities [16], batching operations [17],
and production system structure [18].

B. Discovery of Assembly Processes

Few contributions in the literature explicitly mention the
automated model generation of assembly operations. Denno
et al. [18] mined an automotive under-body assembly system
with the goal to optimize its production schedule. Rashid
and Louis [19] presented a framework that utilizes RFID
tracking and process mining techniques to automatically
generate the model of an assembly line. The goal is to
detect any deviation in the performed process from the
predefined plan. Knoll et al. [20] developed a methodology
to apply process mining to internal logistics for a mixed-
model assembly line. The authors used multi-dimensional
process mining to automatize and improve the Value Stream
Mapping methodology. The goal is to allow for a precise
process discovery and classification, including performance
analysis to find the parts of the plant where the most waste
is produced.

The aforementioned papers address mining assembly op-
erations. Yet, none of them focus on simulation model
generation. Despite being very common in manufacturing

environments, the discovery of assembly operations has a
scarce representation in the literature. This may be due to
the problem of flattening data in event logs [22].

Event logs are files containing information about parts
flowing in the system (e.g., serial codes associated to the
parts, activity time stamps). We may assume that all data
gathered from the manufacturing system can be aggregated
and collected in an event log. In general, the event log may
contain several types of information, such as part flows,
resource identifiers, and quality check outcomes. Traditional
process mining techniques assume an event log with three
main information types: (1) the activity identifier n ∈ N,
(2) the work-piece identifier i ∈ I, and (3) the timestamps
tS(n, i) and tF (n, i) indicating the moment in which the n-th
activity has been started and finished by the i-th work-piece,
respectively. Table I shows an example of event log.

In manufacturing systems with assembly operations, it
is common to observe different material flows converging
toward assembly stations (e.g., Fig. 1). In such points, the
work-piece identifiers are likely to change from a production
stage to the following one. For instance, a car frame is
usually assigned an identifier, while sub-components such as
doors have other dedicated IDs. Once assembled, the work-
in-progress part may have either a new identifier or keep one
of the sub-components ID. Either way, the following events
in the production system refer to the assembled product,
which is linked to multiple sub-components IDs. Hence,
when aggregating events data, there are multiple flattening
choices possible which lead to different views that are
disconnected. The result is that the overview of the system
structure is quickly lost as event data need to be extracted
multiple times for the different views.

A further limitation is evident in the generated model,
where the flattening choice may force a wrong representation
of the system behavior. Indeed, the simulation model must
consider the assembly phase to correctly model the behavior
of the system. Namely, the availability of all needed material
upstream is a blocking condition on the assembly points.
Neglecting this condition in a model generation technique
may result in a model overestimating the performances of
the real system. For example, Fig. 2 graphically shows two
different modeling options using a Petri Net. Transition 3
represents the assembly operation, while transitions 1 and
2 are the last operations done by the sub-components. In
the first case, transition 3 may fire even if only one of
the upstream operations has been completed. Differently, in
the second case, the assembly transition is enabled by the
availability of sub-components material.

C. Object-centric Process Mining

Van der Aalst [22] discussed the gap between real event
data and flattened event logs exploited by traditional pro-
cess mining techniques. The author proposes a new mining
paradigm called Object-centric Process Mining (OCPM),
together with a specific log format. The object-centric log is a
collection of events, where each event is be related to objects
of different types. Moreover, basic notations and a baseline



Fig. 2: Example of assembly process modeled by Petri Nets: a) non-blocking condition
(improper modeling), b) blocking condition (assembly properly modeled).

Fig. 3: Cardinality diagrams applied to manufacturing processes, relationships between
part identifiers and activities: a) traditional process mining approaches, b) object-centric
process mining.

discovery approach are presented to facilitate discussion and
understanding.

OCPM can be applied to better describe production sys-
tems with assembly operations. Fig. 3 graphically explains
the difference among two mining views. In traditional mining
approaches, only one part ID notion is allowed. Hence,
for assembly processes in which material flows converge,
information is effectively lost. Object-centric process mining
allows for using several notions of part identifiers, thereby
representing objects that may refer to multiple items (e.g.,
a component, an assembled product). Such representation is
feasible in a manufacturing environment. The only assump-
tion is the availability of a Bill of Material (BOM), which is
necessary to define the object relationships. Such records are
widely used in production systems and commonly available
within the Product Life-cycle Management or the Enterprise
Resource Planning tools.

Nevertheless, applications of OCPM for assisting model
generation in manufacturing systems are missing in the
literature. This paper addresses this gap by identifying the
scope of work and proposing the development directions for
this research.

III. PROBLEM DESCRIPTION

In this section, we outline a graph-based mining approach
that is used to generate a simulation model starting from
the data of a real manufacturing system. Then, we describe
the problem of considering assembly processes in the model
generation procedure.

A. Model Generation

Let us assume the manufacturing system is equipped
with data collection system, and events in the system are
aggregated in an event log. The log can then be used
to discover the manufacturing system logical structure and

Fig. 4: Graphical overview of a graph-based model generation procedure.

its parameters. Model generation is the procedure which
links the system data contained in the event log with a
digital model. In the most basic form, a digital model can
be rendered by a set of nodes representing the activities,
and a set of arcs which correspond to the material flow
relationships among activities (i.e., precedences). Let us then
define a graph model as a tuple (N,A) where N is the set
of nodes and A = N×N is the set of arcs in the model. For
instance, the graph model obtained for the system in Fig. 4 is
defined by the set of nodes N = {1, 2, 3} and the set of arcs
A = {(1, 2), (2, 3)}. A model is generated by representing
all the relational properties (i.e., precedence relationships) in
an activity network, namely a directed graph in which nodes
correspond to the activities and arcs express the material flow
relationships between activities. A unique set of activities
N is created. The next step is the identification of the
traces. A trace is the specific route that each part followed
in the system. It can be expressed as a series of activity
identifiers. Hence, each i-th part has a corresponding trace
θi = {n(1), n(2), . . . , n(Ni)}, where Ni is the number of
the activities performed by the i-th part. For example, with
reference to the event log of Table I, θ1 = {1, 2}. The
traces are used to retrieve precedence relationships between
activities. Hence, a node exists in the model if a certain
activity has been performed by at least one part in the system,
and an arc indicates that a production step has followed
another in at least one trace. Specifically, arc (n,m) exists
if ∃i ∈ I|tF (n, i) < tS(m, i).

Fig. 4 shows the main results of a model generation
procedure. The manufacturing system is composed by three
main activities, each recording the events in an event log.
The graph model is the result of mining the direct-follow
relationships from the traces. Namely, the graph model is
such since at least one trace is θ = {1, 2, 3}. Next, the graph
model can be enriched with properties of nodes and arcs.
For instance, the finite capacity of the conveyor between
activities 1 and 2 may be expressed as a property of the arc
(1, 2). Once a graph model is created, it can be converted into
a simulation model through formalisms such as Petri Nets or



Fig. 5: Logical schema of the flow shop manufacturing system analyzed in this work.

Event Relationship Graphs. The properties of nodes and arcs
may be exploited by the model generation procedures and
for conversion to other formalisms. For instance, in the Petri
Net model of Fig. 4, the finite capacity between transitions
1 and 2 is represented by a re-entrant flow through a finite-
capacity place. Further details on the model generation steps
are available in related works [4].

TABLE I: Extract from the event log of the manufacturing system in Fig. 4.

Time-stamp Part-ID Activity-ID Type

2020-11-23 16:37:40 1 1 start
2020-11-23 16:37:44 1 1 finish
2020-11-23 16:37:47 2 1 start
2020-11-23 16:37:51 2 1 finish
2020-11-23 16:37:52 1 2 start
2020-11-23 16:37:54 3 1 start
2020-11-23 16:37:57 1 2 finish
2020-11-23 16:37:58 3 1 finish

B. Generation of Complete Models

Let us consider the flow shop depicted in Fig. 5. The
manufacturing system consists in four sectors. Each sector
produces specific part types. Sectors 1 and 2 include ma-
chining operations that produce components of type A, B,
and C, while sectors 3 and 4 assemble the components into
final products of type D and E, respectively. Several items
of part types D and E may be produced, and each item has
a unique identifier (e.g., data-matrix quick response code).

The model generation procedure listed in section 3.2
produces the graph model shown in Fig. 6a. From the
figure, it can be noticed that the result is a model with
sectors treated as separate from one another. This is because
model generation is strictly based on the single part identifier
hypothesis. Since assembled part have different identifiers
from components, assembly relationships are neglected.

In order to generate a more realistic model logic, OCPM
can be used to enrich the description of the manufacturing
system. To identify objects relationships, the Bill of Material
(BOM) of the assembled products can be exploited. The
BOM includes the component-product relationships among
part types. For instance, the BOM of part type C lists part
types A and B (Table III). BOMs are widely available in
manufacturing environments, hence they can be exploited to
generate object-centric event logs.

The first step to allow for OCPM is to develop an object-
centric event log. Table II shows an extract of the object-

TABLE II: Object-centric event log for the assembly of product nr. D001.

activity objects involved

event time-stamp name type components assembly

1 0.00 1 start A001 -
2 0.00 3 start B001 -
3 0.35 1 finish A001 -
4 0.35 2 start A001 -
5 0.45 3 finish B001 -
6 0.45 4 start B001 -
7 0.51 4 finish B001 -
8 0.62 2 finish A001 -
9 0.62 5 start {A001,B001} D001

10 0.76 5 finish {A001,B001} D001
11 0.76 6 start {A001,B001} D001
12 0.88 6 finish {A001,B001} D001

centric log in which one component of type A and B are as-
sembled into a part type C. The components are coded A001
and B001, respectively, while the assembled part is coded
with D001. In the new log representation, the part identifier
column has been substituted by two object columns: (1)
components, and (2) assembled products. Notice that the
number of object columns is directly linked to the levels
of the BOM.

The availability of an object centric log allows for en-
hancing the simulation generation procedure, considering
assembly operations. Let us assume that a model generation
procedure as the one described in [4] has been done on
the traditional available log. After the system discovery step
has been completed, the graph model must be corrected to
account for assembly operations. In the next section, we
propose a procedure to solve the graph completion problem.

IV. PROPOSED APPROACH

Let us define Pn,Sn as the sets of predecessors and
successors of node n, respectively. We assume the traces are
perfectly reliable, hence that data have been properly col-
lected and no outliers remain in the event log. Furthermore,
we assume the BOMs of all the products that flow in the
system are available. Define π(i) as the part type of item i
(for instance, π(1) = A). Further, given a generic part type
p, the function BOM(p,#) returns the set of parts types
which compose the #-th level of the BOM of part type p.
For example, BOM(D, 1) = {A,B}.

Algorithm 1 lists the pseudo-code of the proposed pro-
cedure. The algorithm is based on the hypothesis that –
after a traditional mining step – nodes with no predecessors
are the starting points of their respective graph-models.
Consequently, they are candidate assembly points. To find
such nodes, traces are explored, searching for component
parts. The assembly points are then connected to the last
explored nodes by the sub-components.

In summary, a model generation procedure including the
proposed algorithm to consider assembly points can be
described by the following steps:

• Step 1. Data collection from the real system and event
log preparation: data is organized in event logs record-
ing the production steps followed by each part in the



Algorithm 1: Proposed algorithm for mining assem-
bly processes (pseudo-code)

1 Step 1: List all nodes with no predecessors:
N′ = {n ∈ N}|Pn = ∅;

2 for n ∈ N do
3 Step 2: List parts such that node n is in the trace:

i ∈ I′|n ∈ N′&n ∈ θi;
4 if BOM(π(i), 1) ̸= ∅ then
5 Step 3: Find components parts:

j ∈ I|π(j) ∈ BOM(π(i), 1);
6 Step 4: Find last nodes in the trace of

component parts: N′′ = {n′′ ∈ θj}|Sn = ∅;
7 Step 5: Add the nodes to the predecessors of

node n: Sn ← n′′; mark node n as assembly
point;

system and the corresponding time stamps.
• Step 2a. System discovery. The mining algorithm con-

siders both the logical relationships among the events
and the occurrences of arcs and nodes. The result is a
graph model [4].

• Step 2b. Proposed addition for graph model completion:
assembly operations search. Apply Algorithm 1 exploit-
ing BOMs to search and mark assembly points.

• Step 3. Statistical analysis. Processing and waiting times
are retrieved from the event log, hence also statistical
distributions describing the process can be obtained.

• Step 4. Model conversion. At this step, the digital model
may be converted to another modeling framework, for
instance to a Petri Net.

• Step 5. Model validation and usage. The model can be
used for estimating the manufacturing system perfor-
mance.

V. TEST CASE: ASSEMBLY FLOW SHOP

In this section, we present a test case of the algorithm
presented in Section 4. The manufacturing system is the
flow shop represented in Fig. 5. Two types of assembly
products are present: D and E. Their BOM is listed in Table
III. Without loss of generality, we consider the four sectors
composed by stations with balanced operations: namely, each
station is dedicated to operations that require a processing
time pa ∼ Exp(1) ∀a ∈ A. Stations 5 and 7 are assembly
stations, hence they may not start working until at least one
part has finished at stations 2 and 4, respectively. It is also
assumed that no space constraints are limiting stations 2 and
4 from downloading parts when finished.

Five event logs have been generated with Rockwell
ARENA™, representing the production of 1000 parts. Each
event log has been used within a model generation procedure
as described in [4]. Next, the algorithm described in Section
5 has been applied to the generated graph. Fig. 6b shows the
result of the algorithm application. It can be noticed that,
differently from the traditional mining results, nodes 5 and

Fig. 6: Test Case – Difference among graph-models mined from the event logs of the
flow shop of Fig. 5: a) traditional model generation procedure; b) procedure with Step
2b: assembly-oriented algorithm (bold circles represent assembly stations).

7 are now connected to their predecessors in material flow.
Further, nodes 5 and 7 have been enriched with a property
that identifies them as assembly stations. Such result has been
obtained for all the event logs. The results confirm that the
additional algorithm can be used to enrich simulation model
generation procedures for assembly production systems. In-
deed, the addition of the assembly property can be exploited
to generate a proper representation by the simulation model
(i.e., Fig. 2b).

VI. FINAL REMARKS

This work has introduced the problem of considering
assembly processes within an automated model generation
procedure. Next, we report our final considerations.

A. Improvement Areas

Several limitations still must be solved. The following
improvements can be considered for the proposed approach:

• The proposed algorithm assumes perfect traces and the
complete availability of BOM data. Realistic datasets
are more unreliable, and proper adjustments may have
to be done.

• In real systems, several components may be used by
different assembly products. In such cases, the proposed
algorithm shall be extended to include multiple combi-
nations of assembly.

• The complete spectrum of systems that can be discov-
ered with the proposed technique should be identified.

• Real systems are much more complex than the studied
use case, with more assembly operations which might
take place on different stations along the same part type
flow. In such a case, multiple assembly locations have
to be identified for each part type.

• Techniques to validate the proposed approach shall
be developed. Indeed, different methods may provide
similar results among several options, or vice-versa.
Specific indicators could be developed to assist the
benchmarking of methods.

B. Conclusions

The recent industrial scenario and the Industry 4.0 revolu-
tion allowed for the introduction of technologies that can
support the generation and alignment of digital twins of

TABLE III: Test Case – Bill of material of part types D and E.

Part Type Components

D {A,B}
E {A,C}



manufacturing systems. In this work, we have introduced
an algorithm that allows for the discovery and modeling
of assembly processes. The algorithm can be exploited in
a simulation model generation procedure, since it identifies
nodes in which components are assembled into final or
work-in-progress products. With this addition, the blocking
condition related to the availability of parts can be added to a
simulation model and allow for the proper estimation of sys-
tem performances. Notice that the developed technique can
be also used to investigate disassembly and de-manufacturing
operations, since the material flow dynamics are comparable
to assembly processes, which suffer from the same problem
of dimensionality in the part identifiers. In the future, the
improvement areas of this work shall be explored, together
with applications to real instances.
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