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Abstract

The fourth industrial revolution brings new technological innovations and amplifies the importance of some existing technologies such as Artificial
Intelligence (AI), Internet of Things (IoT), and Blockchain. The Digital Twin (DT) has emerged as one of the most prominent technologies of this
era and has caught the attention of the industry, academia, and governments. However, the realisation of the full potential of DT is challenged by
the lack of standard terminologies and practices, amongst others. This is reflected in the state-of-the-art in DT architectures, which indicates that
there is no widely accepted DT framework. Literature on DT architecture is dominated by application- and/or technology-specific architectures
with components and connectors, that not only vary extensively but are named differently. The use of different terminologies for components could
hinder the ability to identify commonality in frameworks and makes it difficult for novices to find guidance. Also, literature does not clarify on
the connection between the requirements and the components of a DT architecture. To address these problems, this paper proposes a requirement-
driven, technology-agnostic DT architecture that consists of standard components that can be traceable to the definitions, requirements, and
mandatory functionalities of DT captured in existing literature. The architecture can be applied to various fields and uses cases, based on their
respective needs. The paper aims at providing guidance for developing digital twin architectures for a flexible spectrum of applications.
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1. Introduction

Although there are several definitions of Digital Twin (DT)
in literature [10, 29, 14, 33], none has been officially endorsed.
This study will adopt the definition of DT by van der Valk et
al. [36]. The authors note that “DT is a virtual construct that
represents a physical counterpart, integrates several data in-
puts with the aim of data handling, data storing, and data pro-
cessing, and provides an automatic, bi-directional data linkage
between the virtual world and the physical one. Synchroniza-
tion is crucial to the Digital Twin to display any changes in the
state of the physical object. Additionally, a Digital Twin must
comply with data governance rules and must provide interoper-
ability with other systems”. This definition encapsulates most
of the ‘mandatory’ characteristics of DT (such as synchroniza-
tion, di-directional communication, control, anomaly detection
and diagnostic, optimization, etc.).

In a nut shell, a DT acquires data from its real-world entity
and manipulates the data to provide services, which have the

potential of improving its real-world counterpart, as well as it-
self. In order to improve or effectively reflect the behaviour of
the physical entity, a DT should have the capability to automate
data acquisition [6], and this should be a fundamental element
of a DT architecture [35]. However, there is also an emerging
case for semi-manual data acquisition, which is a mixture of
automatic and manual data acquisitions ([36], especially given
that DT must allow for multiple data sources, including offline
data sources (e.g. databases, stored data, external data, mainte-
nance logs, etc.). Lack of a generic practical approach for im-
plementing data acquisition has been identified as one of the
major challenges of realising DT and a source of cost increase
in DT development; this stems from the absence of guidance on
the approaches of developing DT architectures [6].

To address the aforementioned gap, this paper proposes a
requirement-driven DT architecture that consists of standard
components that can be traceable to the definitions, require-
ments, and mandatory functionalities of DT from the existing
literature. The rest of the paper is structured as follows: Related
literature is presented in Section 2. Section 3 presents the pro-
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posed architecture. Discussion on aligning DT requirements to
DT architectural components is covered in Section 4. The con-
clusion and further work follow in Section 5.

2. State of the Art

Developing and using DT would be difficult without stan-
dardization or a uniform description. Hence, agreeing on DT
components and data analysis techniques is paramount to ad-
vancing DT technology [25]. Steindl et al. [32] note that the
application of DTs to various domains and at different stages in
the lifecycle of real-world entities is testament to lack of clear
definition of the capabilities and concepts of DT. The authors
argue that this results in case study-driven, varying interpreta-
tions of DT and lack of architectural template.

2.1. Existing Architectures

Lee, Bagheri, and Kao [15] develop 5C, a cyber physical sys-
tem architecture for Industry 4.0-based manufacturing system,
provides plug and play smart connection, offers smart analyt-
ics for subsystem health, enables DT models for components
and machines, support decision-making using cognition, and
achieves resilience using self-configuration.

Alam and El Saddik [1] work on a DT architecture called
C2PS (cloud-based cyber-physical systems), extends 5C archi-
tecture by employing cloud technology in the cyber, cognition
and configuration levels. The key contribution of C2PS is that
every physical entity is associated with a cloud-hosted cyber
entity, such that two entities can establish peer-to-peer (P2P)
connections via direct physical connection or via indirect cloud-
based DT connections.

A five-layered architecture is proposed by Josifovska et
al.[13] as part of the framework for developing DTs of CPS.
The framework consists of the Physical Entity, Virtual Entity,
Data Management, and Service Platforms.

Borangiu et al. [3] present a four-layered architecture in
which every layer on top of the physical system as a DT Layer.
The four layers of the architecture are the data acquisition
and transmission twin, virtual twins of subprocesses, predictive
twins, and decision-making twins.

Souza et al. [31] propose an IIoT-based DT architecture,
which consists of Internal Server Layer and IIoT Gateway Lay-
ers. The internal server is the computer system that runs the
DT and simulations, while the IIoT Gateway is the channel for
communication between the DT and its physical twin.

Ghita, Siham, and Hicham [9] develop a three-layered DT
architecture, which consists of industrial, application, and com-
munication layers. The industrial layer represents the physical
system; the application layer focuses on digital components of
the architecture and their features. The communication layer is
concerned with the interaction between the DT and the physical
system.

Nwogu et al. [23] present a symbiotic simulation system-
based architecture for digital twin. The DT Layer of the archi-
tecture consists of data acquisition, analytics, scenario manager,

optimisation and symbiotic simulation modules (SSM). The use
of SSM and MQTT make the architecture technology-specific.

Redelinghuys et al. [26] study a six-layer architecture for
DT that allows for hardware from various vendors to be used in
both the physical and digital worlds. According to the authors,
the architecture was inspired by Lee, Bagheri, and Kao [15]
and consists of the physical twin in Layers 1 and 2. Layer 3 is a
vendor-neutral communication medium, which acts as the local
data repository for collecting the sensor data from a controller
in Layer 2. IoT gateway or data-to-information converter is in
Layer 4; while Layers 5 and 6 consist of cloud repository, and
emulation and simulation tools, respectively.

In one of the most recent DT architectures, Vrabic et al. [38]
offer an intelligent agent-based architecture for resilient digi-
tal twin in manufacturing. The architecture employs engineer-
ing resilience principles to improve the digital twin’s ability to
represent its real-world entity. This was achieved by applying
the Learning Agent, which enables the restoration of the DT
fidelity after a deviation in the performance of the physical sys-
tem. The Learning Agent consists of Learning, Anomaly De-
tection, Monitoring and Scenario Generation Mechanisms.

Farsi et al. [7] describe a DT architecture for product life-
cycle cost (LCC) estimation, which synchronizes between the
physical and digital worlds using an ontology-based approach.
The DT architecture is aimed at, supporting the reduction of
product cost, and improving product efficiency.

In order to optimize the productivity of Controlled Environ-
ment Agriculture (CEA), Chaux, Sanchez-Londono, and Barbi-
eri [4] propose a three-layer DT architecture, which consists of
the physical asset, the digital twin, and an intelligent layer. The
DT architecture was aimed at building a DT that has the capa-
bility for bi-directional communication, in which a simulation
model is used to optimize productivity. The plan for future work
on the architecture includes optimising crop treatment and cli-
mate control strategy using the simulation models from the DT.

Mourtzis et al. [20] develop a DT architecture for Fused De-
composition Modelling (FDM), which uses common process
data to support engineers in performing online and offline sim-
ulation. The idea of the framework is to integrate DT and Aug-
mented Reality (AR) for quality improvement of 3D parts and
reduction in human-related error resulting from incorrect ma-
chine setup.

2.2. Research Gap

Table 1 matches the reviewed DT architectures to the core
functionalities of DT identified in literature. The table shows
that none of the architectures completely aligns with the func-
tionalities of DT, probably since most contributions are domain-
and use case-specific. Going by the definition of DT adopted
by this study, it can be argued that some of the DT architec-
tures may not meet the requirements of fully fledged DTs. Vast
majority of the architectures discussed above is use case-driven
and varies extensively in terms of their respective components.
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Table 1. Features of available DT architectures from the literature.

Reference Sync. Bi-Dir. Info Diagnostic Control Predictive/Prescr. Monitoring Optimization

[4] • • •

[7] • •

[18] • • • •

[20] • •

[38] • • • • •

[3] • • • • • •

[9]
[23] • • • • • • •

[26] • • • •

[32] • • • • •

[13] • • • •

[31] • • • •

[1] • • •

[15] • • • • •

3. Digital Twin Requirements

According to the several studies (e.g., [14, 33, 21]), the re-
quirements of a DT include, in no particular order, synchroniza-
tion, learning and adaptability, bidirectional information flow,
monitoring capability, predictive and prescriptive capabilities,
and optimization. In the following, each requirement is de-
scribed.

3.1. Temporal Synchronization

The Digital Twin needs to reflect the state of the real-world
entity at all times. If such alignment is guaranteed, any evalu-
ation that is carried out in real-time can be considered reliable
(for instance, the comparison of two production policies).

3.2. Learning and Adaptation

Most physical systems are dynamic and change with a high
frequency (e.g., flexible manufacturing systems). Hence, the
digital constructs need to be able to adapt to always represent
the physical system. We may identify several types of adapta-
tion: (1) adaptation of the model structure, which refers to the
logical layout and material flows; those can be either generated
or adapted from a previously available model. (2) the tuning of
the model level of detail refers to the possibility to exclude from
the digital representation the components that do not signifi-
cantly contribute to estimating the performance of the system,
with respect to a particular goal. (3) the adjustment of model
parameters to reflect the current conditions.

3.3. Bi-directional Information Flow

In accordance with the definition by Kritzinger et al. [14],
a DT can be called as such if information flow is not only
from a real-world entity to a digital system, but also vice versa.
Accordingly, decisions that are taken within a digital system
(e.g., optimization of a production schedule), will be applied

on the corresponding real-world entity, automatically through a
control system (e.g., an actuator). Bidirectional communication
from the DT to the Physical Twin may not always be to con-
trol the Physical Twin; it could result in additional inspection
or data collection [37].

3.4. Monitoring Capabilities

Thanks to the real-time information flow from the physical
system, a DT can serve the scope to monitor in real-time the
condition of its physical twin. For instance, machine tool vibra-
tion data can be elaborated and used to produce in real-time a
health score of the resource in use.

3.5. Predictive and Prescriptive Capabilities

A DT may include digital models that enable forward-
looking analyses. For instance, the real-time state of a manufac-
turing system can feed a Discrete Event Simulation model, used
to estimate the end-of-the-day production performance starting
from current conditions and the expected number of orders. By
coupling the predictive capabilities with the bi-directional in-
formation flow, we may state a DT has also prescriptive ca-
pabilities, since it can use the knowledge acquired in forward-
looking scenarios to generate actionable commands in the real
system.

3.6. Optimization

The possibility to evaluate scenarios that are not yet applied
in the real system means a DT is enabled to search for optimal
configuration of real system settings. For instance, the schedul-
ing plan may be investigated in search for the one that min-
imizes the number of resources in use, and consecutively the
energy consumption, with the aim to increase the sustainability
score of the company.
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4. Requirements-driven Architecture

Based on the requirements and characteristics of DT iden-
tified in literature and in section 3, this study proposes a
requirement-driven DT architecture, as shown in Figure 1. The
proposed architecture has three major parts namely: the phys-
ical twin; the communication or integration medium; and the
digital twin system.

4.1. Physical Twin

The physical twin is the real-world physical or perceived
system, for instance, a manufacturing system or an airport pro-
cess which is dynamically connected with the DT via a com-
munication or integration medium.

4.2. Communication or Integration Medium

The communication or integration medium of a DT is typi-
cally implemented using communication protocols with the ca-
pability of providing a bi-directional communication between
the Physical Twin and DT. Bi-directional data flow distin-
guishes a DT from other digital forms such as digital model,
digital shadow, etc. (Kritzinger et al. [14]). The DT require-
ments determine the type of devices used, and hence the com-
munication strategy and protocols that apply. Such protocols
vary extensively and are not the focus of this paper.

4.3. Digital Twin System

The DT system consists of the Data Acquisition Module,
Data Analytics Module, Database Module, Simulation Module,
Scenario Manager, Optimisation Module, and Controls Mod-
ule.

4.3.1. Data Acquisition Module
To improve the real-world entity it is representing or effec-

tively reflect its behavior, a DT should have the capability to au-
tomate data acquisition [6]. Hence, the Data Acquisition Mod-
ule is one of the most crucial components of a DT [35]. The data
exchange can be volatile (e.g., real-time sensors transmitting
the parts location, start and stop timestamps in a manufactur-
ing facility, movement of passenger in an airport, etc.) or non-
volatile data capturing (e.g., list of manufacturing equipment,
list of airlines or number/location of check-in desks) [5]. The
data requirements of the DT drive the implementation of the
Data Acquisition Module, which can be implemented as a web
service, web application [27, 22] or mobile application [24].

4.3.2. Data Analytics Module
Data Analytics Module is the engine of the DT, which ap-

plies various analytics techniques to provide the mechanism
to manage, fuse and process the vastly heterogeneous data
acquired by the DT System. Analytics techniques such as
streaming process, time-series-based, batch-oriented, and secu-
rity analytics processing, etc., offer feedback mechanisms for
decision-making and control of the Physical Twin, as well as

Fig. 1. Exemplary DT architecture.

provide results that become input to simulation and visualisa-
tion [5]. Also, simulation outputs can be analysed using data
analytics techniques. For example, Johnstone et al. [12] used
clustering techniques to analyse simulation event log to iden-
tify factors that influence the handling time in an airport bag-
gage handling system. Data Analytics Module processes both
historic and real-time data to predict future outcomes using pre-
dictive analytics techniques [8, 5].

4.3.3. Database Module (DB)
The Database Module encompasses the internal repository

or any form of data storage mechanism that houses the data
model of DT. The DB can be cloud-based and this offers ben-
efits such as accessibility, scalability, processing power and ef-
ficiency in data transfer [30, 1, 11]. Local-based DM may be
used for the security of sensitive data, but a hybrid approach
consisting of a combination of local and offsite DM (e.g., cloud,
Edge, Fog, Mainframe) may be employed in practice [37]. For
instance for use cases involving safety critical or personal sensi-
tive data, the data can be pre-processed by an Edge Computing-
based system to stripe the sensitive data before loading it to the
cloud system; this also provides resilience in terms of Cloud
System performance issue or failure.

4.3.4. Scenario Manager
The Scenario Manager carries out what-if analyses based on

the outcome of data analytics and/or simulation experimenta-
tion. Scenario manager can control the running of simulation
experimentation in order to meet the objective of the experi-
mentation [24]. For instance, by monitoring the production per-
formance over a certain amount of time, the scenario manager
module may decide to launch forward looking simulation mod-
els to evaluate the performance of different policies under the
current set of parameters.
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4.3.5. Simulation Module
Depending on the requirements of a DT, the simulation

module can be implemented using either discrete event, agent-
based, system dynamics (continuous simulation), or hybrid
simulation [28]. Based on the author’s definition, discrete event
simulation will be suitable where the use case is about measur-
ing the number of parts produced in a manufacturing system
or the number of baggage/passenger processed through an air-
port baggage handling system; and agent-based simulation will
be used for simulating passenger movement around an airport
terminal.

As discussed in the Data Analytics Section, input to or out-
put from simulation can support data analytics and/or predictive
analytics. The use of simulation models in DT implementation
provides additional advantage when its updated parameters re-
flect the behaviour of an instance of the Physical Twin, and this
makes these simulation models useful for offering additional in-
sights to support decision-making, predicting anomalies or fu-
ture failures [37]. This is especially true for symbiotic simula-
tion models (SSM) because of their ability to interact with phys-
ical systems using near real-time or real-time data [2]. SSM dif-
fers from non-SSM with its ability to read data at runtime and
response according to the current state of the physical system it
is representing [24]. Nwogu et al [23] apply SSM to a DT ar-
chitecture and suggest that SSM has the mechanisms; to detect
anomaly in the DT; validate the models in order to identify the
most accurate representation of; forecast the behaviour of; and
control; the physical system.

4.3.6. Optimisation Module
DT-based optimisation system offers a rapid identification of

optimal solutions [17]. These authors propose DT-driven joint
optimisation solution to optimise the utilisation and efficiency
of a warehouse product service system (PSS).

With the ability of a DT to fuse disparate data and synchro-
nise with a real-world entity, its Optimisation Module can op-
timise a system along its entire lifecycle, which includes its
design, development, operate and retire stages [16]. Depend-
ing on the requirements of a DT, the Optimisation Module, in
collaboration with the Scenario Manager, may use the output
of other DT components (e.g. Data Analytics, Simulation, etc.)
to improve the performance of its real-world counterpart. This
may result in automated control via an actuator or manual con-
trol, of the Physical Twin, in which its parameters are modi-
fied based on the outcome of optimisation [24]. According to
the authors, optimisation methods can be combined with simu-
lation methods in hybrid approach known as optimisation-via-
simulation or simulation optimisation model. An Optimization
Module can be called to use algorithms (e.g., gradient-based,
greedy) to search for the optimal configuration of the system.

4.3.7. Control Module
Once the simulation-optimization cycles are concluded, the

scenario manager can collect results and covert them into a set
of instructions for the physical system. This set of instructions
is analysed by the Control Module, to verify if the action is still
applicable to the real-world system and feasible within the rest

Table 2. Connection between the DT requirements and the components of the
proposed architecture.

Requirements Components

Temporal Synchronization Scenario Manager; Database
Module

Learning Simulation Module; Database
Module

Bi-directional Information
Flow

Sensors; Integration Module
(Controllers); Actuators

Monitoring Capabilities Data Acquisition Module; Data
Analytics Module

Predictive/Prescriptive Capa-
bilities

Data Acquisition Module; Data
Analytics Module; Database
Module; Simulation Module

Optimization Optimization Engine; Scenario
Manager; Simulation Module

of the production epoch, in case of a manufacturing system.
Once verified, the controls are passed to the actuators, which
controls the Physical Twin automatically; this is made possible
by bidirectional communication between the Physical Twin and
DT [36], and differentiates a DT from other digital forms [14].
Controls from DT to Physical Twin can be exerted manually by
a decision-maker or user, who accesses the output of the Sce-
nario Manager via a human-machine interface [36]. Tao et al.
[34] and Ma et al. [19] study the manual control of Physical
Twin. The requirement of a DT will determine if its implemen-
tation includes automated control, manual or both.

5. Conclusions and Further Developments

Several papers propose the application of digital twins for
the improvement of real-time decision processes. In this work,
a connection is made between the requirements and the com-
ponents of a digital twin architecture for a wide spectrum of
applications, especially on the ability to integrate, and commu-
nicate between, the Physical and Digital Twins.

Quintessentially, a DT acquires data from its real-world
counterpart and provides services with the processed version
of the data. Several challenges hinder DT to seamless achieve
this, especially the ability to integrate, and communicate be-
tween, the Physical and Digital Twins. This challenge is exac-
erbated by the heterogeneity of the data and data sources, as
well as the sheer volume of data and its mode and frequency
of exchange that are adequate to synchronise the Physical and
Digital Twins. The ability of the DT to synchronise with, and
automatically control, the Physical Twin hinges on the Commu-
nication/ Integration Medium.

The development of a digital twin remains dependent on the
requirements of its intended applications. In each application,
several choices are complex, for instance, the choice of com-
munication standards or the level of integration with the ex-
isting information systems, data management system, amongst
others. Future works shall address some of these issues.
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[38] Vrabič, R., Erkoyuncu, J., Farsi, M., Ariansyah, D., 2021. An intelligent
agent-based architecture for resilient digital twins in manufacturing. CIRP
annals 70, 349–352.

6

http://dx.doi.org/10.1109/WSC.2018.8632407
http://dx.doi.org/10.1109/WSC.2018.8632407

