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Abstract

Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems
reached a high level of complexity and are frequently subject to modifications that can quickly make the digital tools obsolete. In this context, the
ability to dynamically generate models of production systems is essential to guarantee their exploitation on the shop-floors as decision-support
systems. The literature offers approaches for generating digital models based on real-time data streams. These models can represent a system more
precisely at any point in time, as they are continuously updated based on the data. However, most approaches consider only isolated aspects of
systems (e.g., reliability models) and focus on a specific modeling purpose (e.g., material flow identification). The research challenge is therefore
to develop a novel framework that systematically enables the combination of models extracted through different process mining algorithms. To
tackle this challenge, it is critical to define the requirements that enable the emergence of automated modeling and simulation tasks. In this
paper, we therefore derive and define data requirements for the models that need to be extracted. We include aspects such as the structure of the
manufacturing system and the behavior of its machines. The paper aims at guiding practitioners in designing coherent data structures to enable
the coupling of model generation techniques within the digital support system of manufacturing companies.
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1. Introduction

Modern manufacturing systems are becoming increasingly
complex. Several factors influence their complexity, including
customer requirements for high product quality, low costs, short
lead times and a high degree of customization in a globalized
market with demand fluctuations [8]. Thus, understanding and
controlling the nonlinear behavior of such systems is critical
to making them more productive [14]. This calls for novel ap-
proaches on how to design, manage and monitor modern man-
ufacturing systems.

Digital tools that imitate or represent processes, functional-
ities or dependencies (e.g., digital twins) enable manufacturers
to make more accurate decisions [28, 10]. They support long-
term decisions during production planning (e.g., shop floor lay-
out) as well as short-term decisions regarding production con-
trol and improvement (e.g., quality control, costs, scheduling).
However, modern manufacturing systems are subject to fre-
quent modifications that can quickly make static digital tools

obsolete [18]. Thus, there is a need to dynamically generate
accurate models for manufacturing systems based on real-time
data streams to ensure optimal exploitation in the shop-floors.

Several contributions highlight the advantages of exploiting
data to enhance planning and execution phases of manufactur-
ing systems [13]. Belhadi et al. have reviewed the most im-
portant contributions on big data analytics for manufacturing
processes [2]. The authors have classified existing approaches
based on the main goals of the reviewed contributions: (1)
descriptive analytics, (2) inquisitive analytics (i.e., root cause
analysis), (3) predictive analytics, and (4) prescriptive analytics.
Process Mining (PM) is a recent research area focusing on the
data-driven development and analysis of models based on event
logs of a system. PM can be used to generate dynamic mod-
els of manufacturing systems. However, existing approaches
produce models that focus on specific components of a sys-
tem and offer a limited choice on the level of detail. Therefore,
we aim to mine detailed models of manufacturing systems in-
cluding several aspects of a system, such as material flow (i.e.,
the paths that objects follow in the system), machine behavior2212-8271© 2022 The Authors. Published by Elsevier B.V.
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(i.e., operational and degradation state changes of resources)
and other aspects such as the availability of resources (Figure
1). The combined models enable the extraction of several per-
formance indicators (e.g., throughput, lead time, reliability in-
dicators) [17].

In this paper, we study the data requirements for a joint min-
ing approach, which enables the retrieval of a detailed and ac-
curate model of a manufacturing system. Our key contributions
are as follows: (1) propose data requirements for the extrac-
tion of material flow and machine behavior models; (2) present
methods to model the material flow in a manufacturing system;
(3) present methods to model machine degradation.

The remainder of the paper is structured as follows: in sec-
tion 2, we provide background on PM methods to identify mate-
rial flow, additional perspectives and joint approaches. Section
3 covers the data requirements for joint mining of material flow
and machines behavior. We provide a summary in section 4 and
conclude our work in section 5.

2. Background

In a model generation framework for the manufacturing do-
main, we may classify the existing contributions depending on
the application scope: most of the works regard the material
flow identification, which uses PM to retrieve the movement of
physical objects, such as work-pieces or tools; other contribu-
tions exploit PM to improve existing processes or to analyze
process performance [27]. Furthermore, PM is used to retrieve
additional perspectives of the plant, such as production policies,
maintenance management, incidence management, probabilis-
tic models, as well as all the business processes that surround
the production environments [27]. Other common applications
of PM are performance evaluation [25] and process monitoring
[16].

2.1. Material Flow Identification

Real-time data from the shop floor can be used to retrieve
part identifiers, activities, and buffer levels, while combining
such data with timestamps can allow obtaining more aggregated
indicators such as flow or waiting times. Martin et al. [20] im-
proved inter arrival times modeling by including the mining of
parts queuing at the entrance of the system. Denno et al. [5] de-
veloped a methodology to mine the production system structure
and used genetic programming to link colored Petri net states
with exceptional system states, such as blocking due to a unex-
pected machine failure. Martin et al. [21] designed an algorithm
to mine how operational activities are batched within a pro-
duction environment. Popovics and Monostori [26] designed an
approach for automatically gathering data from Programmable
Logic Controllers (PLCs) with the aim to achieve simulation
model generation capabilities. Choueiri et al. [4] proposed a
predictive model with the aim to use PM for online prediction
of cycle-times in industrial environments.

2.2. Additional Perspectives

Bergmann et al. [3] introduced a methodology for using
several data mining methods to recognize which policies are
applied in the production system generating the data. Milde
and Reinhart [23] worked on the joint material flow discov-
ery, parameter estimation, and control policies identification
from manufacturing systems event logs. Ferreira and Vasilyev
[9] combined PM with logical decision trees to understand the
causes of process delays. Martin et al. [19] used PM to retrieve
daily availability records from an event log, by considering a
resource availability with both a temporal dimension and the
possibility of intermediate interruptions.

Kurscheidt et al. used process mining to feed the probabilis-
tic models of each manufacturing activity using Bayesian net-
works [15]. Varga et al. [7] used event logs from a coke refin-
ery plant and retrieved the set of actions that operators perform
frequently in similar situations. The goal is to infer the causal
relationship between the alarms and operator actions, together
with the effects of these actions.

2.3. Joint Mining Approaches

More recently, the combination of process mining with other
techniques paved the way to the smart exploitation of shop-
floor data. Ortmeier et al. [24] discussed on how process min-
ing could support life cycle assessment activities in manufac-
turing, for instance, to identify process deviations and interrup-
tions. The availability of data records of several instances in a
system allows for investigating the quality perspective. In this
case, the underlying research question is to find what combina-
tion of process steps distinguishes the parts in which a certain
production strategy (e.g., parameter setting) is successful from
the parts in which the goal is not reached. For instance, Dogan
and Gurcan [6] provide a guide to apply lean six sigma together
with data-based analyses. The authors insert PM in a Quality
Assessment framework, analyzing the role of different process
mining algorithms with respect to lean six sigma approaches,
such as DMAIC (define-measure-analyze-improve-control) and
claim that the combination of process mining with traditional
techniques allows to take effective decisions for quality prob-
lems. Meyer et al. [22] combined process mining with control
theory and proposed an iterative approach to enhance treatment
strategies by predicting and preventing failures based on infor-
mation from electronic records.

Despite the success of the aforementioned approaches, liter-
ature is scarce of effective joint mining applications for mod-
eling complex manufacturing systems. For instance, reliabil-
ity models are used extensively in manufacturing systems. Yet,
their recognition is typically not included in model generation
procedures. As a result, the generated models miss relevant
information that can cause a misalignment with the real sys-
tem, as well as significant differences in the obtained perfor-
mances. A comprehensive research on the connection between
data types and models is needed. Such research gap covers dif-
ferent aspects: from data types to the capabilities of current ap-
proaches to generate models able to correctly estimate different
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Fig. 1. Digital model generation with joint process mining techniques for manufacturing systems.

Fig. 2. Overview of the data requirements framework.

properties of manufacturing systems. In this paper, we focus
on defining the data requirements, which is the first step that
enables the automated model building. We concentrate on the
modeling of two aspects of a manufacturing system: (1) mate-
rial flows and (2) resource behaviour.

3. Data Requirements for Joint Mining of Material Flow
and Machine Behavior

In this section, we provide a description of the data re-
quirements for achieving capabilities of mining both material
flow and additional system properties. The goal is to provide
an overview of which data sources must be used to automati-
cally build models with certain attributes. Figure 2 outlines the
framework for data requirements we refer to. Starting from a
generic manufacturing system, the data from the system are col-
lected by sensors and distributed among the enterprise informa-
tion system. Several different tools in the company may hold in-
formation about the physical system, for instance, Supervisory
Control And Data Acquisition (SCADA), Manufacturing Exe-
cution System (MES), or Enterprise Resource Planning (ERP).
The data held by such tools need to be aggregated and collected
in event logs [1]. Further, depending on the final model scope,

different event logs may need to be produced. A model focused
on the material flow will use event logs with information about
the physical movements of parts in the system; a model which
represents the state of resources needs to retrieve such records;
similarly, the availability of resources (e.g., machines, tools, op-
erators) can be retrieved by records of their deployment in the
system.

3.1. Material Flow

Figure 3 summarizes the main steps of an automated mod-
eling procedure. The events recorded on the material flow are
collected in the event log. Three data types are required for such
scope: (1) a timestamp indicating the moment at which an ac-
tivity has been done, (2) an identifier of the physical part, and
(3) an identifier of the activity. Note that the activity ID may
correspond to the location of sensors in the manufacturing sys-
tem (e.g., presence sensor in a station). Once data is retrieved,
the activity relationships may be retrieved from the traces. A
trace is the list of sequential activities performed by each part.
From the collection of traces, the precedence relationships can
be retrieved (example: ”activity S2 followed activity S1”). Such
information can be represented in a graph model: each node

3



Friederich et al. / Procedia CIRP 00 (2022) 000–000 4

Fig. 3. Automated development of a material flow model.

represents an activity, while each arc indicates the relationships
among activities. This way, most manufacturing system types
can be identified: among others, flow lines, flow shops, and
closed loop systems. Processing times can be estimated from
the event log, provided the availability of timestamps indicat-
ing respectively the instant an activity is started and finished.
Also, buffer sizes can be estimated by retrieving the number of
parts that have been observed waiting before a certain station.
Such information can be added to the model as properties of
nodes and arcs: processing times are a property of the nodes,
while buffer size is an attribute of the arcs [18]. Further, if ad-
ditional information is available in the log, it can be used to
enrich the model. For instance, if each row in the event log con-
tains information about the operator that performed the activity,
the utilization of different operators may be inferred from the
data. This capability can be used to assess the balancing of op-
erations in a flow line.

3.2. Additional System Properties

Mining of additional system properties includes aspects such
as their availability and reliability as well as their operating and
degradation states (Figure 2).

To extract machine operating states three data types are re-
quired: (1) a timestamp indicating the moment at which an oper-
ating state change is happening, (2) an identifier of the machine
and (3) the state it transitioned to [11]. Such information can
be modeled using state transition diagrams. A state transition
diagram can be formally defined as a tuple D = (S,T) where S
is a finite set of states, T a finite set of transitions from one state
to another and S 0 ∈ S the initial state. Each transition t ∈ T is
related to its occurrence probability P(t). States are represented
by circles, transitions by arrows from the current state to the
next state, and the initial state is a node indicated by an arrow
with no origin.

Mining degradation states of machines requires a log of dis-
crete state changes. For instance, a machining center typically

Fig. 4. State transition diagrams for joint machine degradation and maintenance
policy modeling.

Fig. 5. Two exemplary Petri nets for machine degradation modeling.

has a certain number of tools to be used for production. The
breakage of a tool may determine the need to use a substitute for
production until replacement. In this condition, the station may
produce at a lower rate. Hence, the reduction of production rate
can be linked to the number of tools available. To mine machine
degradation states a log capturing degradation state changes or
a log capturing the maintenance actions is required, as indicated
in Figure 2. A degradation log includes the following three vari-
ables: (1) a timestamp indicating the moment of the degradation
state change, (2) an identifier for the machine and (3) a state re-
flecting the new degradation state. Similarly, a maintenance log
includes the following three variables: (1) a timestamp indicat-
ing the moment at which a maintenance is performed, (2) an
identifier for the machine on which the maintenance is carried
out and (3) a state reflecting the new maintenance level.

In the following, we show two possible modeling formalism
that can be used to include degradation in a digital model: (1)
state transition diagrams and (2) Petri nets [12].

Figure 4 illustrates state transition diagrams for the degra-
dation of two machines M1 and M2. Each state S i j ∈ S repre-
sents the current state i of M1 and j of M2 whereas S 11 means,
that both machines are fully operational and S 00 means that
both machines are fully degraded. Transitions either mark the
degradation of a machine or the repair of either one or both of
the machines. In Figure 4a , the state transition diagram is built
assuming that only one machine will be repaired at a time, while
the state transition diagram in Figure 4b represents a situation
in which both machines can be repaired at the same time.

Petri nets can be formally defined as a tuple N =

(P,T,A,m0) where P and T are a finite set of places and transi-
4
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tions, A is a set of directed arcs and m0 the initial marking. Arcs
connect places with transitions and vice versa. Places in a Petri
net may contain a discrete number of tokens. The dynamics of
a Petri net results from the activation of transitions: if a tran-
sition is activated, it removes tokens from previous places and
adds it to subsequent places. Places are represented as circles,
transitions as rectangles and arcs as unidirectional arrows.

Figure 5 shows two exemplary Petri nets for modeling the
degradation of a machine with three degradation states. The po-
sition of the tokens in the net is useful to identify a particu-
lar system state. In the model of Figure 5a, the initial marking
of the two tokens in the Up place correspond to a fully opera-
tional system. A timed transition represents a breakage after a
random amount of time. Once a token is created in the Down
place the machine will either be repaired after some time or an-
other breakage will occur. In case two breakages occur in a row
the machine is defect and needs to be repaired. By using an in-
hibitor arc to block the operation of a machine during the repair,
the degradation model can be integrated into an existing Petri
net of the material flow.

The Petri Net model in Figure 5b explicitly includes three
degradation states (S 2: fully operational, S 1: partly degraded,
S 0: fully degraded). Starting from S 2, a timed transition repre-
sents the breakage after a random amount of time. After the
breakage, the machine is either repaired or will continue to
operate based on specific probabilities which is indicated by
two immediate transitions (i.e., transitions that represent events
without associated activities). In case the machine continues to
operate and another breakage occurs, a repair is the only logi-
cal next step. While the machine is being repaired, it blocks the
operation transition of the machine indicated by an inhibitor
arc. In case there is more than one machine degradation to be
modeled, the previously described models can be applied in the
same way.

4. Summary

Table 1 summarizes the data requirements provided in this
paper, along with the expected sources within an informa-
tion system and the specific model components. The minimum
data requirements (i.e., timestamps, activity IDs and work-
piece/order IDs) enable the extraction of the material flow and
queuing policies, as explained in section 3.1. Additional data
enables the representation of other features of manufacturing
systems. Resource identifiers enable to associate the logged ac-
tivities with the holding of each asset, thus enabling the con-
struction of an availability model; for instance, to estimate the
utilization as a performance measure. The addition of logs re-
porting resource status such as degradation states and condition
monitoring data enable the estimation of the reliability of each
resource, as illustrated in Figure 5. Moreover, production poli-
cies may be inferred from data by the joint analysis of state tran-
sition logs and condition monitoring data, using timestamps as
event connectors. Table 1 also includes maintenance schedules
and supplies timing data which are not specifically examined in
the previous sections.

5. Conclusions and Outlook

In this paper, we introduced the problem of combining dif-
ferent process mining methods to extract digital models of
complex manufacturing systems, and provided an overview of
the data requirements for producing accurate digital represen-
tations. Different data types enable the extraction of models
which represent specific aspects of a production system. This
paper represents an initial effort in defining data requirements
to extract such models. To achieve our overall research goal,
which is to develop a framework that enables the combina-
tion of models extracted through different algorithms, further
research is necessary. Below, we outline some of the main as-
pects which contribute to our research goal.

Further research will benefit from an assessment on the rela-
tion between available data in common manufacturing informa-
tion systems (e.g., ERP, MES) and the type of models that can
be developed with mining approaches. Moreover, the compat-
ibility among modeled features and each modeling formalism
has to be addressed. For instance, Petri nets are a good choice
for representing blocking conditions, which are typical of ma-
chine failures or assembly points. Hence, the final modeling
formalism is driven by the choice to model such features. The
development of techniques for the exploitation of the automat-
ically built models will enhance their exploitation in forward
looking scenarios, and may imply the introduction of machine
learning approaches. For instance, the discovery of a main-
tenance policy can be done with process mining approaches,
while its optimization may benefit from the use of reinforce-
ment learning algorithm applied to the digital instances. Last
but not least, the integration of continuous data, such as con-
dition monitoring data, into the overall modeling framework is
yet another challenge. For instance, degradation states of ma-
chines may first need to be detected and diagnosed using, e.g.,
signal processing or machine learning approaches.

Further developments of this work include the formalization
of data sources and formats in common manufacturing environ-
ments, mitigation strategies to deal with data quality and inte-
gration problems, the development of joint mining algorithms
for the automated generation of digital models, and the develop-
ment of techniques for validating the extracted representations.
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