
HAL Id: hal-03880468
https://hal.science/hal-03880468

Submitted on 1 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lab-scale Models of Manufacturing Systems for Testing
Real-time Simulation and Production Control

Technologies
Giovanni Lugaresi, Vincenzo Valerio Alba, Andrea Matta

To cite this version:
Giovanni Lugaresi, Vincenzo Valerio Alba, Andrea Matta. Lab-scale Models of Manufacturing Systems
for Testing Real-time Simulation and Production Control Technologies. Journal of Manufacturing
Systems, 2021, 58 (Part A), pp.93-108. �10.1016/j.jmsy.2020.09.003�. �hal-03880468�

https://hal.science/hal-03880468
https://hal.archives-ouvertes.fr

Lab-scale Models of Manufacturing Systems for Testing Real-time
Simulation and Production Control Technologies

Giovanni Lugaresi1, Vincenzo Valerio Alba1, Andrea Matta∗1

1 Dipartimento di Meccanica, Politecnico di Milano
Via la Masa 1, 20156 Milan, Italy

*Corresponding Author: andrea. matta@ polimi. it

Abstract

In the last years, the increase of data availability together with enhanced computation capabili-
ties empowered researchers to conceive production planning and control methods with real-time
inputs. Literature is rich with techniques for using simulation to take production planning and
control decisions online. However, it is generally impractical to test these approaches on real sys-
tems, and experiments on digital instances are limited because they do not capture the physical
aspects. This work proposes to test Real-time Simulation approaches using lab-scale models of
manufacturing system and a software architecture aligned with industrial standards. Such models
allow to reproduce material flows and the production control logic of real factory environments.
By exploiting this setting to test new approaches and tools, it is possible to increase their own
achievable Technology Readiness Level (TRL). The laboratory has been used to set a real-time
rescheduling problem on a Flexible Manufacturing System (FMS) model. The test involves simula-
tion models aligned with the current system state for the online identification and implementation
of a production scheduling rule that decreases the expected makespan. The results testify that
the proposed lab-scale models can be used successfully to test production planning and control
approaches.

Keywords: Real-time Simulation; Re-scheduling; Lab-scale Models; Flexible Manufacturing Sys-
tems.

Preprint submitted to Journal of Manufacturing Systems September 8, 2020

andrea.matta@polimi.it

1. Introduction

The current industrial scenario has been defined by radical changes in the methodologies used to
manage and control manufacturing systems. The Industry 4.0 phenomenon provided a set of new
technologies for production environments such as Internet of Things (IoT), cloud computing, big
data analytics, augmented and virtual reality, Radio Frequency Identification (RFID), artificial
intelligence and machine learning [1]. As a consequence, several innovative solutions have been
developed, such as digital twins [2] and cyber-physical systems [3]. Thanks to the aforementioned
developments in industry and research, it is possible to imagine a situation in which the shop-
floor status in manufacturing companies can be retrieved anytime. Such capabilities can enhance
decision-making and reaction time. Performance evaluation tools traditionally used for long term
decisions (e.g., simulation) can now be exploited in the very short term [3].

An established standard for production management is the ANSI-ISA95 [4]. It is based on five
hierarchical levels as shown in Figure 1. Level 0 is associated with the physical process; level 1
refers to the governance of actuators and sensors; level 2 represents the control logic and production
supervision; level 3 to manufacturing operations (i.e. Manufacturing Execution System); level 4 to
the management of the entire firm (i.e. Enterprise Resource Planning). The ISA95 levels are often
depicted as a pyramid, although recent research claims that this hierarchical view of the production
system has been unsettled by the data sharing capabilities of IoT and cloud computing [5]. The
increased integration of functionalities brings benefits to production systems such as increased
flexibility and the capability to promptly respond to unexpected events [6]. In fact, production
policies defined a-priori may be optimal within a precise set of boundaries, but turn out to be
detrimental on system performances when applied in actual scenarios because real systems are
always subject to some degree of stochasticity. A possible countermeasure is to design solutions
which are robust against many different scenarios, although never truly optimal for any particular
condition rather for the average performance of the system. Distinctively, online decisions can be
tailored exactly considering the system status in the very moment they are examined.

The automated data acquisition and communication paved the way for an exploitation of sim-
ulation for short-term decision making [7]. In Real-time Simulation (RTS) applications, data are
acquired from a production plant and feed a simulation model of the system. Then, alternative
scenarios are simulated and the one that leads to the best performances is applied online [8]. Al-
ternatively, the simulation models are used as offline learning tools, by exploring the performance
obtained for the input parameter values which have not been implemented in the real system yet.
The literature on Real-time Simulation approaches for manufacturing systems is rich and we may
expect several contributions in the future [1]. Meanwhile, it is hard for researchers and practi-
tioners to provide a realistic environment to test their architectures and algorithms. Typically,
the proposed methods would either be tested on a real system or within a digital setting. In the
former case, it is necessary to allocate an entire manufacturing system and to change the already
established production strategies for a considerable time. The risk is to invest a lot of resources in
arranging the system to reproduce the desired behavior, rather than iterating the proposed logic.
On the other hand, the theorized algorithms and policies could be compared and validated exploit-
ing digital models of the production systems. In this case, several issues related to the physical
system might be underrated. For instance, data collection devices must be designed properly to
retrieve the desired information (e.g., current number of parts in a queue, machine status) and to
guarantee the alignment between the real system and its digital counterpart. Further, the absence
of a physical substrate impedes to use hardware suitable for the target production environment.

2

Figure 1: ISA95 levels [9].

Hence, without a fully integrated prototype the test of both individual and combined features can
only be done virtually. As a consequence, it is not possible to prove the functional compatibility
of the components in the intended operational system.

In this paper, we propose a lab-scale environment for testing Real-time Simulation research
and digital technologies for production systems. The proposed laboratory reproduces the ISA95
architecture, hence we developed both physical and digital levels and exploited IoT-compatible
devices to connect them [10]. The adoption of such models enables to examine approaches that
involve information loops through real industrial components (e.g., gateways, sensors), which is not
possible if validation is performed only on digital models. For instance, hardware-related issues
such as data sharing between the various layers of a Cyber Physical Production System (CPPS)
can be investigated, while remaining capable to implement and iterate the proposed production
planning and control logic in reasonable times. Further, the realization of physical models with
components such as LEGO, Arduino, fischertechnik, requires lower investments and provides higher
flexibility for tests compared to similar settings in real systems. Additionally, we assess the impact
of exploiting the proposed environment to test software tools, hardware devices, and production
management methods with a discussion on the obtainable Technology Readiness Level (TRL).

The rest of the paper is organized as follows. Section 2 identifies the main contributions in the
literature related to RTS. Section 3 outlines a general Real-time Simulation procedure for online
decision making in production and section 4 presents the proposed lab-scale testing environment.
Section 5 discusses on the TRL achievable by components tested in the proposed laboratory. Section
6 presents the test cases that have been done and summarizes the numerical results. Section 7
presents the numerical results. Our final remarks are in section 8.

2. Related Literature

One of the first classification methods for RTS-related research can be derived from Manivannan
and Banks [11], who proposed a framework for real-time control of a manufacturing cell using
simulation which can be considered as one of the first comprehensive analysis on the application of
Discrete Event Simulation (DES) as short-term decision making tool. The authors have identified
the challenges to overcome for the successful implementation of RTS models: (1) data handling,
(2) model generation and validation, (3) model synchronization and initialization, and (4) efficient
proactive scheduling models. Monostori et al. [3] described the operation modes for DES

3

models in production system, dividing them in three categories: (1) offline simulation, used for
sensitivity analysis and robustness evaluation of production schedules before their execution, (2)
proactive simulation, used with the aim of defining online short term actions in response to expected
deviations from the plan, and (3) reactive simulation, used for an online evaluation of alternatives
after a disturbance has occurred. Mousavi and Siervo [12] proposed a framework with the aim to
provide three main features: (1) flexibility: the framework has to be general in terms of input data
and utility function model (for example, the sample frequency can be determined dynamically);
(2) real-time readiness: the framework aims to make an effective use of data available at timenow
for simulation modeling; (3) fast-forwardness: it is always possible to feed the simulation model
with different types of inputs to perform what-if analyses; historical data may also be used to
gradually improve the response time of the system. The next sections elaborate on the significant
contributions from the literature, which have been organized in Table 1 according to the three
aforementioned classification criteria. The following sections adhere to the classification over the
RTS challenges.

2.1. Data Handling

Data collection is one of the most time consuming practices at the beginning of a simulation
project, and the optimization of this phase regards both static and real-time approaches. Robertson
and Perera [13] proposed to automatically collect input data for a simulation model to save modeling
time. The authors discussed on how to revisit the data input methodologies for simulation and
proposed to group the data-input phases exploiting an intermediate database between an Enterprise
Resource Planning (ERP) system and the simulation input data. Hanisch et al. [14] contemplated
two characteristics for data in real-time digital models: availability and quality. Availability means
that all the necessary inputs are guaranteed either by automatic collection from the system or by
successive elaboration from the existing datasets. Quality regards the degree of exactness of data.
Mousavi and Siervo [12] proposed a flexible data input management system as solution for quick-
response decision making. The aim is to generalize the input procedure and make it applicable to
a wide variety of manufacturing environments. Similarly, Blum and Schuh [15] defined a three-
layer architecture for data analytics in real-time frameworks, composed by (1) a data layer, (2) an
integration layer, and (3) a visualization layer. Since online decisions must be made as soon as the
problems are identified in the system, RTS frameworks are based on real-time input data acquired
while the real system is evolving. Kitazawa et al. [16] used RTS to estimate the completion time
of a flow shop manual assembly. The data is collected by Bluetooth-based beacons to record the
proximity of operators to their workstation. The beacon position is used to infer the operator
current working state. Altaf et al. [17] showed the integration of simulation with RFID collected
data to infer the status of a wood-frame panel prefabrication plant. Similarly, Luo, Fang, and
Huang [18] introduced an approach for real-time scheduling using RFID technologies to facilitate
shop-floor conditions visibility.

2.2. Model Generation and Validation

For a successful RTS implementation, the digital counterparts of production systems have to
reflect the current configuration of the system at any moment in time [19]. In flexible and reconfig-
urable manufacturing systems these updates can be done in an automated way. Model generation
deals with the recognition of the logical relationships between components of the manufacturing
system (e.g., part routes, precedences, spacial contraints) [20, 21]. For instance, if an automated
model generation procedure is established along the life cycle of the production plant, a plugin of

4

a new machining tool or the deterioration of a machine can be detected online and the simulation
model can be updated coherently [22, 23]. Planning and control activities using RTS typically
rely on the assumption that a simulation model for the real manufacturing system exists and has
withstood the validation process [24]. Hence, if the model is generated online, validation has to be
performed with respect of the data representing the current state of the system. Autovalidation
is the practice through which the simulation model ability to predict the system performances is
checked online before using the model to take operative decisions. Model Structure Update deals
with the validation of an already available model, that is compared with the system structure by
means of comparison of data and the process logical layout [25]. Recent approaches proposed to
use signal processing theory for the online validation of digital models [26].

2.3. Model Synchronization and Initialization

The exploitation of a digital model of a factory beside a continuous information exchange with
the real system allows to make realistic simulation-based predictions referred to the current system
status [27, 28]. In general, the synchronization between the system and its digital alter can be
carried out in three main ways [29]: (1) by continuously collecting data and connecting the data
acquisition devices to an input data processor with the simulation software; (2) by developing a
simulation model for each of the parts and resources, and restricting data collection activities to
those altering temporal information; (3) by making use of past, future and current event lists.
Kadar et al. [30] identified the following issues for synchronization: (1) the acquisition and vali-
dation of the input data, (2) the responsiveness of the analysis, and (3) the capability of quickly
gathering the real system state to initialize the simulation model. Talkhestani et al. [31] proposed
to obtain model integration in a product life-cycle management platform using an anchor-point-
based method to systematically detect variations in the data structure between the digital models
and the physical system. Initialization refers to guaranteeing that alternative simulation models
refer to the same initial point in time. The goal is to assure that alternative production policies can
be effectively compared. Namely, in order for the statistics of the alternative policies performance
to be comparable to the ones of the real system, the corresponding models must be initialized
to the current real system state, or at least to the same state occurred in a certain time-frame.
Therefore, RTS models start from a state in which all the variables of the model are set to the
values of the physical quantities at timenow [14].

2.4. Proactive Policies

Typically, the Manufacturing Execution System (MES) functions are included in the CPPS,
hence also rescheduling and dispatching algorithms [5]. These tasks can be accomplished online
exploiting information coming from both the shop-floor and any other management software. Re-
cently, several frameworks exploiting RTS to improve online production policies have been proposed
[32, 33, 34, 35]. A production re-planning strategy describes when a new production plan for a
certain manufacturing system has to be generated. This can happen in two main forms [36, 37]: (1)
the plan can be adapted periodically based on the present production trend, (2) the re-planning is
triggered by specific events that can have an impact on the system performances, such as machine
failures, urgent orders, quality issues [38]. Cardin and Castagna [19, 39] explored the decisional
component of a job-shop with six workstations connected with transporters. The authors exploited
a base model aligned with the real system and variant models for proactive decision making such as
the routing of parts on transporters. These decisions depend on many factors, such as the number
of available transporters in the system or the expected machine breakdowns. The multitude of

5

decision possibilities is reflected in the number of variant simulation models that are initialized
to the system state and used to run experiments for a time horizon of interest. Harmonosky et
al. [40] developed an heuristic approach to manage the queue of unfinished jobs at a failed ma-
chine in a flow-shop system. The main idea is to compare the expected waiting time between the
failed machine and an alternative machine including a penalty term for accounting rerouting time.
Simulations are done offline before any actual system breakdown occurs. With reference to manu-
facturing systems characterized by stochastic processing times, Framinan et al. [41] suggested that
if real-time data measured on the shop-floor were exploited as a rescheduling contour condition,
it would be possible to lower the expected makespan. This advantage is greater if the variability
in system parameters is fairly low, while a high variability translates into high uncertainty of the
results and may hinder the improvement. Mirdamadi et al. [42] described a procedure for exploit-
ing simulation to determine the best production control alternatives. Events in the real system
are clustered and tagged to identify the necessity and to assign priority to the interventions. Rao
et al. [43] described a Real-time Simulation architecture for shop-floor control. The system can
collect data from the shop-floor and communicate with a scheduling controller through the MES.
It is also shown how the software infrastructure of a MES may incorporate RTS functionalities.

3. Real-time Simulation Procedure

In this section, we outline a procedure for testing Real-time Simulation applications. Let us
consider a manufacturing system on which a production policy π is implemented (e.g. priority
rule). Further, define X(t) a vector that describes the system state at time t (e.g., current buffer
levels), and T is a time horizon of interest. Let us define Θ(π,X(t), T) a generic Key Performance
Indicator (KPI) achieved in the time period [t, T] by implementing π on a production system that
is in state X(t) at time t.

In general, we can consider a moment te ∈ [0, T] in which a simulation-optimization cycle is
launched to determine the production policy to be implemented in the remaining part of the pro-
duction planning horizon [te, T]. For instance, te may define the instant in which a disruption occurs
(e.g., machine failure). Indeed, disruptive modifications may detriment system performances, and
the current production policy might not be optimal any further. Therefore, an evaluation is needed
to search for a better reaction strategy. Define Π a finite set of N + 1 policies {π0, π1, . . . , πN}
defined a-priori: π0 is the original policy implemented on the system and the remaining N policies
define alternative reaction scenarios. Further, assume that a discrete event simulation model of the
manufacturing system is available and validated. The simulation model is a digital instance of the
manufacturing system and represents the base model. At te, the digital model is synchronized with
the physical system status X(te). The performances obtained by each policy are evaluated with
digital models derived from the base simulation model. Namely, N variant models are created,
each implementing the i-th alternative policy πi. All simulation experiments start from the same
time and system state X(te). The solution corresponds to the new optimal system management
policy π∗, which satisfies:

π∗ = arg max
πi∈Π
{Θ(πi, X(t), T)}. (1)

Notice that π∗ = π0 is allowed, hence this procedure contemplates also the do-nothing possi-
bility. Finally, π∗ is implemented in the physical system at the time t′e ≥ te and the interval [te, t

′
e]

6

Reference D
at

a
H
an

dl
in

g

G
en

er
at

io
n

an
d

V
al
id

at
io
n

In
it
ia
liz

at
io
n

an
d

Sy
nc

hr
on

iz
at

io
n

P
ro

ac
ti
ve

P
ol
ic
ie
s

O
ffl

in
e

P
ro

ac
ti
ve

R
ea

ct
iv
e

F
le
xi

bi
lit

y

R
ea

l-t
im

e
R
ea

di
ne

ss

Fa
st
-f
or

w
ar

dn
es

s

Altaf et al. [17] • • •
Aydt et al. [44] • • •
Bergmann, Stelzer, and Strassburger [45] • • • •
Biesinger et al. [20] • • •
Blum and Schuh [15] • • •
Bohlmann et al. [38] • • •
Cardin and Castagna [39] • • •
Cardin and Castagna [19] • • • •
Damiani et al. [32] • • •
Framinan et al. [41] • • • •
Fujihara and Yoneda [23] • • • •
Hanisch, Tolujew, and Schulze [14] • • • • • •
Harmonosky, Farr, and Ni [40] • • • •
Kadar et al. [30] • • • • •
Katz and Manivannan [27] • • •
Khan et al. [25] • • •
Kitazawa et al. [16] • • • •
Low et al. [46] • • •
Lugaresi et al. [26] • • •
Luo, Fang and Huang [18] • • • • •
Manivannan and Banks [11] • • • • •
Martinez et al. [28] • • • •
Martinez et al. [22] • • • • •
Mirdamadi, Fontanili and Dupont [42] • • • • • •
Mousavi and Siervo [12] • • •
Nasiri, Yazdanparast and Jolai [33] • • •
Pfeiffer et al. [34] • • •
Rao et al. [43] • • •
Robertson and Perera [13] • • •
Son and Wysk [21] • • • •
Suresh, Wassick, and Ferrio [35] • • •
Talkhestani et al. [31] • • •

Challenges Operation
Modes

Features

Table 1: RTS literature items classified according to the three criteria: challenges, operation modes, features.

Figure 2: Real-time Simulation procedure illustration with two alternative production policies.

is proportional to the computation effort required to identify the new policy. Figure 2 summarizes
the temporal evolution of the procedure.

4. Proposed Models and Software Architecture

The proposed lab-scale models are part of a cyber-physical architecture with four hierarchical
levels which is shown in Figure 3. The first level is a physical model of a production system
built with structural components, sensors, actuators, and Programmable Logic Controllers (PLC).
The execution level controls the PLCs and converts the sensor outputs into structured data to be
sent to the logic level ; it also receives and releases the motors execution commands. The logic
level is related to the functions of monitoring and supervising the process and the MES services
such as the execution of production orders. The fourth level can be composed by several tools
such as simulation-optimization or modules dedicated to production management (e.g. ERP).
The communication among the different levels is done by using Internet of Things standards,
thus guaranteeing the connection between the physical and digital instances. Hence, the proposed
laboratory is effectively a CPPS on a smaller scale.

4.1. Physical System

The physical components include both structural pieces such as beams, shafts, conveyor belts,
and actuators, sensors and PLCs. The assembled models can be used to replicate the behavior of
a real production line by moving parts such as spheres or discs along a proper route and reflect
operation times by letting parts wait in a station for an appropriate time span. Exploiting physical
system models guarantees several advantages: (1) high flexibility, since it is possible to build
several kinds of production systems. (2) facilitated development, because it is relatively easy to
develop a model and the whole assembly process does not require any particular tool. Indeed,

8

Figure 3: The developed architecture with reference to the ISA95 levels.

small models can be built in a few hours by a single person while the most complex ones can
generally be completed within days. (3) easy management : it is undoubtedly easier to manage
a small scale model with respect to a real production system. The models are usually built in
a modular fashion in order to be easily disassembled, transported, and re-assembled. (4) limited
capital expenditure and re-usability : the cost of the models is orders of magnitude lower than the
investments required in a real system. Further, almost 100% of components can be reused after a
project completion. Despite the aforementioned advantages, most applications of lab-scale models
in industrial engineering focus on educational purposes [47, 48]. The physical models proposed
in this work have been built with LEGO MINDSTORMS. Next, the common components of the
proposed lab-scale manufacturing system models are presented:

• Parts are modeled by wooden discs (�25mm) marked with a color plate. The colors are
used to represent different part types and are recognized by the sensors along the system for
assigning the right setup and processing times.

• Conveyors are controlled by dedicated electrical motors and compose the transportation
system that moves the parts in the system. Each conveyor can be set to run at a specific
speed which can be changed at runtime.

• Buffers are represented by the conveyors which bring parts from a station to another. It
is possible to define a specific buffer size through the position of the downstream sensor of
each station (sensor 3 in Figure 4a), while the maximum buffer size is superiorly limited by
the length of the conveyor. Special types of buffers can be modeled as well. For instance,
Figure 7 shows a model with a three-slide buffer system, in which each part type is stored in
a dedicated slide.

• Stations are represented by dedicated areas which hold parts for an amount of time that
mimics the setup and processing operations on the parts as well as production disruptions
such as failures. A station can be in either one among three states: (1) working, (2) idle,
and (3) blocked. Figure 4a shows an example of a station built with LEGO. A station is

9

composed by an EV3 brick, three EV3 optical sensors, a part-entrance system and a motor.
The part-entrance system is in front of each station. A beam is driven by Motor 1 and
blocks the parts in front of the station to avoid the entrance of more than one part at a time.
Figure 4b summarizes the workflow of the station model. Sensor 1 lies over the part-entrance
system to recognize if a part is waiting to be worked. When the station is idle and a part
is available, the part-entrance system pushes the part inside the station. Motor 2 drives the
part inside the station. Sensor 2 is placed in the middle of the station structure to check if a
pallet has entered the machine and to distinguish the product type. As soon as the part has
entered, Motor 2 is stopped and the station is set to working state. Sensor 3 is installed over
the conveyor on the downstream conveyor and determines if the downstream buffer is full.
When the operation is done, if there is enough space on the downstream conveyor, Motor 2
downloads the part and the station is set to idle state. On the other hand, the station is set
to blocked state while the downstream buffer is full. The station model exploits three optical
sensors to control the part flows.

• Programmable Logic Controllers. Each station is controlled by an EV3 device. In
this work, EV3DEV OS has been used [49]. This open-source operating system is based
on Debian Linux and allows the execution of python scripts1 for controlling the sensors and
motors through dedicated libraries. Each EV3 is assigned an IP address in a local network
and can communicate with a centralized controller. The execution level software is explained
in section 4.2.

Further details on LEGO-based production system models can be found in related works [50].

4.2. Execution Level

This level represents the software running on the PLCs that controls the physical devices. In
this work, the execution level consists in a script which runs on each EV3 brick. The execution
level is responsible for (1) releasing start/stop commands to the motors whenever required and (2)
acquiring and sharing the sensor outputs. The motors activation is triggered by specific messages
communicating the desired actions. The sensor outputs can be conveyed in either two modes:
(1) on-demand, namely required by a higher hierarchical level or (2) on-change, hence triggered
by specific events. The code of the execution level is object-oriented. Specifically, three classes
correspond to the three main physical devices in the system: the EV3s, the motors, and the sensors.
Each class contains an attribute which is a list of all the relative instantiated objects. The classes
that have been developed (Figure 5a) are the following:

• The Ev3 class represents the logic controller. All the motors and sensors executed by the
controller are listed in the peripherals list and are contextually instantiated at startup.

• The Motor class has the attributes name and ev3motor. ev3motor is an object available in
the EV3DEV library that allows for interfacing with the motors through python commands.

• The Sensor class has the attributes name, ev3sensor and color seen. ev3sensor is an object
available in the EV3DEV library that allows controlling the EV3 sensors. color seen is an
attribute that indicates the last color identified by the sensor.

1The choice of python as programming language is not restrictive and the proposed architecture can be extended
to other languages.

10

(a) (b)

Figure 4: Example of station model: (a) physical model components, (b) logical workflow.

4.3. Logic Level

This level manages production rules, handles constraints and determines the characteristics
of the manufacturing system (e.g., station workflow as in Figure 4b). At startup, the logic level
sends a configuration message to the EV3s (ev3 config) containing a description of the physical
system logical layout (i.e. the peripherals list). Further, the logic level contains the messages
definition for communicating with the execution level and for exporting significant data towards
other management services (e.g., time-series database with the sensor data). In this work, the
logic level is a python script running on a central controller (e.g., an industrial PC). The code is
object-oriented and consists in the following classes (Figure 5b). Each class contains an attribute
which is a list of all the relative instantiated objects.

• The Motor class has two attributes: name is the motor identifier and ev3 is the name of the
EV3 device that controls the motor. Motor instances also possess methods corresponding to
the executable actions. Whenever one of these methods is called, a corresponding message
requesting the motor activation is published on the network to be processed by the execution
level (section 4.5).

• The Sensor class contains the attributes name and output, where the latter is a dictionary
with the indication of the sensor name and information read by the sensor. Moreover, the
Sensor class possesses the read method that can be used for reading sensor output (on-
demand).

• The ColorSensor class is a subclass of the Sensor class, with the addition of an instance
attribute ev3 representing the name of the EV3 that is connected to the sensor.

11

Figure 5: The developed classes for (a) the execution level and (b) the logic level.

4.4. Fourth Level

The fourth level of the proposed cyber-physical architecture includes software components ex-
ploiting the data from the system to perform several high-level operations. For instance, simulation
can be exploited for building digital twins of the physical models. The developed architecture al-
lows to communicate the data measured on the shop-floor, hence it is able to infer the system
status and use it as initial condition for simulation models. It is thus possible to simulate different
production and management policies in order to determine which one is optimal.

In this work, a digital model of the manufacturing system has been built in Simulink Simevents.
The synchronization of the base simulation model is done through csv files that contain all the
information regarding the production plan and the system status. Specifically, three files describe
the nominal processing times, the setup times, and the initial production schedule, respectively.
Further, the current system status is represented by two files containing: (1) the job currently
under process by each machine and the remaining time until each machine is expected to be in idle
state, and (2) the effective production schedule to be followed, which is read each time a machine
is idle. The files are shared between the logic level and the simulation model. Hence, the system
status can be updated continuously during production.

It is worth to notice that other software components can be added at this level. For instance,
data flows management tools are intermediary services to transfer data between two utilities.
Databases allow the storage, manipulation and query of the acquired data for obtaining useful
information: for example, the time series of a machine state may be used to derive both availability
and reliability indicators. Dashboards are applications for the real-time visualization of both raw
data and custom indicators and indexes. Cloud computing components enable the interface with
software tools such as ERP.

12

Message Topic Source Destination Purpose

data Logic Level Fourth Level Extract specific data
ev3 config Logic Level Execution Level EV3s configuration
logic config Execution Level Logic Level EV3s configuration
sensor/request Logic Level Execution Level Sensor output (on-demand)
sensor/on demand Execution Level Logic Level Sensor output (on-demand)
sensor/on change Execution Level Logic level Sensor output (on-change)
motor/action/action name Logic Level Execution Level Activate motors
stop Any Execution/Logic Level Stop software execution

Table 2: Summary of the messages exchanged across different levels of the developed architecture.

4.5. Communication Protocol

The communication between the software levels is possible thanks to an IoT infrastructure
based on the Message Queue Telemetry Transfer (MQTT) protocol. This allows the PLCs to
send and receive messages to any kind of IoT-compatible device connected to the network. Hence,
it is possible to share and store data from the real system and the architecture levels exploiting
the message-based communication protocol. Table 2 summarizes the messages exchanged. The
messages are written in the JavaScript Object Notation (JSON) format. Following we list two
significant examples. Messages from the sensor/request topic are sent from the logic level to the
execution level and they contain the request to read a specific sensor output. In this case, the
message contains the name of the sensor and the EV3 device which is controlling it. Messages of
the topic motor/action are sent from the logic level to the execution level and contain the actions
that should be executed by the motors. In the developed physical models the possible actions are
the following: start moving at a certain speed, run for a certain amount of time at a certain speed,
turn the axis to a specific angle value, run back-and-forth of a specific angle value, stop. Notice that
other actions can be designed accordingly to specific system requirements. The message content is
a JSON object containing the motor name, the name of the EV3 that controls it and a value that
describes how to execute the prescribed action.

5. Assessment of the Technology Readiness Level

Let us consider the case in which a new RTS-based technology has to be tested. It is reasonable
to reflect on the advantages of exploiting a lab-scale environment such as the one described in
section 4.1. An established way to assess the maturity of a technology is the Technology Readiness
Level (TRL). The TRL is an nine-level indicator originally developed by NASA [51] which has
been used extensively in the last 40 years to assess the maturity of a technology in the aerospace
sector [52]. Nowadays, the TRL is also used to assign grants and evaluate research proposals
such as European Horizon 2020 [53]. It is assumed that a TRL level cannot be reached before
the previous levels are obtained. The first three levels refer to the observation of basic principles,
the formulation of technology concepts and proof-of-concepts. TRL 4 is achieved if the proposed
technology is validated in a laboratory. In such a setting, the operating environment is not realistic.
For instance, consider load cells tested with lower weights or an actuator used to provide smaller
displacements than in the intended use cases. Since the proposed lab-scale models are compatible
with the ISA95 industrial standard and can incorporate IoT components, we infer that the proposed
environment allows specific component types to advance their own TRL to a level higher than 4.

13

In order to clarify our assumption, we have exploited a questionnaire developed by the US Air
Force Research Laboratory (AFRL) [54]. The questionnaire consists in 274 questions. If a newly-
developed technology can satisfy all the questions related to a TRL, it can be considered at that
readiness level. Table 3 summarizes the questions that we believe could be answered positively
by using the lab-scale models. Specifically, we selected three types of components that could be
evaluated exploiting the proposed testing environment: (1) a software component, (2) a hardware
device (e.g., gateway, sensor, PLC), and (3) a method (e.g., a scheduling algorithm). Depending
on the component type, we have identified the achievable TRL level. As a result, the lab-scale
setting can grant each tested component to advance on its own TRL. It is worth to notice that
this analysis cannot assess the TRL of the entire manufacturing system.

5.1. Software Component

If the software component is in the loop with the lab-scale model, the laboratory can be consid-
ered a relevant environment. Indeed, if the actuators and sensors can provide the same functionality
of the real system (e.g., changing routes, stopping part flows) it is possible to reproduce material
flows representative of a real system behavior. If the steady state performance of the model is com-
parable with a real system, it is possible to design tests to address specific factory requirements
such as quality control frequency or production rate. Further, the hardware processors for the lab-
scale environment can be the same one as the real environment (e.g., gateways and PLCs), with
no specific limitations concerning the integration among software tool components. The interfaces
can be described with reference to real components. For example, the cyber-physical architecture
can incorporate the same data formats required by a specific PLC model. Moreover, the whole ar-
chitecture can be verified through the established communication channels, for instance by testing
the conformance to priority rules among different hierarchical levels.

5.2. Hardware Component

In case of a hardware component such as a PLC or gateway, if the test scope is production
planning and control and the implemented functionalities of the lab-scale model correspond to
large scale systems (e.g., flow control) the laboratory setting can be considered a field environment
equivalent. Also, anomalous conditions can be designed properly in the lab-scale model to be rep-
resentative of a realistic situation. For instance, an anomalous flow in a real plant could be simply
recorded and replicated in the lab-scale model. The hardware can be tested through the connec-
tion between the lab-scale architecture levels and the field devices (e.g., serial ports). Additionally,
interfaces can be tested on the lab scale models the same way as in a realistic environment (e.g.,
through dashboard visualizations and database connections).

5.3. Method

In case the intended technology is a method for production planning and control (e.g. scheduling
algorithm), if the stream of parts replicated in the model is realistic (e.g., steady state performances
are comparable) we may consider the lab-scale environment as representative of a field environment.
Indeed, the algorithm uses data coming from the field sources as inputs and outputs, regardless
of the production system mechanics. Hence, if the installed devices are representative of the
production system of interest, logical functions can be tested on the lab-scale models with the same
expected outputs. For instance, a scheduling algorithm can be tested against realistic disruptions
replicated in the physical model.

14

TRL Question

S
o
ft

w
a
re

5

System software architecture established
External interfaces described as to source, format, structure, content, and method of support
Interfaces between components/subsystems are realistic (Breadboard with realistic interfaces)
High fidelity lab integration of system completed, ready for test in simulated environments
Some special purpose components combined with available laboratory components
Laboratory environment modified to approximate operational environment
Individual functions tested to verify that they work
Individual modules and functions tested for bugs
Integration of modules/functions demonstrated in a laboratory environment
Algorithms run on processor with characteristics representative of target environment

6

Factory acceptance testing of laboratory system in laboratory setting
Representative model/prototype tested in high-fidelity lab/simulated operational environment
Realistic environment outside the lab, but not the eventual operating environment
Prototype implementation includes functionality to handle large scale realistic problems
Algorithms partially integrated with existing hardware / software systems
Individual modules tested to verify that the module components (functions) work together
Components are functionally compatible with operational system
Representative software system or prototype demonstrated in a laboratory environment
Laboratory system is high-fidelity functional prototype of operational system
Integration demonstrations have been completed
Production demonstrations are complete

H
a
rd

w
a
re

7

Materials and manufacturing process and procedures initially demonstrated
Each system/software interface tested individually under stressed and anomalous conditions
Algorithms run on processor(s) in operating environment
Most functionality available for demonstration in simulated operational environment
Operational/flight testing of laboratory system in representational environment
Fully integrated prototype demonstrated in actual or simulated operational environment
System prototype successfully tested in a field environment.

M
e
th

o
d

8

Components are form, fit, and function compatible with operational system
Form, fit, and function demonstrated in eventual platform/weapon system
All functionality demonstrated in simulated operational environment
System qualified through test and evaluation on actual platform (DT&E completed)

Table 3: AFRL questions that can be satisfied by the proposed lab-scale models.

6. Case Study: Online Re-scheduling

This section presents the case study designed to test a real-time production planning method ex-
ploiting the proposed lab-scale physical models. The case study refers to a Flexible Manufacturing
System (FMS) with parallel machines producing different product types. The system has been
chosen with the intent to address a significant level of complexity while maintaining a size that
facilitates the understanding of the obtained results.

6.1. Manufacturing System

Let us refer to an FMS with parallel machines m ∈ M. The system has to produce a set of
jobs k ∈ K belonging to part types j ∈ J within an expected time horizon T . Let us accept the
short notation j(k) to indicate the part type to which the k-th job belongs. At any time t ∈ [0, T],
the production schedule σm(t) = {j1(k), . . . , jNm(k)} is defined as the sequence of Nm jobs to be
produced on the m-th machine from time t until completion. For instance, σ1(0) = {1, 1, 2} means
that at time t = 0 on machine m = 1 three jobs are scheduled: the first two jobs belong to part
type 1 and are followed by a job of part type 2. The machines are unreliable and can be subject
to failures at any time. Let us define three random variables: Pjm is the time to process a part of
type j on machine m, Sijm is the setup time to switch from producing a job of part type i to a job
of type j on machine m, and Fjm is the downtime that may occur during the processing of part
type j on machine m. Hence, let P̃jk, S̃ijm, F̃jm indicate the effective processing time, setup time,
and downtime, respectively. The makespan is the time in which all the products in the production
schedule have been completed. It can be written as follows:

Cmax = max
m

∑
k∈σm

(
P̃j(k),m + S̃j(k)−1,j(k),m + F̃j(k)m

) . (2)

The production schedule is determined exploiting the predictable schedule concept proposed by
Arnaout [55], which is based on the idea that a robust schedule should contain adequate safety times
to account for the expected disruptive events along the production. The safety time is proportional
to the expected failure rate of the machines and the production activities duration. For example,
if a machine is expected to spend a tenth of the available time in downtime, a predictable schedule
would include one unit of safety time every ten time units of scheduled production activity. Let us
call P̂jm the expected time to process jobs of part type j on machine m, and Ŝijm is the expected
setup time to switch from producing jobs of type i to type j on machine m. The safety time to be
accounted for each k-th job scheduled on machine m can be estimated with equation (3).

STkm = Rmδm(P̂j(k)m + Ŝj(k)−1,j(k),m)

(
1− POkm

Nm

)
∀ k ∈ σm,m ∈M (3)

where Rm is the Mean Time To Repair (MTTR) on machine m, δm is the estimated number of
breakdowns on machine m per unit time, POkm is the k-th job position in the schedule of the m-th
machine, and Nm is the total number of jobs that are scheduled on the m-th machine. Figure 6
shows an example of schedule including the variables exploited in equation (3). Once an initial
schedule is set, the system starts to produce pieces. If no failures occur before a scheduled safety
time, the latter is removed from the schedule and the next programmed job is anticipated. At
any moment t, each machine m has to produce the remaining fraction of its schedule, σm(t). The
Remaining Safety Time (RST) of a machine m at time t is defined as RSTm(t) =

∑
k∈σm(t) STkm.

16

Figure 6: Predictable schedule example on two machines with three part types.

Whenever an unexpected event occurs on a machine, the corresponding RST is diminished by the
expected failure time, F̂jm.

6.2. Rescheduling Problem

Consider the situation in which a failure occurs while a machine is working a part. Typically,
the incomplete job is simply rescheduled as the next one to be produced on the failed machine as
soon as it returns available. Alternatively, it is possible to trigger an RTS procedure (section 3) in
order to evaluate online if a better solution can be found. Let us introduce two policies based on
the application of either one of the following reaction rules.

• Base Policy π0: Right Shift Repair (RSR). The job is rescheduled on the same machine,
right after the failure has been resolved. The production schedules on the other machines do
not undergo any modification.

• Alternative Policy π1: Modified Fit Job Repair (MFJR). The Fit Job Repair (FJR)
rule has been proposed by Arnaout [55] and prescribes that a job which is unfinished due to
a failure at time te has to be assigned to the machine with the highest RST. We introduce
the Modified FJT (MFJT) which establishes that on the machine chosen by the FJT rule,
the job is to be rescheduled in a position that also minimizes the expected setup time.

For example, consider the case in which machine m = 1 fails at te = 100s and a job of type
j = 2 has to be rescheduled (Figure 6). According to RSR rule, the job will be rescheduled on
the same machine just after the end of the downtime, whilst the MFJR rule would reschedule it
on m = 2, because it is the one with the highest RST. Further, since the schedule on the second
machine contains jobs of type j = 2, the rescheduled job will be programmed after any job so to
guarantee no additional setup time.

17

Figure 7: FMS model built with LEGO MINDSTORMS.

6.3. Lab-scale Model

In this case study, we refer to the production planning on an FMS composed by three non-
identical parallel machines (|M| = 3). 21 jobs of three part types have to be produced (|J| = 3).
The part type is modeled by three different wooden discs colors: blue, red, and white. Each part
type can be worked by any of the three machines. The FMS physical model has been built with
LEGO MINDSTORM components. Figure 7 shows the developed model together with the material
flow. The input-output buffer can host 21 parts, 7 per type. In this buffer, parts are hosted in
three dedicated sliders and can be released into the system in any sequence.

The initial schedule is shown in Table 4. At startup, the initial position of all the discs is in
the input-output buffer. The buffer releases the discs into the system according to the production
schedule. A job is released as soon as one of the machines is idle. If all the machines are busy,
the buffer does not release jobs. The processing and setup times follow uniform distributions as
indicated in Table 5, and are assigned each time a part enters a machine. Namely, each machine
holds a disc for a duration equal to the corresponding sampled production time, and – similarly – it
remains idle during setup times. At the end of the assigned processing time, each machine releases
the disc on the downstream conveyor and returns to the idle state. In the event of failures, the
downtime is modeled as a processing time. Specifically, the involved disc remains in the machine
for a duration equal to the downtime before it is sent back to the input-output buffer. The
corresponding job is considered as unfinished. The choice of uniform distributions is in accordance
with Arnaout [56], who reminds that high variances assure disadvantageous conditions for testing
scheduling algorithms.

6.4. Experimental Setting

In order to prove the effectiveness of online rescheduling, we have performed experiments based
on the application of the RTS procedure presented in section 3. We have exploited a discrete event
simulation model built in Simulink Simevents and synchronized with the system as base model.

18

Machine: m Initial Schedule: σm(0)

1 1 1 2 2 2 3 3
2 3 3 3 1 1 2 2
3 2 2 3 3 1 1 1

Table 4: Parameters of the FMS model – Initial schedule.

Processing time [s]

Part Type j: Pj,1 Pj,2 Pj,3

1 UNIF(10,12) UNIF(12,18) UNIF(5,9)
2 UNIF(12,14) UNIF(14,20) UNIF(6,10)
3 UNIF(14,16) UNIF(16,22) UNIF(7,11)

Setup time: Sij1 [s]

To j: 1 2 3

From i:
1 0 UNIF(28,32) UNIF(24,32)
2 UNIF(24,40) 0 UNIF(20,28)
3 UNIF(28,36) UNIF(30,32) 0

Setup time: Sij2 [s]

To j: 1 2 3

From i:
1 0 UNIF(24,40) UNIF(20,32)
2 UNIF(30,40) 0 UNIF(20,32)
3 UNIF(30,40) UNIF(24,40) 0

Setup time: Sij3 [s]

To j: 1 2 3

From i:
1 0 UNIF(30,40) UNIF(26,32)
2 UNIF(36,44) 0 UNIF(28,32)
3 UNIF(40,48) UNIF(32,40) 0

Table 5: Parameters of the FMS model – Processing and Setup times.

The physical system is set to produce according to the initial production schedule. If the schedule
is modified during production, the system will produce part types accordingly until the production
plan is completed. We have designed two specific cases in which a rescheduling activity is needed
during production.

• Case A: failure at deterministic time. In this case, machine m = 1 fails one time at
te = 100s for a downtime of 60 s. This single scenario is replicated ten times, i.e. the lab-scale
physical system is deployed in 10 independent experiments.

• Case B: failure at stochastic time. In this setting, three different failure scenarios are
considered, one for each machine. In each scenario, one failure happens at a time te, which
is sampled from an exponential distribution with mean 360s. The failure duration is 70 s.
Each scenario is replicated three times and the replications are independent.

Rescheduling is triggered by machine failures. The scheduler is a software at the fourth level
of the architecture (section 4.4) and consists of a MATLAB script that controls the Real-time
Simulation procedure and communicates the updated schedule to the logic level. Namely, when
a failure occurs on a machine, the MATLAB script initializes the base simulation model to the
system status at the failure moment te. Then, two variants of this model are used to simulate the
production following the schedules generated by both the reaction rules RSR and MFJR (section
6.2). For each rule in each scenario, the simulations are replicated three times in order to account
for the noise of machine behavior. If either one of the rules has obtained significantly better results
than the other in terms of obtained makespan, the corresponding schedule is executed in the system.

The implementation is done by modifying the production schedule files. Let us define C
(S)
max(πi)

the makespan obtained in a variant simulation model of the system by applying the production
policy πi. Hence, the optimal reaction rule which will be applied in the real system satisfies the
following:

π∗ = arg min
πi∈{RSR,MFJR}

{C(S)
max(πi)}. (4)

The effective makespan measured on the lab-scale physical system is C
(L)
max(π∗). Hence, the

duration of each run is the effective makespan. All the experiments have been done using a laptop
with a 1.60GHz CPU and 8.00GB memory. Section 7 presents the numerical results.

7. Numerical Results

The proposed lab-scale model and the related architecture have been used to assess the advantage
of the rescheduling approach described in section 6.2 in the two cases listed in section 6.4. In order
to assess the successful implementation of the rescheduling optimal policy, a full factorial design
has been performed to compare the obtained results in terms of makespan Cmax with the following
factors:

• Rescheduling is a two-level factor that describes the following conditions: (1) Rescheduling
OFF: rescheduling is not allowed and if a failure occurs the base policy is always applied

(i.e. RSR). Hence, the makespan in this case is always C
(L)
max(RSR). (2) Rescheduling ON:

both the RSR and the MFJR rules can be applied. In accordance with the RTS procedure,

20

Simulation (S) Lab-scale model (L)

Resch. Case Scenario C̄
(S)
max(RSR) 95% C.I. C̄

(S)
max(MFJR) 95% C.I. π∗ C̄

(S)
max(π∗) 95% C.I.

ON

A - 404.9 (403.7, 406.2) 363.2 (362.3, 364.2) MFJR 364.4 (362.5, 366.3)

B
1 404.8 (400.8, 408.7) 379.3 (376.7, 381.9) MFJR 373.0 (367.0, 379.1)
2 370.3 (368.8, 371.7) 375.7 (373.2, 378.3) RSR 368.6 (365.0, 372.2)
3 449.2 (447.2, 451.1) 407.3 (404.9, 409.7) MFJR 411.3 (398.0, 424.5)

OFF

A - 404.9 (403.7, 406.1) 363.2 (362.3, 364.2) RSR 407.3 (404.9, 409.7)

B
1 403.5 (399.2, 407.9) 372.4 (368.1, 376.7) RSR 407.1 (403.5, 410.8)
2 370.3 (368.8, 371.7) 375.7 (373.2, 378.3) RSR 368.6 (365.0, 372.2)
3 449.5 (446.7, 452.3) 406.7 (404.4, 409.1) RSR 454.8 (446.1, 463.6)

Table 6: Cases A and B – Comparison between the makespan foreseen by the simulation model (S) and the one measured on
the lab-scale model (L).

Factor DF H-Value P-Value

Evaluation 1 0.9 0.344
Rescheduling 1 29.27 0.000

Table 7: Case A – Kruscall-Wallis test results on the two factors.

the reaction rule obtaining the lowest makespan in the digital model is applied online in the
physical system.

• Evaluation tool is a factor that indicates if the makespan has been obtained by the simulation
model (i.e. the average value of three online simulation runs) or the physical system. Hence,
the factor has two levels: (S) Simulation model, (L) Lab-scale physical model.

• Scenario is a factor only used for case B. It has three levels that correspond to the three
respective failure scenarios: 1, 2, and 3 (section 6.4).

Table 6 summarizes the results that have been obtained in each experimental condition in terms
of average makespan C̄max. The next two sections comment on the numerical results.

7.1. Case A: Deterministic Failure

In this case, the production is affected by a failure at te = 100s. Ten replications are done for
each experimental condition. Since in each replication three simulation runs are performed, this
experiment counts 60 data points for simulation and 20 for the physical model. Figure 8 shows
two of the schedules generated by the two reaction rules. The MFJR rule always resulted more
advantageous than RSR and has been applied online. The values of makespan measured on the
physical system and foreseen by the simulation model can be found in Table 8.

Figures 9a and 9b show the main effects plot and the interaction plot of the results obtained in
this case, respectively. Due to non normality of ANOVA residuals, we performed a non parametric
test (i.e. Kruscall-Wallis) on the two factors separately. Table 7 shows the obtained results. The
Evaluation tool factor is not significant and it demonstrates the alignment between the physical
system and its digital counterpart. Hence, we may infer that the optimal policy found on the
simulation model is also optimal on the physical system. This is confirmed by the numerical
results of this case because in all the experiments the MFJR rule outperformed RSR both in
the digital and physical models. The Rescheduling factor is significantly influencing the response.

21

Figure 8: Case A – The schedules generated by RSR and MFJR rules in response to the failure on m = 1.

(a) (b)

Figure 9: Case A – Main effects plot (a) and interaction plot (b) for Cmax depending on the two factors: rescheduling condition,
evaluation tool.

Figure 10: Case A – Box plots comparing the actual makespan obtained in the conditions (1) Rescheduling ON and (2)
Rescheduling OFF (10 data samples).

Figure 10 shows the box plots of the makespan obtained in the two rescheduling conditions for Case
A. The average difference is 42.91s and it is contained in the 95% confidence interval [40.05; 45.77].
Finally, from the numerical results we can conclude that the online RTS-based rescheduling led to
a significant improvement of the system performance.

7.2. Case B: Stochastic Failure

In this case, three replications are made in each experimental condition. For each replicate,
three simulations for both the rules are performed. Hence, this experiment counts 18 data points
for the physical system and 54 for the digital model. The values of Cmax measured on the physical
system and foreseen by the simulation model are collected in Table 10.

Figures 11a and 11b show the main effects plot and the interaction plot of the makespan
values depending on the experimental factors, respectively. Due to missed normality of ANOVA
residuals, a non-parametric test (i.e. Kruscall-Wallis) has been performed to test the influence of
the three factors. Table 9 shows the results. The factors Rescheduling and Scenario are significantly
influencing the makespan results, while the Evaluation tool factor is not significant. Also in this
case, the alignment between the digital and physical model is demonstrated by the fact that the
Evaluation tool factor is not significantly influencing the makespan results. Figure 11b shows that
there is an interaction between the factors Rescheduling and Scenario. Indeed, in this case, MFJR
rule has not always been applied online. Specifically, in the second scenario, a failure occurs on
m = 3 at te = 46s on a job of part type j = 2. Given the system state, the most performing decision
is to reschedule the failed job according to the RSR rule. Hence – as expected – in the second
scenario there is no significant difference between enabling rescheduling or not. This demonstrates
that even if a specific reaction rule could prove to be better on average, it may still perform worse
in certain settings. Real-time Simulation is able to identify these cases and it allows for a prompt
evaluation of the best decision to take so that the performance of a system in a particular status
can be maximized.

23

Rescheduling Replication C
(S)
max(RSR) C

(S)
max(MFJR) C

(L)
max(RSR) C

(L)
max(MFJR) t′e − te

ON

1

403.4 360.8 369.2 57.9
402.2 362.7
409.3 366.3

2

402.7 360.1 366.0 54.5
401.5 362.0
408.6 365.6

3

404.1 361.5 362.8 51.2
402.8 363.3
409.9 366.9

4

403.8 361.2 362.1 58.4
402.5 363.0
409.6 366.7

5

400.5 357.9 366.2 53.7
399.3 359.8
406.3 363.4

6

404.3 361.7 361.7 52.7
403.0 363.5
410.1 367.2

7

404.1 361.5 366.0 53.7
402.8 363.3
409.9 366.9

8

404.2 361.6 361.2 51.2
402.9 363.4
410.0 367.0

9

403.8 361.2 366.6 53.8
402.6 363.1
409.6 366.7

10

403.6 361.0 362.7 58.3
402.4 362.9
409.4 366.5

OFF

1

403.4 360.8 408.4 57.8
402.2 362.7
409.2 366.3

2

402.7 360.1 412.9 53.2
401.4 361.9
408.5 365.5

3

404.0 361.4 406.4 52.9
402.7 363.2
409.8 366.8

4

403.8 361.2 401.4 57.4
402.6 363.1
409.6 366.7

5

400.5 357.9 408.7 53.6
399.2 359.7
406.3 363.4

6

404.3 361.7 405.6 52.0
403.0 363.5
410.1 367.1

7

404.1 361.5 406.5 53.1
402.8 363.3
409.9 366.9

8

404.2 361.6 408.9 52.1
402.9 363.4
410.0 367.0

9

403.8 361.2 403.9 54.7
402.5 363.0
409.6 366.7

10

403.6 361.0 411.0 58.1
402.4 362.9
409.5 366.5

Table 8: Case A – Experimental results.

Factor DF H-Value P-Value

Scenario 2 26.06 0.000
Rescheduling 1 3.85 0.050
Evaluation 1 0.03 0.874

Table 9: Case B – Kruscall-Wallis test results on the three factors.

Rescheduling Scenario Replication C
(S)
max(RSR) C

(S)
max(MFJR) F̃ C

(L)
max(RSR) C

(L)
max(MFJR)

ON

1

1

398.2 379.0 169.0 374.9
410.0 381.7
402.9 379.8

2

288.7 262.2 168.9 374.1
276.6 256.1
280.7 257.9

3

403.0 375.0 168.8 370.3
412.1 379.9
402.3 373.7

2

1

368.8 374.7 46.0 366.4
365.2 376.4
368.5 373.6

2

373.5 373.5 46.0 365.3
368.8 384.1
368.3 388.3

3

372.7 371.3 46.0 368.6
369.2 373.3
372.7 379.4

3

1

447.6 405.2 178.7 413.3
449.5 402.4
453.1 412.0

2

445.3 407.1 178.8 415.4
449.3 412.1
447.4 408.5

3

450.2 406.8 178.7 405.3
452.9 406.8
447.8 405.4

OFF

1

1

401.4 374.9 169.0 408.5
399.1 366.6
415.9 376.9

2

398.6 371.3 169.0 405.6
404.8 380.1
406.1 377.3

3

397.3 372.6 169.0 407.5
403.1 362.6
405.8 369.4

2

1

370.8 369.9 45.9 374.9
368.5 370.8
374.3 372.9

2

377.0 374.3 46.0 367.3
369.9 375.7
367.0 378.1

3

367.3 381.7 45.9 369.5
371.2 377.8
372.0 368.1

3

1

449.1 408.2 178.8 454.1
443.5 402.2
451.8 410.6

2

448.9 404.3 178.8 458.7
451.3 407.2
447.1 411.7

3

456.3 406.4 178.7 451.8
451.2 405.8
447.0 404.5

Table 10: Case B – Experimental results.

(a) (b)

Figure 11: Case B – Main effects plot (a) and Interaction Plot (b) for Cmax depending on the three factors: Scenario,
Rescheduling condition, Evaluation tool.

8. Conclusions

In this work, we have proposed a lab-scale environment that exploits physical models of manufac-
turing systems to test production planning and control approaches based on Real-time Simulation.
By exploiting easy-to-build components such as LEGO, several types of manufacturing systems
can be translated into lab-scale models in a very short time. The advantage of exploiting such a
laboratory has been evaluated in terms of the reachable Technology Readiness Level and by using
the models for testing an online rescheduling problem. The case study proved that RTS-based
production planning and control approaches can be assessed on lab-scale models of common manu-
facturing systems. Differently from tests performed on real factories, the proposed lab-scale models
allow for a much more versatile and cost-effective setting, while maintaining the information loop
through industrial components. Hence, we believe the proposed laboratory will be beneficial in
several industrial applications. For instance, the design of new production control algorithms could
include a testing phase exploiting the physical models. Similarly, new devices such as PLCs could
benefit from trials on lab-scale models. Several issues still need to be solved. The synchronization
between digital and physical models theoretically allows for the online identification of the optimal
production policy. However, the computation time represents a major obstacle. Indeed, although
in this work the online comparison has involved two alternative policies, the time span t′e − te
has lied between 51 and 59 seconds, which is very close to the downtime duration. In general,
simulation time is non negligible and it represents one of the most important challenges of RTS:
the number of replications are superiorly limited by the necessity of a timely application of the
prescribed actions on the system. On the other hand, reducing the simulation effort may weaken
the confidence in the simulation results. Hence, more work is needed for testing production plan-
ning problems requiring higher computation effort. In the future, we aim at providing more case
studies based on different types of manufacturing systems and introducing more production poli-
cies alternatives to explore the applicability boundaries. Another interesting development of this
work is the study and formalization of the component types which can benefit from an increased
TRL. The TRL that can be obtained by an integrated system can also be assessed, by taking into
account the interactions and compatibility between all connected components and digital models.

26

Acknowledgements

The construction of the physical model and the related software architecture has been partially
funded by the Sme.UP Group (www.smeup.com).

References

[1] Fei Tao, Qinglin Qi, Ang Liu, and Andrew Kusiak. Data-driven smart manufacturing. Journal of Manufacturing
Systems, 48:157 – 169, 2018. Special Issue on Smart Manufacturing.

[2] Elisa Negri, Stefano Berardi, Luca Fumagalli, and Marco Macchi. Mes-integrated digital twin frameworks.
Journal of Manufacturing Systems, 56:58 – 71, 2020.

[3] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn,
and K. Ueda. Cyber-physical systems in manufacturing. CIRP Annals, 65(2):621–641, 2016.

[4] Mohsen Moghaddam, Marissa N. Cadavid, C. Robert Kenley, and Abhijit V. Deshmukh. Reference architectures
for smart manufacturing: A critical review. Journal of Manufacturing Systems, 49:215 – 225, 2018.

[5] Rafal Cupek, Adam Ziebinski, Lukasz Huczala, and Huseyin Erdogan. Agent-based manufacturing execution
systems for short-series production scheduling. Computers in Industry, 82:245–258, 2016.

[6] Daniel Rossit and Fernando Tohmé. Scheduling research contributions to Smart manufacturing. Manufacturing
Letters, 15:111–114, 2018.

[7] Mengnan Liu, Shuiliang Fang, Huiyue Dong, and Cunzhi Xu. Review of digital twin about concepts, technologies,
and industrial applications. Journal of Manufacturing Systems, 2020.

[8] Giovanni Lugaresi and Andrea Matta. Real-time simulation in manufacturing systems: Challenges and research
directions. In Proceedings of the 2018 Winter Simulation Conference, pages 3319–3330. IEEE, 2018.

[9] Magnus Akerman. Implementing Shop Floor IT for Industry 4.0. PhD thesis, 2018.
[10] Qinglin Qi, Fei Tao, Tianliang Hu, Nabil Anwer, Ang Liu, Yongli Wei, Lihui Wang, and AYC Nee. Enabling

technologies and tools for digital twin. Journal of Manufacturing Systems, 2019.
[11] S. Manivannan and J. Banks. Design of a knowledge-based on-line simulation system to control a manufacturing

shop floor. IIE Transactions, 24(3):72–83, 1992.
[12] A Mousavi and HRA Siervo. Automatic translation of plant data into management performance metrics: a case

for real-time and predictive production control. International Journal of Production Research, 55(17):4862–4877,
2017.

[13] N Robertson and T Perera. Automated data collection for simulation? Simulation Practice and Theory,
9(6-8):349–364, 2002.

[14] André Hanisch, Juri Tolujew, and Thomas Schulze. Initialization of online simulation models. In Proceedings
of the 2005 Winter Simulation Conference, pages 1795–1803. IEEE, 2005.

[15] Matthias Blum and Guenther Schuh. Towards a Data-oriented Optimization of Manufacturing Processes. In
Proceedings of the 19th International Conference on Enterprise Information Systems, Porto, Portugal, pages
26–29, 2017.

[16] Masaki Kitazawa, Satoshi Takahashi, Toru B Takahashi, Atsushi Yoshikawa, and Takao Terano. Real time
workers’ behavior analyzing system for productivity measurement using wearable sensor. SICE Journal of
Control, Measurement, and System Integration, 10(6):536–543, 2017.

[17] Mohammed Sadiq Altaf, Hexu Liu, Mohamed Al-Hussein, and Haitao Yu. Online simulation modeling of pre-
fabricated wall panel production using RFID system. In Proceedings of the 2015 Winter Simulation Conference,
pages 3379–3390. IEEE, 2015.

[18] Hao Luo, Ji Fang, and George Q Huang. Real-time scheduling for hybrid flowshop in ubiquitous manufacturing
environment. Computers & Industrial Engineering, 84:12–23, 2015.

[19] Olivier Cardin and Pierre Castagna. Proactive production activity control by online simulation. International
Journal of Simulation and Process Modelling, 6(3):177–186, 2011.

[20] Florian Biesinger, Davis Meike, Benedikt Kraß, and Michael Weyrich. A digital twin for production planning
based on cyber-physical systems: A Case Study for a Cyber-Physical System-Based Creation of a Digital Twin.
Procedia CIRP, 79:355–360, 2019.

[21] Young Jun Son and Richard A Wysk. Automatic simulation model generation for simulation-based, real-time
shop floor control. Computers in Industry, 45(3):291–308, 2001.

[22] Gerardo Santillán Mart́ınez, Seppo Sierla, Tommi Karhela, and Valeriy Vyatkin. Automatic Generation of a
Simulation-based Digital Twin of an Industrial Process Plant. In Proceedings of the 44th Annual Conference

27

www.smeup.com

of the IEEE Industrial Electronics Society, IECON, pages 3084–3089. Institute of Electrical and Electronics
Engineers, 2018.

[23] Mutsumi Fujihara and Kiyoshi Yoneda. Simulation through explicit state description and its application to
semiconductor fab operation. In Proceedings of the 1992 Winter Simulation Conference, pages 899–907. ACM,
1992.

[24] Wayne J Davis. On-line simulation: Need and evolving research requirements. In J. Banks, editor, Handbook
of Simulation, pages 465–516. New York: John Wiley & Sons, 1998.

[25] Adnan Khan, Martin Dahl, Petter Falkman, and Martin Fabian. Digital Twin for Legacy Systems: Simula-
tion Model Testing and Validation. In 2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), pages 421–426. IEEE, 2018.

[26] Giovanni Lugaresi, Gianluca Aglio, Federico Folgheraiter, and Andrea Matta. Real-time validation of digital
models for manufacturing systems: a novel signal-processing-based approach. In 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE), pages 450–455. IEEE, 2019.

[27] D. Katz and S. Manivannan. Exception management on a shop floor using online simulation. In Proceedings of
the 1993 Winter Simulation Conference, pages 888–896. IEEE, 1993.

[28] Gerardo Santillán Mart́ınez, Tommi Karhela, Reino Ruusu, Tuomas Lackman, and Valeriy Vyatkin. Towards
a systematic path for dynamic simulation to plant operation: Opc ua-enabled model adaptation method for
tracking simulation. In IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, pages
5503–5508. IEEE, 2017.

[29] Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol. Discrete-Event System Simulation. Upper
Saddle River, New Jersey: Prentice Hall, 3 edition, 2000.

[30] Botond Kádár, A Lengyel, László Monostori, Y Suginishi, András Pfeiffer, and Y Nonaka. Enhanced control
of complex production structures by tight coupling of the digital and the physical worlds. CIRP Annals,
59(1):437–440, 2010.

[31] Behrang Ashtari Talkhestani, Nasser Jazdi, Wolfgang Schloegl, and Michael Weyrich. Consistency check to
synchronize the Digital Twin of manufacturing automation based on anchor points. Proc. CIRP, 72:159–164,
2018.

[32] L Damiani, M Demartini, P Giribone, M Maggiani, R Revetria, and F Tonelli. Simulation and digital twin based
design of a production line: A case study. In Lecture Notes in Engineering and Computer Science, volume 2,
2018.

[33] Mohammad Mahdi Nasiri, Reza Yazdanparast, and Fariborz Jolai. A simulation optimisation approach for
real-time scheduling in an open shop environment using a composite dispatching rule. International Journal of
Computer Integrated Manufacturing, 30(12):1239–1252, 2017.

[34] András Pfeiffer, B Kádár, L Monostori, and Zoltán Vén. Situation detection in production control by applying
on-line simulation. In 5th International Conference on Digital Enterprise Technology, DET 2008, pages 225–241.
Publibook, 2008.

[35] Pradeep Suresh, John M Wassick, and Jeff Ferrio. Real time performance measurement for batch chemical
plants. In Proceedings of the 2011 Winter Simulation Conference, pages 2330–2340. IEEE, 2011.

[36] Iracyanne Retto Uhlmann and Enzo Morosini Frazzon. Production rescheduling review: Opportunities for
industrial integration and practical applications. Journal of Manufacturing Systems, 49:186–193, 2018.

[37] Guilherme E. Vieira, Jeffrey W. Herrmann, and Edward Lin. Rescheduling manufacturing systems: A framework
of strategies, policies, and methods. Journal of Scheduling, 6(1):39–62, 2003.

[38] S Bohlmann, M Becker, S Balci, H Szczerbicka, and E Hund. Online simulation based decision support system
for resource failure management in multi-site production environments. In 2013 IEEE 18th Conference on
Emerging Technologies Factory Automation (ETFA), pages 1–4, 2013.

[39] Olivier Cardin and Pierre Castagna. Myopia of service oriented manufacturing systems: benefits of data cen-
tralization with a discrete-event observer. In Service Orientation in Holonic and Multi-Agent Manufacturing
Control, pages 197–210. Springer, 2012.

[40] Catherine M Harmonosky, Robert H Farr, and Ming-Chuan Ni. Selective rerouting using simulated steady state
system data. In S. Andradottir et al., editor, Proceedings of the 1997 Winter Simulation Conference, pages
1293–1298, Piscataway, New Jersey, 1997. IEEE.

[41] Jose M Framinan, Paz Perez-Gonzalez, and Victor Fernandez-Viagas Escudero. The value of real-time data in
stochastic flowshop scheduling: A simulation study for makespan. In Proceedings of the 2017 Winter Simulation
Conference, pages 3299–3310. IEEE, 2017.

[42] Samieh Mirdamadi, Franck Fontanili, and Lionel Dupont. Discrete event simulation-based real-time shop floor
control. In Proceedings of the 2007 European Conference on Modelling and Simulation, June 4th-6th, Prague,

28

Czech Republic, pages 235–240, 2007.
[43] Yunqing Rao, Fei He, Xinyu Shao, and Chaoyong Zhang. On-line simulation for shop floor control in manu-

facturing execution system. In C. Xiong et al., editor, Intelligent Robotics and Applications. Lecture Notes in
Computer Science, volume 5315, pages 141–150. Berlin, Heidelberg: Springer, 2008.

[44] Heiko Aydt, Wentong Cai, and Stephen John Turner. Dynamic specialization for symbiotic simulation-based
operational decision support using the evolutionary computing modelling language (ECML). Journal of Simu-
lation, 8(2):105–114, 2014.

[45] Sören Bergmann, Sören Stelzer, and Steffen Straßburger. Initialization of simulation models using CMSD. In
Proceedings of the 2011 Winter Simulation Conference (WSC), pages 2223–2234. IEEE, 2011.

[46] Malcolm Yoke Hean Low, Kong Wei Lye, Peter Lendermann, Stephen John Turner, Reman Tat Wee Chim,
and Surya Hadisaputra Leo. An Agent-based Approach for Managing Symbiotic Simulation of Semiconductor
Assembly and Test Operation. In Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’05, pages 85–92, New York, NY, USA, 2005. ACM.

[47] Young Jae Jang and Vina Sari Yosephine. Lego robotics based project for industrial engineering education.
International Journal of Engineering Education, 32(3):1268–1278, 2016.

[48] Giovanni Lugaresi, Nicla Frigerio, Mengyi Zhang, Ziwei Lin, and Andrea Matta. Active learning experience
in simulation class using a legoR©-based manufacturing system. In Proceedings of the 2019 Winter Simulation
Conference, pages 3307–3318. IEEE.

[49] ev3dev, accessed July 1, 2020. http://www.ev3dev.org.
[50] Giovanni Lugaresi, Davide Travaglini, and Andrea Matta. A Lego Manufacturing System As Demonstrator for

a Real-Time Simulation Proof of Concept. In Proceedings of the 2019 Winter Simulation Conference. IEEE,
2019.

[51] Stanley R Sadin, Frederick P Povinelli, and Robert Rosen. The nasa technology push towards future space
mission systems. In Space and Humanity, pages 73–77. Elsevier, 1989.

[52] John C Mankins. Technology readiness levels. White Paper, April, 6:1995, 1995.
[53] Mihály Héder. From nasa to eu: The evolution of the trl scale in public sector innovation. The Innovation

Journal, 22(2):1–23, 2017.
[54] William L Nolte. Trl calculator. In AFRL Assessing Technology Readiness Development Seminar, 2005.
[55] Jean Paul Arnaout. Rescheduling of parallel machines with stochastic processing and setup times. Journal of

Manufacturing Systems, 33(3):376–384, 2014.
[56] Jean Paul Arnaout. Heuristics for the maximization of operating rooms utilization using simulation. Simulation,

86(8-9):573–583, 2010.

29

http://www.ev3dev.org

	Introduction
	Related Literature
	Data Handling
	Model Generation and Validation
	Model Synchronization and Initialization
	Proactive Policies

	Real-time Simulation Procedure
	Proposed Models and Software Architecture
	Physical System
	Execution Level
	Logic Level
	Fourth Level
	Communication Protocol

	Assessment of the Technology Readiness Level
	Software Component
	Hardware Component
	Method

	Case Study: Online Re-scheduling
	Manufacturing System
	Rescheduling Problem
	Lab-scale Model
	Experimental Setting

	Numerical Results
	Case A: Deterministic Failure
	Case B: Stochastic Failure

	Conclusions

