
HAL Id: hal-03880520
https://hal.science/hal-03880520v2

Submitted on 21 Apr 2023 (v2), last revised 31 May 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From CNNs to Shift-Invariant Twin Models Based on
Complex Wavelets

Hubert Leterme, Kévin Polisano, Valérie Perrier, Karteek Alahari

To cite this version:
Hubert Leterme, Kévin Polisano, Valérie Perrier, Karteek Alahari. From CNNs to Shift-Invariant
Twin Models Based on Complex Wavelets. EUSIPCO 2024, 2024. �hal-03880520v2�

https://hal.science/hal-03880520v2
https://hal.archives-ouvertes.fr

From CNNs to Shift-Invariant Twin Models Based on Complex Wavelets

Hubert Leterme1 Kévin Polisano2 Valérie Perrier2 Karteek Alahari1

1Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Abstract

We propose a novel antialiasing method to increase shift
invariance and prediction accuracy in convolutional neural
networks. Specifically, we replace the first-layer combina-
tion “real-valued convolutions → max pooling” (RMax) by
“complex-valued convolutions → modulus” (CMod), which
is stable to translations. To justify our approach, we claim
that CMod and RMax produce comparable outputs when
the convolution kernel is band-pass and oriented (Gabor-
like filter). In this context, CMod can be considered as
a stable alternative to RMax. Thus, prior to antialiasing,
we force the convolution kernels to adopt such a Gabor-
like structure. The corresponding architecture is called
mathematical twin, because it employs a well-defined math-
ematical operator to mimic the behavior of the original,
freely-trained model. Our antialiasing approach achieves
superior accuracy on ImageNet and CIFAR-10 classifica-
tion tasks, compared to prior methods based on low-pass
filtering. Arguably, our approach’s emphasis on retaining
high-frequency details contributes to a better balance be-
tween shift invariance and information preservation, result-
ing in improved performance. Furthermore, it has a lower
computational cost and memory footprint than concurrent
work, making it a promising solution for practical imple-
mentation.

1. Introduction

Over the past decade, some progress has been made on
understanding the strengths and limitations of convolutional
neural networks (CNNs) for computer vision [21, 35, 41].
The ability of CNNs to embed input images into a feature
space with linearly separable decision regions is a key fac-
tor to achieve high classification accuracy. An important
property to reach this linear separability is the ability to
discard or minimize non-discriminative image components.
In particular, feature vectors are expected to be stable with
respect to translations [35]. However, subsampling opera-

tions, typically found in convolution and pooling layers, are
an important source of instability—a phenomenon known
as aliasing [1]. A few approaches have attempted to address
this issue.

Blurpooled CNNs. Zhang [42] proposed to apply a
low-pass blurring filter before each subsampling op-
eration in CNNs. Specifically, 1. max pooling lay-
ers (Max → Sub)1 are replaced by max-blur pooling
(Max → Blur → Sub); 2. convolution layers followed by
ReLU (Conv → Sub → ReLU) are blurred before subsam-
pling (Conv → ReLU → Blur → Sub).2 The combination
Blur → Sub is referred to as blur pooling. This approach
follows a well-known practice in signal processing, which
involves low-pass filtering a high-frequency signal before
subsampling, in order to avoid artifacts in reconstruction.
Their approach improved the shift invariance as well as
the accuracy of CNNs trained on ImageNet and CIFAR-10
datasets. However, this was achieved with a significant loss
of information.

A question then arises: is it possible to design a non-
destructive antialiasing method, and if so, does it further im-
prove accuracy? In a more recent work, Zou et al. [45] tack-
led this question through an adaptive antialiasing approach,
called adaptive blur pooling. In this nonlinear setting, the
blurring filter varies across channels and image locations,
therefore preserving high-frequency information in strate-
gic zones. Albeit achieving higher prediction accuracy, this
approach remains fundamentally based on low-pass filter-
ing. Consequently, features that are not blurred may still be
unstable to translations. Furthermore, adaptive blur pooling
requires additional memory, computational resources, and
trainable parameters.

Proposed Approach. In this paper, we propose an alter-
native antialiasing approach based on complex-valued con-

1Sub and Conv stand for “convolution” and “subsampling” respec-
tively.

2ReLU is computed before blurring; otherwise the network would sim-
ply perform on low-resolution images.

volutions, extracting high-frequency features that are sta-
ble to translations. We observed improved accuracy for
ImageNet and CIFAR-10 classification, compared to the
two antialiasing methods based on blur pooling [42, 45].
Furthermore, our approach offers significant advantages in
terms of computational efficiency and memory usage, and
does not induce any additional training, unlike adaptive blur
pooling.

Our proposed method replaces the first layers of a CNN:

Conv → Sub → Bias → ReLU → MaxPool, (1)

equivalently written as

Conv → Sub → MaxPool → Bias → ReLU, (2)

by the following combination:

CConv → Sub → Modulus → Bias → ReLU, (3)

where CConv denotes a convolution operator with a
complex-valued kernel, whose real and imaginary parts ap-
proximately form a 2D Hilbert transform pair [11]. From
(2) and (3), we introduce the two following operators:

RMax : Conv → Sub → MaxPool; (4)
CMod : CConv → Sub → Modulus. (5)

Our method is motivated by the following theoretical
claim. In a recent paper submission [23], we proved that
1. CMod is nearly invariant to translations, if the convolu-
tion kernel is band-pass and clearly oriented; 2. RMax and
CMod produce comparable outputs, except for some filter
frequencies regularly scattered across the Fourier domain.
We then combined these two properties to establish a sta-
bility metric for RMax as a function of the convolution ker-
nel’s frequency vector. This work was essentially theoreti-
cal, with limited experiments conducted on a deterministic
model solely based on the dual-tree complex wavelet packet
transform (DT-CWPT). However, it lacked applications to
tasks such as image classification. Building upon this theo-
retical study, in this paper, we consider the CMod operator
as a proxy for RMax, extracting comparable, yet more sta-
ble features.

In compliance with the theory, the RMax-CMod substi-
tution is only applied to the output channels associated with
oriented band-pass filters, referred to as Gabor-like kernels.
This kind of structure is known to arise spontaneously in the
first layer of CNNs trained on image datasets such as Ima-
geNet [38]. In this paper, we enforce this property by apply-
ing additional constraints to the original model, prior to an-
tialiasing. Specifically, a predefined number of convolution
kernels are guided to adopt Gabor-like structures, instead
of letting the network learn them from scratch. For this
purpose, we rely on the dual-tree complex wavelet packet

transform (DT-CWPT) [2]. Throughout the paper, we refer
to this constrained model as a mathematical twin, because
it employs a well-defined mathematical operator to mimic
the behavior of the original model. In this context, replac-
ing RMax by CMod is straightforward, since the complex-
valued filters are provided by DT-CWPT.

Other Related Work. Following the ideas developed for
antialiasing, Chaman and Dokmanic [5] reached perfect
shift invariance by using an adaptive, input-dependent sub-
sampling grid, whereas previous models rely on fixed grids.
This idea was harnessed by Xu et al. [37] to get shift equiv-
ariance in generative models. This approach is not intended
to compete with other antialiasing methods, but rather to
complement them at the subsampling stages.

Another aspect of shift invariance in CNNs is related
to boundary effects. The fact that CNNs can encode the
absolute position of an object in the image by exploiting
boundary effects was discovered independently by Islam et
al. [15], and Kayhan and Gemert [17]. This phenomenon is
left outside the scope of our paper.

Wavelet scattering networks (ScatterNets), by Bruna and
Mallat [4], perform cascading wavelet convolutions and
nonlinear operations. They produce shift-invariant image
representations that are stable to deformation and preserve
high-frequency information. Further extensions include
roto-translation invariant ScatterNets [27], hybrid Scatter-
Nets combined with fully-trained layers [26] or dictionary
learning [40], dual-tree complex wavelet ScatterNets [31],
graph ScatterNets [44], learnable ScatterNets via feature
map mixing [6] or parametric wavelet filters [9]. As deep
learning architectures with well-defined mathematical prop-
erties, ScatterNets may be used as explanatory models for
standard, freely-trained networks. However, there is no
exact correspondence between the two types of architec-
tures [34]. In contrast, our models are enhanced versions
of existing networks, rather than ad hoc constructions. This
allows to draw comparisons in terms of prediction accuracy
and shift invariance.

Finally, we draw the reader’s attention to the family of
complex-valued CNNs (CVCNNs), which is the focus of
a comprehensive survey [22]. These networks are well
suited for tasks requiring the phase information to be prop-
agated through the entire network, as done in the context
of magnetic resonance imaging [7], polarimetric imaging
[43] or audio signals [33]. However, for image recognition
tasks, CVCNNs do not seem to perform better than stan-
dard CNNs, with equal number of trainable parameters [33].
Conversely, our approach discards the phase information by
computing the modulus. In summary, CVCNNs and our
models, although both employing complex-valued convolu-
tions, are suited for different contexts.

2. Proposed Approach
We first describe the general principles of our antialias-

ing approach based on complex convolutions. We then pro-
vide some details about the mathematical twin based on DT-
CWPT, and explain how our method has been benchmarked
against blur-pooling-based antialiased models.

We represent feature maps as 2D sequences, defined by
straight capital letters: X ∈ S . Indexing is denoted by
square brackets: for any 2D index n ∈ Z2, X[n] ∈ R or
C. The cross-correlation between X and V ∈ S is defined
by (X ⋆ V)[n] :=

∑
k∈Z2 X[n+ k] V[k]. The down arrow

refers to subsampling: for any m ∈ N∗, (X ↓ m)[n] :=
X[mn].

2.1. Standard Architectures

A convolution layer with K input channels, L output
channels and subsampling factor m ∈ N \ {0} is param-
eterized by a weight tensor V := (Vlk)l∈{1..L}, k∈{1..K} ∈
SL×K . For any multichannel input X := (Xk)k∈{1..K} ∈
SK , the corresponding output Y := (Yl)l∈{1..L} ∈ SL is
defined such that, for any output channel l ∈ {1 . . L},

Yl :=

K∑
k=1

(Xk ⋆Vlk) ↓ m. (6)

For instance, in AlexNet and ResNet, K = 3 (RGB input
images), L = 64, and m = 4 and 2, respectively. Next, a
bias b := (b1, · · · , bL)⊤ ∈ RL is applied to Y, which is
then transformed through nonlinear ReLU and max pooling
operators. The activated outputs satisfy

Amax
l := MaxPool (ReLU(Yl + bl)) , (7)

where we have defined, for any Y ∈ S and any n ∈ Z2,

ReLU(Y)[n] := max(0, Y[n]); (8)
MaxPool(Y)[n] := max

∥k∥∞≤1
Y[2n+ k]. (9)

2.2. Antialiasing Principle

We consider the first convolution layer of a CNN, as de-
scribed in (6). As widely discussed in the literature [38],
after training with ImageNet, a certain number of convolu-
tion kernels Vlk spontaneously take the appearance of ori-
ented waveforms with well-defined frequency and orienta-
tion (Gabor-like kernels), as illustrated in Fig. 1a. A visual
representation of trained convolution kernels is provided in
Appendix E. In this paper, we refer to the corresponding
output channels l ∈ G ⊂ {1 . . L} as Gabor channels. The
main idea is to substitute, for any l ∈ G, RMax by CMod,
as explained hereafter. Following (2), expression (7) can be
rewritten

Amax
l = ReLU

(
Ymax

l + bl
)
, (10)

(a) (b) (c) (d)

Figure 1. (a), (b): Real and imaginary parts of a Gabor-like convo-
lution kernel Wlk := Vlk+ iH(Vlk), forming a 2D Hilbert trans-
form pair. (c), (d): Power spectra (energy of the Fourier transform)
of Vlk and Wlk, respectively.

where Ymax
l is the output of an RMax operator as intro-

duced in (4). More formally,

Ymax
l := MaxPool

(
K∑

k=1

(Xk ⋆Vlk) ↓ m

)
. (11)

Then, following (3), the RMax-CMod substitution yields

Amod
l = ReLU

(
Ymod

l + bl
)
, (12)

where Ymod
l is the output of a CMod operator (5), satisfying

Ymod
l :=

∣∣∣∣∣
K∑

k=1

(Xk ⋆Wlk) ↓ (2m)

∣∣∣∣∣ . (13)

In the above expression, Wlk is a complex-valued analytic
kernel satisfying

Wlk := Vlk + iH(Vlk), (14)

where H denotes the two-dimensional Hilbert transform as
introduced by Havlicek et al. [11]. It is defined, for any
real-valued filter V ∈ S and any frequency vector ξ :=
(ξ1, ξ2)

⊤ ∈ [−π, π]
2, by

ĤV(ξ) := −i sgn(ξ1) V̂(ξ). (15)

The Hilbert transform is designed such that the Fourier
transform of Wlk is entirely supported in the half-plane
of nonnegative x-values. Therefore, since Vlk is Gabor-
like, the energy of Wlk is concentrated within a small win-
dow in the Fourier domain, as depicted in Fig. 1d. Due to
this property, the modulus operator provides a smooth enve-
lope for complex-valued cross-correlations with Wlk [19].
This leads to the output Ymod

l (13) being nearly invariant to
translations. Additionally, the subsampling factor in (13) is
twice that in (11), to account for the factor-2 subsampling
achieved through max pooling (9).

2.3. Wavelet-Based Twin Models (WCNNs)

As explained in Sec. 2.2, introducing an imaginary part
to the Gabor-like convolution kernels improves shift invari-
ance. Our antialiasing method therefore restricts to the Ga-
bor channels l ∈ G ⊂ {1 . . L}. However, G is unknown a

priori: for a given output channel l ∈ {1 . . L}, whether Vlk

will become band-pass and oriented after training is unpre-
dictable. Thus, we need a way to automatically separate the
set G of Gabor channels from the set of remaining chan-
nels, denoted by F := {1 . . L} \ G. To this end, we built
“mathematical twins” of standard CNNs, based on the dual-
tree wavelet packet transform (DT-CWPT). These models,
which we call WCNNs in short, reproduce the behavior of
freely-trained architectures with a higher degree of control
and fewer trainable parameters. In this section, we present
their general structure; a more detailed description is pro-
vided in Appendix A. For the purpose of readability, we
assume that K = 3 (RGB input images).

We denote by Lgabor := card(G) and Lfree := card(F)
the number of Gabor and remaining channels, respectively.
They are determined empirically from the trained CNNs—
see Tab. 1. In a twin WCNN architecture, the two groups
of output channels are organized such that F = {1 . . Lfree}
and G = {(Lfree + 1) . . L}. The first Lfree channels, which
are outside the scope of our antialiasing approach, remain
freely-trained as in the standard architecture. Regarding
the Lgabor Gabor channels, the convolution kernels Vlk are
constrained to satisfy the following requirements. First, all
three RGB input channels are processed with the same fil-
ter, up to a multiplicative constant. More formally, there
exists a luminance weight vector µ := (µ1, µ2, µ3)

⊤, with
µk ∈ [0, 1] and

∑3
k=1 µk = 1, such that,

∀k ∈ {1 . . 3} , Vlk = µkṼl, (16)

where Ṽl :=
∑3

k=1 Vlk denotes the mean kernel. Further-
more, Ṽl must be band-pass and oriented (Gabor-like filter).
The following paragraphs explain how these two constraints
are implemented in our WCNN architecture.

Monochrome Filters. Expression (16) is actually a prop-
erty of standard CNNs: the oriented band-pass RGB kernels
generally appear monochrome (see kernel visualization of
freely-trained CNNs Appendix E). A numerical assessment
of this property can by found in [23]. In WCNNs, this con-
straint is implemented with a trainable 1 × 1 convolution
layer [24], parameterized by µ, computing the following
luminance image:

Xlum :=

3∑
k=1

µkXk. (17)

Gabor-Like Kernels. To guarantee the Gabor-like prop-
erty on Ṽl, we implemented DT-CWPT, which is achieved
through a series of subsampled convolutions. The number
of decomposition stages J ∈ N \ {0} was chosen such that
m = 2J−1, where, as a reminder, m denotes the subsam-
pling factor as introduced in (6). DT-CWPT generates a set

of filters
(
Wdt

k′

)
k′∈{1..4×4J}, which tiles the Fourier domain

[−π, π]
2 into 4 × 4J overlapping square windows.3 Their

real and imaginary parts approximately form a 2D Hilbert
transform pair such as defined in (15).

The WCNN architecture is designed such that, for any
Gabor channel l ∈ G, Ṽl is the real part of one such filter:

∃k′ ∈
{
1 . . 4× 4J

}
: Ṽl = Re

(
Wdt

k′

)
. (18)

The output Yl introduced in (6) then becomes

Yl =
(
Xlum ⋆ Ṽl

)
↓ 2J−1. (19)

To summarize, a WCNN substitutes the freely-trained
convolution (6) with a combination of (17) and (19), for
any Gabor output channels l ∈ G. This combination is
wrapped into a wavelet block, also referred to as WBlock
in short. Technical details about its exact design are pro-
vided Appendix A. Note that the Fourier resolution of Vlk

increases with the subsampling factor m. This property is
consistent with what is observed in freely-trained CNNs: in
AlexNet, where m = 4, the Gabor-like filters are more lo-
calized in frequency (and less spatially localized) than in
ResNet, where m = 2.

Figure 2 displays the kernels V ∈ SL×K , with K = 3
and L = 64, for the WCNN architectures based on AlexNet
and ResNet, which we refer to as WAlexNet and WResNet,
respectively. In these models, m = 4 and 2, which implies
J = 3 and 2, respectively. The kernels are shown as RGB
color images, after training with ImageNet, for both freely-
trained and Gabor channels.

Antialiased WCNNs. Using the antialiasing principles
presented in Sec. 2.2, we replace RMax (11) by CMod (13)
for all Gabor channels l ∈ G. In the corresponding model,
referred to as CWCNN, the wavelet block is replaced by a
complex wavelet block (CWBlock), in which (19) becomes

Zl =
(
Xlum ⋆ W̃l

)
↓ 2J , (20)

where W̃l is obtained by considering both real and imagi-
nary parts of the DT-CWPT filter (18). Then, a modulus is
applied to Zl, which yields Ymod

l such as defined in (13),
with Wlk := µkW̃l for any RGB channel k ∈ {1 . . 3}.
Finally, we apply a bias and ReLU to Ymod

l , following (12).
A schematic representation of WAlexNet and its an-

tialiased version, referred to as CWAlexNet, is provided in
Figs. 3b and 3c (top).

2.4. WCNNs with Blur Pooling

We benchmark our approach against the antialiasing
methods proposed by Zhang [42] and Zou et al. [45].

3Figure 1 actually illustrates one of these filters, with J = 3.

(a) WAlexNet (32 Gabor channels)

(b) WResNet (24 Gabor channels)

Figure 2. Convolution kernels in the first layer of WAlexNet (a) and WResNet-34 (b), after training with ImageNet-1K. For each output
channel l ∈ {1 . . 64}, the corresponding convolution kernel (Vlk)k∈{1..3} is displayed as an RGB image in the spatial domain (left), and
its associated magnitude spectrum in the Fourier domain (right). The convolution kernels associated to the Gabor channels are displayed
on the 4 and 3 last rows for WAlexNet and WResNet, respectively. For the sake of visual rendering, they have been respectively cropped
to (11× 11) and (7× 7) to match the size of the freely-trained kernels.

To this end, we first consider a WCNN antialiased with
static or adaptive blur pooling, respectively referred to as
BlurWCNN and ABlurWCNN. A schematic representa-
tion of BlurWAlexNet is provided in Fig. 3b (bottom).
Then, we substitute the blurpooled Gabor channels (right
branch of the diagram) with our own CMod-based ap-
proach. The corresponding models are respectively referred
to as CBlurWCNN and CABlurWCNN. Again, a schematic
representation of CBlurWAlexNet can be found in Fig. 3c
(bottom). Note that, for a fair comparison, all models use
blur pooling in the freely-trained channels as well as deeper
layers. Therefore, several antialiasing methods are em-
ployed in different parts of the network.

2.5. Adaptation to ResNet: Batch Normalization

In many architectures including ResNet, the bias is com-
puted after an operation called batch normalization (BN)
[14]. In this context, (1) becomes

Conv → Sub → BN → Bias → ReLU → MaxPool. (21)

As detailed in Appendix B, the RMax-CMod substitution
yields, analogously to (3),

CConv→Sub→Modulus→BN0→Bias→ReLU, (22)

where BN0 refers to a special type of batch normaliza-
tion without mean centering. A schematic representation
of ResNet-based models, as done in Fig. 3 for AlexNet, is
provided in Fig. 8.

(a) AlexNet (b) WAlexNet (baseline) (c) CWAlexNet (proposed approach)

Figure 3. First layers of AlexNet and its variants, corresponding to a convolution layer followed by ReLU and max pooling (1). The models
are framed according to the same colors and line styles as in Figs. 4 and 5. The green modules are the ones containing trainable parameters;
the orange and purple modules represent static linear and nonlinear operators, respectively. The numbers between each module represent
the depth (number of channels), height and width of each output. Fig. 3a: freely-trained models. Top: standard AlexNet. Bottom: Zhang’s
“blurpooled” AlexNet. Fig. 3b: mathematical twins (WAlexNet) reproducing the behavior of standard (top) and blurpooled (bottom)
AlexNet. The left side of each diagram corresponds to the Lfree := 32 freely-trained output channels, whereas the right side displays
the Lgabor := 32 remaining channels, where freely-trained convolutions have been replaced by a wavelet block (WBlock) as described in
Sec. 2.3. Fig. 3c: CMod-based antialiased WAlexNet, where WBlock has been replaced by CWBlock, and max pooling by a modulus.
The bias and ReLU are placed after the modulus, following (3). In the bottom models, we compare Zhang’s antialiasing approach (Fig. 3b)
with ours (Fig. 3c) in the Gabor channels.

WAlexNet WResNet
m (subsampling factor) 4 2
J (decomposition depth) 3 2

Lfree, Lgabor (output channels) 32, 32 40, 24

Table 1. Experimental settings for our WCNN twin models. Other
details are provided in Appendix C.

3. Experiments

3.1. Experiment Details

ImageNet. We built our WCNN and CWCNN twin models
based on AlexNet [20] and ResNet-34 [12]. Their overall
design is described in Sec. 2, along with setting details in
Tab. 1. The values of Lfree and Lgabor were determined
empirically from the freely-trained AlexNet and ResNet-
34; further details are provided in Appendix C. Zhang’s

static blur pooling approach is tested on both AlexNet and
ResNet, whereas Zou et al.’s adaptive approach is only
tested on ResNet. The latter was indeed not implemented
on AlexNet in the original paper, and we could not make it
work on this architecture.

As mentioned above, we compare blur-pooling-based
antialiasing approach (Fig. 3b, bottom) with ours (Fig. 3c,
bottom). To apply static or adaptive blur pooling to the WC-
NNs, we proceed as follows. Following Zhang’s implemen-
tation, the wavelet block is not antialiased if m = 2 as in
ResNet, for computational reasons. However, when m = 4
as in AlexNet, a blur pooling layer is placed after ReLU,
and the wavelet block’s subsampling factor is divided by
2. Moreover, max pooling is replaced by max-blur pool-
ing. The size of the blurring filters is set to 3, as recom-
mended by Zhang [42]. Besides, DT-CWPT decomposi-
tions are performed with Q-shift orthogonal filters of length

10 as introduced by Kingsbury [18].
Our models were trained on the ImageNet ILSVRC2012

dataset [29], following the standard procedure provided by
PyTorch [28].4 Moreover, we set aside 100K images from
the training set—100 per class—in order to compute the
top-1 error rate after each training epoch (“validation set”).

CIFAR-10. We also trained ResNet-18, ResNet-34 and
their variants on the CIFAR-10 dataset. Training was per-
formed on 300 epochs, with an initial learning rate equal to
0.1, decreased by a factor of 10 every 100 epochs. As for
ImageNet, we set aside 5 000 images out of 50K to com-
pute accuracy during the training phase. Given the images
of small size in this dataset (32× 32 pixels), feature extrac-
tion can be performed efficiently with a reduced number of
layers. For this reason, the first layers (1) arguably have a
higher influence on the overall predictive power. We there-
fore expect to clearly highlight the benefits of our approach
on this specific task.

3.2. Evaluation Metrics

Classification Accuracy. Classification accuracy was com-
puted on the standard ImageNet evaluation set (50K im-
ages). We followed the ten-crops procedure [20]: predic-
tions are made over 10 patches extracted from each input
image, and the softmax outputs are averaged to get the over-
all prediction. We also considered center crops of size 224
for one-crop evaluation. In both cases, we used top-1-5 er-
ror rates. For CIFAR-10 evaluation (10K images), we mea-
sured the top-1 error rate with one- and ten-crops.

Measuring Shift Invariance. For each image in the Im-
ageNet evaluation set, we extracted several patches of size
224, each of which being shifted by 0.5 pixel along a given
axis. We then compared their outputs in order to measure
the model’s robustness to shifts. This was done by com-
puting the Kullback-Leibler (KL) divergence between out-
put vectors—which, under certain hypotheses, can be inter-
preted as probability distributions [3, pp. 205-206]. This
metric is intended for visual representation.

In addition, we measured the mean flip rate (mFR) be-
tween predictions [13], as done by Zhang [42] in its blur-
pooled models. For each direction (vertical, horizontal and
diagonal), we measured the mean frequency upon which
two shifted input images yield different top-1 predictions,
for shift distances varying from 1 to 8 pixels. We then nor-
malized the results with respect to AlexNet’s mFR, and av-
eraged over the three directions. This metric is also referred
to as consistency.

We repeated the procedure for the models trained on
CIFAR-10. This time, we extracted patches of size 32× 32

4PyTorch “examples” repository available at https://github.
com/pytorch/examples/tree/main/imagenet

Figure 4. Evolution of the top-1 validation error (one-crop) along
training with ImageNet, for AlexNet-based models, as described
in Fig. 3. The freely-trained models, upon which the mathemat-
ical twins are built, appear in faint gray. Legend: †blur pooling;
∗CMod-based antialiasing (our approach).

Figure 5. AlexNet-based models: mean KL divergence between
the outputs of a reference image versus shifted images. Legend:
†blur pooling; ∗CMod-based antialiasing (our approach).

from the evaluation set, and computed mFR for shifts vary-
ing from 1 to 4 pixels. Besides, normalization was per-
formed with respect to ResNet-18’s mFR.

3.3. Results and Discussion

Validation and Test Accuracy. Top-1 accuracy of
AlexNet-based models along training with ImageNet is
plotted in Fig. 4. Similar plots are provided for ResNet in
Fig. 10. In addition, error rates of AlexNet- and ResNet-
based architectures, computed on the evaluation sets, are
provided in Tab. 2 for ImageNet and Tab. 3 for CIFAR-10.

Our CMod-based approach significantly outperforms the
baselines for AlexNet: CWCNN vs WCNN (blue dia-
monds), and CBlurWCNN vs BlurWCNN (red stars). Re-
markably, the exclusive application of CMod-based an-
tialiasing to the Gabor channels (CWCNN, solid blue line)
is sufficient to match the performance of blur-pooling-based
antialiasing (BlurWCNN, dashed red line), which, in con-
trast, is implemented throughout the entire network. Pos-
itive results are also obtained for ResNet-based models

https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet

Model One-crop Ten-crops Shifts
top-1 top-5 top-1 top-5 mFR

AlexNet
CNN 45.3 22.2 41.3 19.3 100.0

WCNN 44.9 21.8 40.8 19.0 101.4
CWCNN∗ 44.3 21.3 40.2 18.5 88.0
BlurCNN† 44.4 21.6 40.7 18.7 63.8

BlurWCNN† 44.3 21.4 40.5 18.5 63.1
CBlurWCNN†∗ 43.3 20.5 39.6 17.9 69.4

ResNet-34
CNN 27.6 9.2 24.8 7.7 78.1

WCNN 27.4 9.2 24.7 7.6 77.2
CWCNN∗ 27.2 9.0 24.4 7.4 73.1
BlurCNN† 26.7 8.6 24.0 7.2 61.2

BlurWCNN† 26.7 8.6 24.1 7.3 65.2
CBlurWCNN†∗ 26.5 8.4 23.7 7.0 62.5

ABlurCNN‡ 26.1 8.3 23.5 7.0 60.8
ABlurWCNN‡ 26.0 8.2 23.6 6.9 62.1

CABlurWCNN‡∗ 26.1 8.2 23.7 7.0 63.1

Table 2. Evaluation metrics on ImageNet (%): the lower the bet-
ter. Models: †static and ‡adaptive blur pooling; ∗CMod-based
antialiasing (our approach).

Model ResNet-18 ResNet-34
1crp 10crp shft 1crp 10crps shft

CNN 14.9 10.8 100.0 15.2 10.9 100.3
WCNN 14.2 10.3 92.4 14.5 10.5 99.2

CWCNN∗ 13.8 9.6 88.8 12.9 9.2 93.0
BlurCNN† 14.2 10.4 87.7 15.7 11.6 88.2

BlurWCNN† 13.1 9.7 84.6 13.2 9.9 85.6
CBlurWCNN†∗ 12.3 8.9 85.7 12.4 9.1 83.7

ABlurCNN‡ 14.6 11.0 90.9 16.3 12.8 91.9
ABlurWCNN‡ 14.5 11.0 86.5 14.0 10.4 93.3

CABlurWCNN‡∗ 12.8 9.7 81.7 12.8 9.2 86.6

Table 3. Evaluation metrics on CIFAR-10 (%): top-1 error rate
using one- and ten-crops methods (“1crp” and “10crp”); and mFR
measuring consistency (“shft”). Models: †static and ‡adaptive blur
pooling; ∗CMod-based antialiasing (our approach).

trained on ImageNet (Tab. 2, bottom). However, adaptive
blur pooling, when applied to the Gabor channels (ABlur-
WCNN), yields similar or marginally higher accuracy than
our approach (CABlurWCNN). Nevertheless, our method
is computationally more efficient, requires less memory
(see “Computational Resources” below for more details),
and do not demand additional training, unlike adaptive blur
pooling. To better support this claim, we conducted abla-
tion studies which we present in Appendix D.3. Finally,
when trained on CIFAR-10 (see Tab. 3), our CMod-based
antialiased models built upon ResNet-18 and 34 achieve
significant gains in accuracy over non-antialiased models,
as well as models antialiased with both blur-pooling-based
methods.

As a side note, the training curves for WCNNs (colored
dashed lines) closely follow those of standard CNNs (gray
dotted lines). This is an expected result, since the former
models are designed to mimic the behavior of the latter.

Shift Invariance (KL Divergence). The mean KL di-
vergence between outputs of shifted images are plotted in
Fig. 5 for AlexNet trained on ImageNet. Moreover, the
mean flip rate for shifted inputs (consistency) is reported
in Tab. 2 for ImageNet (AlexNet and ResNet-34) and Tab. 3
for CIFAR-10 (ResNet-18 and 34).

In both AlexNet and WAlexNet, the initial convolution
layer’s output undergoes a one-pixel shift for every four-
pixel shift in the input image. Consequently, any diver-
gence between the output vectors is due to the instability of
subsequent layers to one-pixel shifts. In contrast, instabili-
ties which are accountable to the initial layer are observed
for shifts that are not multiples of 4. Likewise, for input
shifts of eight pixels, the max pooling’s output is shifted
by exactly one pixel, resulting in even higher stability. In
CWAlexNet, the same eight-to-one-pixel ratio occurs to the
modulus layer’s output, which explains why the two curves
meet for 8-pixel shifts. However, the RMax-CMod substi-
tution has greatly reduced first-layer instabilities, resulting
in a flattened curve and avoiding the “bumps” observed for
non-antialiased models.

On the other hand, BlurAlexNet and BlurWAlexNet
exhibit considerably flattened curves compared to non-
antialiased models, as well as CWAlexNet. This demon-
strates the effectiveness of blur-pooling-based method in
enhancing shift invariance. Applying CMod-based an-
tialiasing instead of blur pooling on the Gabor channels
(CBlurWAlexNet) actually degrades shift invariance (ex-
cept for shifts smaller than 1.5 pixels), as evidenced by the
bell-shaped curve. Nevertheless, the corresponding classi-
fier is significantly more accurate. This is not surprising, as
our approach prioritizes the conservation of high-frequency
details, which are important for classification. An extreme
reduction of shift variance using a large blur pooling fil-
ter would indeed result in a significant loss of accuracy.
Therefore, our work achieves a better balance between shift
invariance and information preservation. To gain further
insights into this phenomenon, we conducted experiments
by varying the size of the blurring filters in AlexNet-based
models. Figure 6 shows the relationship between consis-
tency and prediction accuracy on ImageNet (custom valida-
tion set), for different filter sizes ranging from 1 (no blur
pooling) to 7 (heavy loss of high-frequency information).5

We find that a near-optimal trade-off is achieved when the
filter size is set to 2 or 3. Furthermore, at equivalent con-
sistency levels, CBlurWCNN outperforms BlurWCNN in
terms of accuracy. Note however that the optimal version of
CBlurWCNN is not more consistent than the optimal ver-
sion of BlurWCNN, despite achieving higher accuracy.

Computational Resources. Table 4 compares the com-
putational resources and memory footprint required for each

5Similar plots can be found in Zhang’s paper [42].

Figure 6. Classification accuracy (ten-crops) vs consistency,
measuring the stability of predictions to small input shifts, for
AlexNet-based models (the lower the better for both axes). For
each of the three architectures, we increased the blurring filter size
from 1 (i.e., no blur pooling) to 7. The blue diamonds (no blur
pooling) and red stars (blur pooling with filters of size 3) corre-
spond to the models from Figs. 4 and 5. At equivalent consistency
levels, our CMod-based approach (solid line) yields higher accu-
racy.

Method Computational cost Memory footprint
AlexNet ResNet AlexNet ResNet

No antialiasing (ref) 1 .0 1 .0 1 .0 1 .0
BlurPool [42] 4.0 1.0 4.7 1.9

ABlurPool [45] – 2.1 – 2.0
CMod (ours) 0.5 0.5 0.6 0.4

Table 4. Computational cost and memory footprint required for
each antialiasing method, per Gabor channel. The values are nor-
malized relative to non-antialiased AlexNet or ResNet. Computa-
tional cost: FLOPs for computing Ymax

l (11) or Ymod
l (13). Mem-

ory footprint: size of the intermediate and output tensors saved by
PyTorch for the backward pass.

antialiasing method. To achieve this, we considered mod-
els with freely-trained convolutions, because the goal was
to evaluate the computational performances of the various
antialiasing approaches, excluding implementation tricks
based on DT-CWPT from the scope of analysis. More de-
tails are provided in Appendices F and G.

4. Conclusion

The mathematical twins introduced in this paper serve
a proof of concept for our CMod-based antialiasing ap-
proach. However, its range of application extends well be-
yond DT-CWPT filters. While we focused on the first con-
volution layer, it is important to note that such initial layers
play a critical role in CNNs by extracting low-level geo-
metric features such as edges, corners or textures. There-
fore, a specific attention is required for their design. In
contrast, deeper layers are more focused on capturing high-
level structures that conventional image processing tools are
poorly suited for, as pointed out by Oyallon et al. in the con-
text of hybrid scattering networks [26].

Furthermore, while our approach is tailored for CNN
architectures, which were chosen to make a fair compari-
son to related methods, it has potential for broader applica-
bility. There is a growing interest in using self-attention
mechanisms in computer vision [8] to capture complex,
long-range dependencies among image representations. Re-
cent work on vision transformers has proposed using the
first layers of a CNN as a “convolutional token embed-
ding” [10,36,39], effectively reintroducing inductive biases
to the architecture, such as locality and weight sharing. By
applying our antialiasing method to this embedding, we can
provide self-attention modules with nearly shift-invariant
inputs, which could be highly beneficial in improving the
performance of vision transformers, especially when the
amount of available data is limited.

Acknowledgments
This work has been partially supported by the LabEx

PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir, as well as the
ANR grants MIAI (ANR-19-P3IA-0003) and AVENUE
(ANR-18-CE23-0011). Most of the computations presented
in this paper were performed using the GRICAD infrastruc-
ture,6 which is supported by Grenoble research communi-
ties.

References
[1] Aharon Azulay and Yair Weiss. Why do deep convolutional

networks generalize so poorly to small image transforma-
tions? Journal of Machine Learning Research, 20(184):1–
25, 2019. 1

[2] Ilker Bayram and Ivan W. Selesnick. On the Dual-Tree Com-
plex Wavelet Packet and M-Band Transforms. IEEE Trans-
actions on Signal Processing, 56(6):2298–2310, June 2008.
2, 14

[3] Christopher M. Bishop and Tom M. Mitchell. Pattern Recog-
nition and Machine Learning. Springer, 2014. 7

[4] Joan Bruna and Stéphane Mallat. Invariant Scattering Con-
volution Networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1872–1886, May 2013. 2

[5] Anadi Chaman and Ivan Dokmanic. Truly Shift-Invariant
Convolutional Neural Networks. In Proc. IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3773–3783, 2021. 2

[6] Fergal Cotter and Nick Kingsbury. A Learnable Scatternet:
Locally Invariant Convolutional Layers. In Proc. IEEE In-
ternational Conference on Image Processing (ICIP), pages
350–354, Sept. 2019. 2

[7] Muneer Ahmad Dedmari, Sailesh Conjeti, Santiago Estrada,
Phillip Ehses, Tony Stöcker, and Martin Reuter. Complex
Fully Convolutional Neural Networks for MR Image Re-
construction. In Florian Knoll, Andreas Maier, and Daniel

6https://gricad.univ-grenoble-alpes.fr

https://gricad.univ-grenoble-alpes.fr

Rueckert, editors, Machine Learning for Medical Image Re-
construction, Lecture Notes in Computer Science, pages 30–
38, Cham, 2018. Springer International Publishing. 2

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale. In Proc. International Conference on Learning Rep-
resentations, 2021. 9

[9] Shanel Gauthier, Benjamin Thérien, Laurent Alsène-
Racicot, Muawiz Chaudhary, Irina Rish, Eugene Belilovsky,
Michael Eickenberg, and Guy Wolf. Parametric Scattering
Networks. In Proc. IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5749–5758, 2022. 2

[10] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduweili, Jiachen Li, and Humphrey Shi. Escap-
ing the Big Data Paradigm with Compact Transformers.
arXiv:2104.05704, June 2022. 9

[11] J.P. Havlicek, J.W. Havlicek, and A.C. Bovik. The analytic
image. In Proc. International Conference on Image Process-
ing, volume 2, pages 446–449 vol.2, Oct. 1997. 2, 3

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 2016. 6

[13] Dan Hendrycks and Thomas Dietterich. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Per-
turbations. In Proc. International Conference on Learning
Representations, Mar. 2019. 7

[14] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proc. 32nd International Conference on
Machine Learning, pages 448–456. PMLR, June 2015. 5

[15] Md Amirul Islam, Sen Jia, and Neil D. B. Bruce. How Much
Position Information Do Convolutional Neural Networks En-
code? In Proc. International Conference on Learning Rep-
resentations, Jan. 2020. 2

[16] Bernd Jahne. Practical Handbook on Image Processing for
Scientific and Technical Applications. CRC Press, 2004. 15

[17] Osman Semih Kayhan and Jan C. van Gemert. On Transla-
tion Invariance in CNNs: Convolutional Layers Can Exploit
Absolute Spatial Location. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14274–
14285, 2020. 2

[18] Nick Kingsbury. Design of Q-shift complex wavelets for
image processing using frequency domain energy minimiza-
tion. In Proceedings International Conference on Image Pro-
cessing, volume 1, pages I–1013, 2003. 7

[19] Nick Kingsbury and Julian Magarey. Wavelet Transforms in
Image Processing. In Ales Procházka, Jan Uhlı́ř, P. W. J.
Rayner, and N. G. Kingsbury, editors, Signal Analysis
and Prediction, Applied and Numerical Harmonic Analysis,
pages 27–46. Birkhäuser, Boston, MA, 1998. 3

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
ImageNet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, May
2017. 6, 7

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, 2015. 1

[22] ChiYan Lee, Hideyuki Hasegawa, and Shangce Gao.
Complex-Valued Neural Networks: A Comprehensive Sur-
vey. IEEE/CAA Journal of Automatica Sinica, 9(8):1406–
1426, Aug. 2022. 2

[23] Hubert Leterme, Kévin Polisano, Valérie Perrier, and Kar-
teek Alahari. On the Shift Invariance of Max Pooling Feature
Maps in Convolutional Neural Networks. arXiv:2209.11740,
Sept. 2022. 2, 4, 12, 14

[24] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Net-
work. arXiv:1312.4400 [cs], 2014. 4

[25] Jun Liu and Jieping Ye. Efficient L1/Lq Norm Regulariza-
tion. arXiv:1009.4766, Sept. 2010. 12

[26] Edouard Oyallon, Eugene Belilovsky, and Sergey
Zagoruyko. Scaling the Scattering Transform: Deep
Hybrid Networks. In Proc. IEEE International Conference
on Computer Vision, pages 5618–5627, 2017. 2, 9

[27] Edouard Oyallon and Stéphane Mallat. Deep Roto-
Translation Scattering for Object Classification. In Proc.
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2865–2873, 2015. 2

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. Oct. 2017. 7

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision,
115(3):211–252, Apr. 2015. 7

[30] Ivan W. Selesnick, Richard Baraniuk, and Nick Kingsbury.
The dual-tree complex wavelet transform. IEEE Signal Pro-
cessing Magazine, 22(6):123–151, Nov. 2005. 11

[31] Amarjot Singh and Nick Kingsbury. Dual-Tree wavelet scat-
tering network with parametric log transformation for object
classification. In ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings,
2017. 2

[32] Antonio Torralba and Aude Oliva. Statistics of natural im-
age categories. Network: Computation in Neural Systems,
14(3):391–412, Jan. 2003. 12

[33] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy
Serdyuk, Sandeep Subramanian, João Felipe Santos,
Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and
Christopher J. Pal. Deep Complex Networks. In Interna-
tional Conference on Learning Representations, Feb. 2018.
2

[34] Mark Tygert, Joan Bruna, Soumith Chintala, Yann LeCun,
Serkan Piantino, and Arthur Szlam. A Mathematical Moti-
vation for Complex-Valued Convolutional Networks. Neural
Computation, 28(5):815–825, May 2016. 2

[35] Thomas Wiatowski and Helmut Bölcskei. A Mathematical
Theory of Deep Convolutional Neural Networks for Fea-
ture Extraction. IEEE Transactions on Information Theory,
64(3):1845–1866, Mar. 2018. 1

[36] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. CvT: Introducing
Convolutions to Vision Transformers. In Proc. IEEE/CVF
International Conference on Computer Vision, pages 22–31,
2021. 9

[37] Jin Xu, Hyunjik Kim, Thomas Rainforth, and Yee Teh.
Group Equivariant Subsampling. In Advances in Neural
Information Processing Systems, volume 34, pages 5934–
5946, 2021. 2

[38] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? In
Advances in Neural Information Processing Systems, pages
3320–3328, 2014. 2, 3

[39] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Feng-
wei Yu, and Wei Wu. Incorporating Convolution Designs
Into Visual Transformers. In Proc. IEEE/CVF International
Conference on Computer Vision, pages 579–588, 2021. 9

[40] John Zarka, Louis Thiry, Tomás Angles, and Stéphane Mal-
lat. Deep Network Classification by Scattering and Homo-
topy Dictionary Learning. In International Conference on
Learning Representations, 2020. 2

[41] Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In Lecture Notes in Com-
puter Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2014. 1

[42] Richard Zhang. Making Convolutional Networks Shift-
Invariant Again. In International Conference on Machine
Learning, pages 7324–7334. PMLR, May 2019. 1, 2, 4, 6, 7,
8, 9, 13, 15, 18

[43] Zhimian Zhang, Haipeng Wang, Feng Xu, and Ya-Qiu
Jin. Complex-Valued Convolutional Neural Network and
Its Application in Polarimetric SAR Image Classification.
IEEE Transactions on Geoscience and Remote Sensing,
55(12):7177–7188, Dec. 2017. 2

[44] Dongmian Zou and Gilad Lerman. Graph convolutional neu-
ral networks via scattering. Applied and Computational Har-
monic Analysis, 49(3):1046–1074, Nov. 2020. 2

[45] Xueyan Zou, Fanyi Xiao, Zhiding Yu, Yuheng Li, and
Yong Jae Lee. Delving Deeper into Anti-Aliasing in Con-
vNets. International Journal of Computer Vision, 131(1):67–
81, Jan. 2023. 1, 2, 4, 9, 13, 18

A. Design of WCNNs: Technical Details
In this section, we provide complements to the de-

scription of the mathematical twin (WCNN) introduced in
Sec. 2.3. We explained that, for each Gabor channel l ∈ G,
the average kernel Ṽl is the real part of a DT-CWPT fil-
ter, as described in (18). We now explain how the filter
selection is done; in other words, how k′ is chosen among{
1 . . 4× 4J

}
. Since input images are real-valued, we re-

strict to the filters with bandwidth located in the half-plane
of positive x-values. For the sake of concision, we denote
by Kdt := 2× 4J the number of such filters.

For any RGB image X ∈ S3, a luminance image Xlum ∈
S is computed following (17), using a 1 × 1 convolution
layer. Then, DT-CWPT is performed on Xlum. We denote

by D := (Dk)k∈{1..Kdt} the tensor containing the real part
of the DT-CWPT feature maps:

Dk =
(
Xlum ⋆ ReW

(J)
k

)
↓ 2J−1. (23)

For the sake of computational efficiency, DT-CWPT is per-
formed with a succession of subsampled separable con-
volutions and linear combinations of real-valued wavelet
packet feature maps [30]. To match the subsampling factor
m := 2J−1 of the standard model, the last decomposition
stage is performed without subsampling.

Filter Selection. The number of dual-tree feature maps
Kdt may be greater than the number of Gabor channels
Lgabor. In that case, we therefore want to select filters that
contribute the most to the network’s predictive power. First,
the low-frequency feature maps D0 and D(4J+1) are dis-
carded. Then, a subset of K ′

dt < Kdt feature maps is man-
ually selected and permuted in order to form clusters in the
Fourier domain. Considering a (truncated) permutation ma-
trix Σ ∈ RK′

dt×Kdt , the output of this transformation, de-
noted by D′ ∈ SK′

dt , is defined by:

D′ := ΣD. (24)

The feature maps D′ are then sliced into Q groups of chan-
nels D(q) ∈ SKq , each of them corresponding to a clus-
ter of band-pass dual-tree filters with neighboring frequen-
cies and orientations. On the other hand, the output of the
wavelet block, Ygabor := (Yl)l∈{Lfree+1..L} ∈ SLgabor ,
where Yl has been introduced in (6), is also sliced into Q
groups of channels Y(q) ∈ SLq . Then, for each group
q ∈ {1 . . Q}, an affine mapping between D(q) and Y(q)

is performed. It is characterized by a trainable matrix
A(q) :=

(
α

(q)
1 , · · · , α(q)

Lq

)⊤ ∈ RLq×Kq such that, for any
l ∈ {1 . . Lq},

Y
(q)
l := α

(q)⊤
l ·D(q). (25)

As in the color mixing stage, this operation is implemented
as a 1× 1 convolution layer.

A schematic representation of the real- and complex-
valued wavelet blocks can be found in Fig. 7.

Sparse Regularization. For any group q ∈ {1 . . Q} and
output channel l ∈ {1 . . Lq}, we want the model to se-
lect one and only one wavelet packet feature map within
the q-th group. In other words, each row vector α

(q)
l :=(

α
(q)
l, 1, · · · , α

(q)
l,Kq

)⊤
of A(q) contains no more than one

nonzero element, such that (25) becomes

Y
(q)
l = α

(q)
lk D

(q)
k (26)

Figure 7. Detail of a wavelet block with J = 3 as in AlexNet, in its
RMax (left) and CMod (right) versions. DT-RWPT corresponds
to the real part of DT-CWPT.

for some (unknown) value of k ∈ {1 . .Kq}. To enforce
this property during training, we add a mixed-norm l1/l∞-
regularizer [25] to the loss function to penalize non-sparse
feature map mixing as follows:

L := L0 +

Q∑
q=1

λq

Lq∑
l=1

(∥∥α(q)
l

∥∥
1∥∥α(q)

l

∥∥
∞

− 1

)
, (27)

where L0 denotes the standard cross-entropy loss and λ ∈
RQ denotes a vector of regularization hyperparameters.
Note that the unit bias in (27) serves for interpretability of
the regularized loss (L = L0 in the desired configuration)
but has no impact on training.

B. Batch Normalization in ResNet

This section complements Sec. 2.5 in the main paper. In
many recent architectures including ResNet, the bias (see
Fig. 3) is replaced by an affine batch normalization layer
(BN). In this section, we show how to adapt our approach
to this context.

A BN layer is parameterized by trainable weight and bias
vectors, respectively denoted by a and b ∈ RL. In the re-
maining of the section, we consider input images X as a
stack of discrete stochastic processes. Then, expression (7)
is replaced by

Al :=MaxPool

{
ReLU

(
al ·

Yl−Em[Yl]√
Vm[Yl]+ε

+bl

)}
, (28)

with Yl satisfying (6) (output of the first convolution layer).
In the above expression, we have introduced Em(Yl) ∈ R
and Vm(Yl) ∈ R+, which respectively denote the mean ex-
pected value and variance of Yl[n], for indices n contained
in the support of Yl, denoted by supp(Yl). Let us denote
by N ∈ N\{0} the support size of input images. Therefore,
if the filter’s support size Nfilt is much smaller that N , then
supp(Yl) is roughly of size N/m. We thus define the above

quantities as follows:

Em[Yl] :=
m2

N2

∑
n∈Z2

E[Yl[n]]; (29)

Vm[Yl] :=
m2

N2

∑
n∈Z2

V[Yl[n]]. (30)

In practice, estimators are computed over a minibatch of
images, hence the layer’s denomination. Besides, ε > 0 is a
small constant added to the denominator for numerical sta-
bility. For the sake of concision, we now assume that a = 1.
Extensions to other multiplicative factors is straightforward.

Let l ∈ G denote a Gabor channel. Then, recall that Yl

satisfies (19) (output of the WBlock), with

Ṽl := Re W̃l, (31)

where W̃l denotes one of the Gabor-like filters spawned by
DT-CWPT. The following proposition states that, if the ker-
nel’s bandwidth is small enough, then the output of the con-
volution layer sums to zero.

Proposition 1. We assume that the Fourier transform of W̃l

is supported in a region of size κ×κ which does not contain
the origin (Gabor-like filter). If, moreover, κ ≤ 2π

m , then∑
n∈Z2

Yl[n] = 0. (32)

Proof. This proposition takes advantage of Shannon’s sam-
pling theorem. A similar reasoning can be found in the
proof of Theorem 1 in [23].

In practice, the power spectrum of DT-CWPT filters
cannot be exactly zero on regions with nonzero measure,
since they are finitely supported. However, we can reason-
ably assume that it is concentrated within a region of size
π/2J−1 = π/m, as explained in [23]. Therefore, since we
have discarded low-pass filters, the conditions of Prop. 1 are
approximately met for W̃l.

We now assume that (32) is satisfied. Moreover, we
assume that E[Yl[n]] is constant for any n ∈ supp(Yl).
Aside from boundary effects, this is true if E[Xlum[n]] is
constant for any n ∈ supp(Xlum).7 We then get, for any
n ∈ Z2, E[Yl[n]] = 0. Therefore, interchanging max pool-
ing and ReLU yields the normalized version of (10):

Amax
l = ReLU

(
Ymax

l√
Em[Y2

l] + ε
+ bl

)
. (33)

7This property is a rough approximation for images of natural scenes
or man-made objects. In practice, the main subject is generally located at
the center, the sky at the top, etc. These are sources of variability for color
and luminance distributions across images, as discussed by Torralba and
Oliva [32].

(a) ResNet (b) WResNet (baseline) (c) CWResNet (proposed approach)

Figure 8. First layers of ResNet and its variants, corresponding to a convolution layer followed by ReLU and max pooling. The models
are framed according to the same colors and line styles as in Fig. 10. The bias module from Fig. 3 has been replaced by an affine batch
normalization layer (“BN + Bias”, or “BN0 + Bias” when placed after Modulus—see Appendix B). Top: ResNet without blur pooling.
Middle: Zhang’s “blurpooled” models [42]. Bottom: Zou et al.’s approach, using adaptive blur pooling [45].

As in Sec. 2.2, we replace Ymax
l by Ymod

l for any Gabor
channel l ∈ G, which yields the normalized version of (12):

Amod
l := ReLU

(
Ymod

l√
Em[Y2

l] + ε
+ bl

)
. (34)

Implementing (34) as a deep learning architecture is
cumbersome because Yl needs to be explicitly computed
and kept in memory, in addition to Ymod

l . Instead, we want

to express the second-order moment Em[Y2
l] (in the denom-

inator) as a function of Ymod
l . To this end, we state the

following proposition.

Proposition 2. If we restrict the conditions of Prop. 1 to
κ ≤ π/m, we have

∥Yl∥22 = 2
∥∥Ymod

l

∥∥2
2
. (35)

Proof. This result, once again, takes advantage of Shan-
non’s sampling theorem. The proof of our Proposition 3
in [23] is based on similar arguments.

As for Prop. 1, the conditions of Prop. 2 are approxi-
mately met. We therefore assume that (35) is satisfied, and
(34) becomes

Amod
l := ReLU

 Ymod
l√

1
2E2m[Ymod

l

2
] + ε

+ bl

 . (36)

In the case of ResNet, the bias layer (Bias) is therefore pre-
ceded by a batch normalization layer without mean center-
ing satisfying (36), which we call BN0. The second-order
moment of Ymod

l is computed on feature maps which are
twice smaller than Yl in both directions—hence the index
“2m” in (36), which is the subsampling factor for the CMod
operator.

Schematic representations of RMax- and CMod-based
CWResNet are provided in Fig. 8.

C. Experimental Settings
In this section, we provide further information that com-

plements the experimental details presented in Sec. 3.1
and Tab. 1.

As explained in Sec. 2.3, the decomposition depth J is
chosen such that m = 2J−1 (subsampling factor). Since
m = 4 in AlexNet and 2 in ResNet, we get J = 3 and
2, respectively. Therefore, the number of dual-tree filters
Kdt := 2× 4J is equal to 128 and 32, respectively.

We then manually selected K ′
dt < Kdt filters. In par-

ticular, we removed the two low-pass filters, which are
outside the scope of our theoretical study. Besides, for
computational reasons, in WAlexNet we removed 32 “ex-
tremely” high-frequency filters which are clearly absent
from the standard model (see Fig. 9a). Finally, in WRes-
Net we removed the 14 filters whose bandwidths outreach
the boundaries of the Fourier domain [−π, π]

2 (see Fig. 9b).
These filters indeed have a poorly-defined orientation, since
a small fraction of their energy is located at the far end of
the Fourier domain [2, see Fig. 1, “Proposed DT-CWPT”].
Therefore, they somewhat exhibit a checkerboard pattern.8

As explained in Appendix A, once the DT-CWPT feature
maps have been manually selected, the output D′ ∈ SK′

dt

is sliced into Q groups of channels D(q) ∈ SKq . For each
group q, a depthwise linear mapping from D(q) to a bunch
of output channels Y(q) ∈ SLq is performed. Finally, the
wavelet block’s output feature maps Ygabor ∈ SLgabor are
obtained by concatenating the outputs Y(q) depthwise, for

8Note that the same procedure could have been applied to WAlexNet,
but it was deemed unnecessary because the boundary filters were sponta-
neously discarded during training.

(a) WAlexNet (J = 3)

(b) WResNet (J = 2)

Figure 9. Mapping scheme from DT-CWPT feature maps D ∈
SKdt to the wavelet block’s output Ygabor ∈ SLgabor . Each
wavelet feature map is symbolized by a small square in the Fourier
domain, where its energy is mainly located. The gray areas show
the feature maps which have been manually removed. Elsewhere,
each group of feature maps D(q) ∈ SKq is symbolized by a
dark frame—in (b), Kq is always equal to 1. For each group
q ∈ {1 . . Q}, a number indicates how many output channels Lq

are assigned to it. The colored numbers in (a) refer to groups on
which we have applied l∞/l1-regularization. Note that, when in-
puts are real-valued, only the half-plane of positive x-values is
considered.

any q ∈ {1 . . Q}. Figure 9 shows how the above grouping
is made, and how many output channels Lq each group q is
assigned to.

During training, the above process aims at selecting one
single DT-CWPT feature map among each group. This is
achieved through mixed-norm l∞/l1 regularization, as in-
troduced in (27). The regularization hyperparameters λq

have been chosen empirically. If they are too small, then
regularization will not be effective. On the contrary, if they

Model Filt. frequency Reg. param.

WAlexNet
[π/8, π/4[–
[π/4, π/2[4.1 · 10−3

[π/2, π[3.2 · 10−4

WResNet any –

Table 5. Regularization hyperparameters λq for each group q of
DT-CWPT feature maps. The groups with only one feature map do
not need any regularization since this feature map is automatically
selected. The second and third rows of WAlexNet correspond to
the blue and magenta groups in Fig. 9a, respectively.

are too large, then the regularization term will become pre-
dominant, forcing the trainable parameter vector α

(q)
l to

randomly collapse to 0 except for one element. The cho-
sen values of λq are displayed in Tab. 5.

Finally, the split Lfree-Lgabor between the freely-trained
and Gabor channels, provided in the last row of Tab. 1 (main
document), have been empirically determined from the
standard models. More specifically, considering standard
AlexNet and ResNet-34 trained on ImageNet (see Fig. 12),
we determined the characteristics of each convolution ker-
nel: frequency, orientation, and coherence index (which in-
dicates whether an orientation is clearly defined). This was
done by computing the tensor structure [16]. Then, by ap-
plying proper thresholds, we isolated the Gabor-like kernels
from the others, yielding the approximate values of Lfree

and Lgabor. Furthermore, this procedure allowed us to draw
a rough estimate of the distribution of the Gabor-like filters
in the Fourier domain, which was helpful to design the map-
ping scheme shown in Fig. 9.

D. Additional Figures and Tables

D.1. Validation Error Along Training

As for AlexNet in Fig. 4, Top-1 validation curves of
ResNet-based models along training with ImageNet and
CIFAR-10 are plotted in Fig. 10. In many cases, accu-
racy increases when applying our CMod-based antialias-
ing method (dashed versus solid lines). However, in some
cases, the gain on the validation set (a subset of images
put aside from the training set) is marginal, for instance
BlurWResNet-34 versus CBlurWResNet-34 trained on Im-
ageNet (Fig. 10a, red stars), or non-existent, for instance
WResNet-18 versus CWResNet-18 trained on CIFAR-10
(Fig. 10b, blue diamonds). Yet, notable gains are observed
on the evaluation set (a separate dataset provided by Ima-
geNet or CIFAR), as reported in Tabs. 2 and 3. This in-
dicates a better generalization capability of our approach,
compared to the static blur pooling-based method, or no an-
tialiasing. In particular, for ImageNet classification (Tab. 2,
bottom), simply replacing the blurpooled Gabor channels in

Model One-crop Ten-crops Shifts
top-1 top-5 top-1 top-5 mFR

WCNN♦ 27.4 9.2 24.7 7.6 77.2
BlurWCNN† 26.7 8.6 24.1 7.3 65.2

CBlurWCNN†∗ 26.5 8.4 23.7 7.0 62.5
→ BlurWCNN†♢ 26.8 8.6 24.3 7.1 69.7

ABlurWCNN‡ 26.0 8.2 23.6 6.9 62.1
CABlurWCNN‡∗ 26.1 8.2 23.7 7.0 63.1

→ ABlurWCNN†♢ 26.4 8.4 23.9 7.0 70.3

Table 6. Ablation study on WResNet. Evaluation metrics on Ima-
geNet (%): the lower the better. Models: †static and ‡adaptive blur
pooling; ∗CMod-based antialiasing on the Gabor channels (our
approach); ♢ablated model: no antialiasing on the Gabor channels
(neither blur pooling nor CMod); ♦no antialiasing anywhere.

the first layer with our CMod-based approach (BlurWCNN
versus CBlurWCNN) produces improvements on a similar
order of magnitude as adaptive blur pooling, which is ap-
plied throughout the whole network (ABlurWCNN).

D.2. Accuracy vs Consistency

Figure 11 shows the relationship between consistency
and prediction accuracy of AlexNet and ResNet-based mod-
els on ImageNet, for different filter sizes ranging from 1
(no blur pooling) to 7 (heavy loss of high-frequency in-
formation). The data for AlexNet on the validation set are
displayed in the main document, Fig. 6. As recommended
by Zhang [42], the optimal trade-off is generally achieved
when the blurring filter size is equal to 3. Moreover, in ei-
ther case, at equivalent level of consistency, replacing blur
pooling by our CMod-based antialiasing approach in the
Gabor channels increases accuracy.

D.3. Ablation Study

In Sec. 3.3, we showed that our models outperform the
baselines, except when adaptive blur pooling is used as an
antialiasing method. In that case, although applying our
CMod-based approach on the Gabor channels instead of
adaptive blur pooling leads to slightly degraded accuracy,
it comes with far less computational resources and memory
footprint, as shown in Tab. 4. However, one may wonder:
what happens if we do not employ any antialiasing on the
Gabor channels (and keep on using blur pooling in the rest
of the network)? Do we reach similar accuracy as well?
To answer this question, we trained such ablated models, in
both static and adaptive blur-pooling situations.

We found that removing antialiasing from the Gabor
channels (either blur pooling or CMod) generally leads to
decreased accuracy and consistency, as shown in Tab. 6.
However, when using adaptive blur pooling, the primary
improvements in performance come from other parts of the
network—as evidenced when comparing the first and last
rows. This limits the influence of antialiasing on the Ga-
bor channels. Yet, although adaptive blur pooling yields the

(a) ResNet-34, trained on ImageNet-1K

(b) ResNet-18, trained on CIFAR-10

(c) ResNet-34, trained on CIFAR-10

Figure 10. Evolution of the top-1 validation error (one-crop)
along training, for ResNet-based models, as described in Fig. 8.
The freely-trained models, upon which the mathematical twins are
built, appear in faint gray. Legend: †static and ‡adaptive blur pool-
ing; ∗CMod-based antialiasing (our approach).

most important gains in performance, it comes at a substan-
tial increase in computational resources due to the need for

(a) AlexNet, test set (50K images)

(b) ResNet-34, validation set (100K images)

(c) ResNet-34, test set (50K images)

Figure 11. Classification accuracy (ten-crops) vs consistency,
measuring the stability of predictions to small input shifts (the
lower the better for both axes). The metrics have been com-
puted on ImageNet-1K, on both validation set (100K images set
aside from the training set) and test set (50K images provided as
a separate dataset). For each model (BlurCNN, BlurWCNN and
CBlurWCNN), we increased the blurring filter size from 1 (i.e., no
blur pooling) to 7. The blue diamonds (no blur pooling) and red
stars (blur pooling with filters of size 3) correspond to the models
from Fig. 4 for AlexNet and Fig. 10a for ResNet (models trained
after 90 epochs).

multiple such antialiasing layers throughout the network.

E. Kernel Visualization (Standard Models)
The convolution kernels V := (Vlk)l∈{1..64}, k∈{1..3} ∈

S64×3 satisfying (11) are shown in Fig. 12 for freely-trained
AlexNet and ResNet-34 trained on ImageNet. The ker-
nels are shown as RGB color images. When comparing

ts = 1.0 (addition)

tp = 1.0 (multiplication)

te = 0.75 (exponential)

tmod = 3.5 (modulus)

trelu = 0.75 (ReLU)

tmax = 12.0 (max pooling)

Table 7. Computation time per operation, determined experimen-
tally using PyTorch (CPU computations). They have been normal-
ized with respect to the computation time of an addition.

them with WCNN kernels in Fig. 2, we can notice that,
up to a few exceptions, the freely-trained channels (4 and
5 first rows for AlexNet and ResNet, respectively) have
been specialized to lower-frequency filters (mono- or bi-
color blobs).

F. Computational Cost
This section provides technical details about our estima-

tion of the computational cost (FLOPs), such as reported in
Tab. 4, for one input image and one Gabor channel. This
metric was estimated in the case of standard 2D convolu-
tions.

F.1. Average Computation Time per Operation

The estimated computation time for each type of opera-
tion has been reported in Tab. 7.

F.2. Computational Cost per Layer

In the following paragraphs, L ∈ N \ {0} denotes the
number of output channels (depth) and N ′ ∈ N \ {0} de-
notes the size of output feature maps (height and width).
However, note that N ′ is not necessary the same for all lay-
ers. For instance, in standard ResNet, the output of the first
convolution layer is of size N ′ = 112, whereas the output
of the subsequent max pooling layer is of size N ′ = 56.
For each type of layer, we calculate the number of FLOPs
required to produce a single output channel l ∈ {1 . . L}.
Moreover, we assume, without loss of generality, that the
model processes one input image at a time.

Convolution Layers. Inputs of size (K ×N ×N) (input
channels, height and width); outputs of size (L×N ′×N ′).
For each output unit, a convolution layer with kernels of size
(Nfilt×Nfilt) requires KN2

filt multiplications and KN2
filt−

1 additions. Therefore, the computational cost per output
channel is equal to

Tconv = N ′2 ((KN2
filt − 1) · ts +KN2

filt · tp
)
. (37)

Complex Convolution Layers. Inputs of size (K ×N ×
N); complex-valued outputs of size (L × N ′ × N ′). For
each output unit, a complex-valued convolution layer re-
quires 2 × KN2

filt multiplications and 2 × (KN2
filt − 1)

additions. Computational cost per output channel:

TC conv = 2N ′2 ((KN2
filt − 1) · ts +KN2

filt · tp
)
. (38)

Note that, in our implementations, the complex-valued con-
volution layers are less expensive than the real-valued ones,
because the output size N ′ is twice smaller, due to the larger
subsampling factor.

Bias and ReLU. Inputs and outputs of size (L×N ′×N ′).
One evaluation for each output unit:

Tbias = N ′2 ts and Trelu = N ′2 trelu. (39)

Max Pooling. Outputs of size (L×N ′×N ′), with N ′ de-
pending on whether subsampling is performed at this stage
(no subsampling when followed by a blur pooling layer).
One evaluation for each output unit:

Tmax = N ′2 tmax. (40)

Modulus Pooling. Complex-valued inputs and real-
valued outputs of size (L × N ′ × N ′). One evaluation for
each output unit:

Tmod = N ′2 tmod. (41)

Batch Normalization. Inputs and outputs of size (L ×
N ′ × N ′). A batch normalization (BN) layer, described in
(28), can be split into several stages.

1. Mean: N ′2 additions.

2. Standard deviation: N ′2 multiplications, N ′2 ad-
ditions (second moment), N ′2 additions (subtract
squared mean).

3. Final value: N ′2 additions (subtract mean), 2N ′2 mul-
tiplications (divide by standard deviation and multi-
plicative coefficient).

Overall, the computational cost per image and output chan-
nel of a BN layer is equal to

Tbn = N ′2 (4 ts + 3 tp) . (42)

(a) AlexNet

(b) ResNet

Figure 12. Convolution kernels in the first layer of freely-trained AlexNet (a) and ResNet-34 (b), after training with ImageNet-1K. For
each output channel l ∈ {1 . . 64}, the corresponding convolution kernel (Vlk)k∈{1..3} is displayed as an RGB image in the spatial domain
(left), and its associated magnitude spectrum in the Fourier domain (right).

Static Blur Pooling. Inputs of size (L×2N ′×2N ′); out-
puts of size (L×N ′×N ′). For each output unit, a static blur
pooling layer [42] with filters of size (Nb×Nb) requires N2

b

multiplications and N2
b − 1 additions. The computational

cost per output channel is therfore equal to

Tblur = N ′2 ((N2
b − 1) · ts +N2

b · tp
)
. (43)

Adaptive Blur Pooling. Inputs of size (L× 2N ′ × 2N ′);
outputs of size (L × N ′ × N ′). An adaptive blur pooling
layer [45] with filters of size (Nb ×Nb) splits the L output
channels into Q := L/Lg groups of Lg channels that share
the same blurring filters. The adaptive blur pooling layer
can be decomposed into the following stages.

1. Generation of blurring filters using a convolution layer
with trainable kernels of size (Nb×Nb): inputs of size

(L× 2N ′ × 2N ′), outputs of size (QN2
b ×N ′ ×N ′).

For each output unit, this stage requires LN2
b multi-

plications and LN2
b − 1 additions. The computational

cost divided by the number L of channels is therefore
equal to

Tconv ablur = N ′2 N2
b

Lg
×(

(LN2
b − 1) · ts + LN2

b · tp
)
. (44)

Note that, despite being expressed on a per-channel ba-
sis, the above computational cost depends on the num-
ber L of output channels. This is due to the asymptotic
complexity of this stage in O(L2).

2. Batch normalization, inputs and outputs of size

(QN2
b ×N ′ ×N ′):

Tbn ablur = N ′2 N2
b

Lg
(4 ts + 3 tp) . (45)

3. Softmax along the depthwise dimension:

Tsftmx ablur = N ′2 N2
b

Lg
(te + ts + tp). (46)

4. Blur pooling of input feature maps, using the filter gen-
erated at stages (1)–(3): inputs of size (L×2N ′×2N ′),
outputs of size (L×N ′×N ′). The computational cost
per output channel is identical to the static blur pooling
layer, even though the weights may vary across chan-
nels and spatial locations:

Tblur = N ′2 ((N2
b − 1) · ts +N2

b · tp
)
. (47)

Overall, the computational cost of an adaptive blur pooling
layer per input image and output channel is equal to

Tablur = N ′2 N2
b

Lg

[(
(L+ 1)N2

b + 3
)
· ts

+
(
(L+ 1)N2

b + 4
)
· tp + te

]
. (48)

We notice that an adaptive blur pooling layer has an asymp-
totic complexity in O(N4

b), versus O(N2
b) for static blur

pooling.

F.3. Application to AlexNet- and ResNet-based
Models

Since they are normalized by the computational cost of
standard models, the FLOPs reported in Tab. 4 only depend
on the size of the convolution kernels and blur pooling fil-
ters, respectively denoted by Nfilt and Nb ∈ N \ {0}. In
addition, the computational cost of the adaptive blur pool-
ing layer depend on the number of output channels L as well
as the number of output channels per group Lg.

In practice, Nfilt is respectively equal to 11 and 7 for
AlexNet- and ResNet-based models. Moreover, Nb = 3,
L = 64 and Lg = 8. Actually, the computational cost
is largely determined by the convolution layers, including
step (1) of adaptive blur pooling.

G. Memory Footprint
This section provides technical details about our estima-

tion of the memory footprint for one input image and one
output channel, such as reported in Tab. 4. This metric is
generally difficult to estimate, and is very implementation-
dependent. Hereafter, we consider the size of the output
tensors, as well as intermediate tensors saved by torch.
autograd for the backward pass. However, we didn’t take

into account the tensors containing the trainable parameters.
To get the size of intermediate tensors, we used the Python
package PyTorchViz.9 These tensors are saved according to
the following rules.

• Convolution (Conv), batch normalization (BN), Bias,
max pooling (MaxPool or Max), blur pooling (Blur-
Pool), and Modulus: the input tensors are saved, not
the output. When Bias follows Conv or BN, no inter-
mediate tensor is saved.

• ReLU, Softmax: the output tensors are saved, not the
input.

• If an intermediate tensor is saved at both the output of
a layer and the input of the next layer, its memory is
not duplicated. An exception is Modulus, which stores
the input feature maps as complex numbers.

• MaxPool or Max: a tensor of indices is kept in mem-
ory, indicating the position of the maximum values.
The tensors are stored as 64-bit integers, so they
weight twice as much as conventional float-32 tensors.

• BN: four 1D tensors of length L are kept in memory:
computed mean and variance, and running mean and
variance. For BN0 (see Appendix B), where variance
is not computed, only two tensors are kept in memory.

In the following paragraphs, we denote by L the number
of output channels, N the size of input images (height and
width), m the subsampling factor of the baseline models (4
for AlexNet, 2 for ResNet), Nb the blurring filter size (set
to 3 in practice). For each model, a table contains the size
of all saved intermediate or output tensors. For example,
the values associated to “Layer1 → Layer2” correspond to
the depth (number of channel), height and width of the in-
termediate tensor between Layer1 and Layer2.

G.1. AlexNet-based Models

No Antialiasing. Conv → Bias → ReLU → MaxPool.

ReLU → MaxPool L N
m

N
m

MaxPool → output L N
2m

N
2m

MaxPool indices (×2) L N
2m

N
2m

Then, the memory footprint for each output channel is equal
to

=⇒ Sstd =
7

4

N2

m2
.

9https://github.com/szagoruyko/pytorchviz

https://github.com/szagoruyko/pytorchviz

Static Blur Pooling. Conv → Bias → ReLU →
BlurPool → Max → BlurPool.

ReLU → BlurPool L 2N
m

2N
m

BlurPool → Max L N
m

N
m

Max → BlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

BlurPool → output L N
2m

N
2m

=⇒ Sblur =
33

4

N2

m2
.

CMod-based Approach. CConv → Modulus →
Bias → ReLU.

CConv → Modulus 2L N
2m

N
2m

Modulus → Bias L N
2m

N
2m

ReLU → output L N
2m

N
2m

=⇒ Smod =
N2

m2
.

G.2. ResNet-based Models

No Antialiasing. Conv → BN → Bias → ReLU →
MaxPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → MaxPool L N
m

N
m

MaxPool → output L N
2m

N
2m

MaxPool indices (×2) L N
2m

N
2m

=⇒ Sstd =
11

4

N2

m2
+ 4 ≈ 11

4

N2

m2
.

Static Blur Pooling. Conv → BN → Bias → ReLU →
Max → BlurPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → Max L N
m

N
m

Max → BlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

BlurPool → output L N
2m

N
2m

=⇒ Sblur =
21

4

N2

m2
+ 4 ≈ 21

4

N2

m2
.

Adaptive Blur Pooling. Conv → BN → Bias →
ReLU → Max → ABlurPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → Max L N
m

N
m

Max → ABlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

ABlurPool → output L N
2m

N
2m

Generate adaptive blurring filter

Conv → BN → Bias → Softmax

Conv → BN LN2
b

Lg

N
2m

N
2m

BN metrics 4
LN2

b
Lg

– –

Softmax → output LN2
b

Lg

N
2m

N
2m

=⇒ Sablur =
21

4

N2

m2
+ 4 +

N2
b

Lg

(
N2

2m2
+ 4

)
≈ 21

4

N2

m2
+

N2
b

Lg

N2

2m2
.

CMod-based Approach. CConv → Modulus →
BN0 → Bias → ReLU.

CConv → Modulus 2L N
2m

N
2m

Modulus → BN0 L N
2m

N
2m

BN0 metrics 2L – –

ReLU → output L N
2m

N
2m

=⇒ Smod =
N2

m2
+ 2 ≈ N2

m2
.

	. Introduction
	. Proposed Approach
	. Standard Architectures
	. Antialiasing Principle
	. Wavelet-Based Twin Models (WCNNs)
	. WCNNs with Blur Pooling
	. Adaptation to ResNet: Batch Normalization

	. Experiments
	. Experiment Details
	. Evaluation Metrics
	. Results and Discussion

	. Conclusion
	. Design of WCNNs: Technical Details
	. Batch Normalization in ResNet
	. Experimental Settings
	. Additional Figures and Tables
	. Validation Error Along Training
	. Accuracy vs Consistency
	. Ablation Study

	. Kernel Visualization (Standard Models)
	. Computational Cost
	. Average Computation Time per Operation
	. Computational Cost per Layer
	. Application to AlexNet- and ResNet-based Models

	. Memory Footprint
	. AlexNet-based Models
	. ResNet-based Models

