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Abstract

The latest developments in industry involved the deployment of digital twins for both long and short term
decision making, such as supply chain management, production planning and control. Modern production
environments are frequently subject to disruptions and consequent modifications. As a result, the devel-
opment of digital twins of manufacturing systems cannot rely solely on manual operations. Recent con-
tributions proposed approaches to exploit data for the automated generation of the models. However, the
resulting representations can be excessively accurate and may also describe activities that are not significant
for estimating the system performance. Generating models with an appropriate level of detail can avoid
useless efforts and long computation times, while allowing for easier understanding and re-usability. This
paper proposes a method to automatically discover manufacturing systems and generate adequate digital
twins. The relevant characteristics of a production system are automatically retrieved from data logs. The
proposed method has been applied on two test cases and a real manufacturing line. The experimental results
prove its effectiveness in generating digital models that can correctly estimate the system performance.

Keywords: Digital Twins; Industry 4.0; Simulation; Process Mining.

1. Introduction

Digital twins have been considered as key components for the success of Industry 4.0 initiatives [1]. In
production environments, digital twins have been exploited in processes such as assembly, scheduling, ma-
chining, and logistics, with the goal to reach high production efficiency [2]. The correct implementation of
digital twins is claimed to make production processes more flexible, adaptable and predictable, thanks to
the possibility of data collection not only from physical systems, but also from digital instances [3]. In gen-
eral, virtual representations of physical resources can store information such as kinematic data, interfaces,
production events, and performance indicators [4].

Within a production planning and control scope, discrete event simulation models can constitute the
digital counterparts of manufacturing systems, and may be used for both long term planning and short
term decision making. Real-time Simulation is a concept that involves using simulation as digital model
of a system with the goal to take accurate decisions based on the current system state [5]. Monostori et
al. [6] described the operation modes for discrete event simulation models in production systems: (1)
offline simulation is used for sensitivity analysis and robustness evaluation of production rules before their
implementation, (2) proactive simulation is used online with the aim of defining corrective actions after the
recognition of potential deviations from the optimal plan, and (3) reactive simulation, which is used online
for the evaluation of alternatives following disruptions such as machine failures or unplanned maintenance
interventions.
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The ability to take appropriate decisions is strongly based on the assumption that models properly
aligned with the real system are either already available or obtainable within the decision time epoch [7].
Therefore, the time to develop a new model may hinder the exploitation of a digital twin along the produc-
tion systems life cycle [8]. Indeed, manufacturing systems evolve regularly due to external drivers such as
the irregularity of supplies or the availability of new disruptive technologies. Also, more frequent changes
may occur. For instance, robots can be moved from one system to another, manufacturing cells can be
reconfigured for new products, production lines may be re-shaped following new part-mixes. Further, the
increasing demand for customized products highlights the necessary ability to promptly adapt manufactur-
ing processes and resources [9].

Industry 4.0 contributed to the rise of new technologies for data acquisition, storing and communica-
tion, allowing for the knowledge of the shop floor status at anytime [10]. The availability of real-time data
suggests that if a model could be generated from available data in the manufacturing system, the develop-
ment phase may be significantly shortened, enabling digital twins to be automatically aligned with their
real counterparts [11]. Traditional model generation techniques use the available data to estimate model
parameters, such as inter arrival times or rework ratios. These approaches are based on an existing model
structure, which is typically derived from previous knowledge or from interviews with company experts
[12]. More recent approaches introduced the exploitation of process mining techniques [13], which enable
to retrieve the system topology from the manufacturing system data [14].

Despite the aforementioned improvements, practical implementations of automated model generation
remain scarce. One of the reasons is the difficulty in adapting the level of detail of the model [15]. Indeed,
the availability of a digital model may not be enough if it is excessively detailed. Figure 1 graphically
explains one of the possible outcomes of an automated model generation procedure, using as example the
three-station production line shown in figure 1a. Conveyors bring pallets from one station to another, and
are equipped with sensors that record the correct advancement of pallets. If all stations and sensors generate
data, figure 1b shows a possible outcome of an automated data-based model generation. The result is that
sensors are treated as activities, thus adding unnecessary operations to the model. Let us assume to be
interested in time-related performance indicators such as the system time. In this case, the information from
the sensors is redundant since the elements holding the work-pieces are the three stations. Hence, for the
intended goal, the model depicted in figure 1c is a more reasonable abstraction of the process, and much
closer to what an experienced modeler would choose. Therefore, the ability to tune – or adjust – the model
level of detail is also desirable in an automated modeling procedure. In manufacturing applications, model
adaptation may refer not only to the model parameters, but also to the system layout and logical structure.
A tuned model is easily understandable by the user, and it has a higher probability of being reused [16].

This paper proposes a method for obtaining simulation-based digital twins starting from the data logs of
manufacturing systems. The contribution of the paper is twofold. First, it outlines a procedure to automat-
ically discover a manufacturing system from the production data and building a discrete event simulation
model for performance estimation. The model generation is inclusive of both the production system logical
structure and its parameters. In addition, this work provides a method to tune the model toward a desired
level of detail, removing complexities that may hinder both the understandability and re-usability of the
model for taking production planning and control decisions.

The rest of the paper is organized as follows: section 2 summarizes the related literature about model
generation and tuning for manufacturing systems. Section 3 introduces the model generation procedure.
Then, section 4 describes the proposed method for model tuning. Section 5 outlines the numerical exper-
iments that we have done for testing the proposed method together with the numerical results. Finally, in
section 6, we discuss on the limitations and the next developments of this research.

2



Figure 1: (a) Sequential 3-station production line; (b) graph model with 5 nodes; (c) graph model with 3 nodes.

2. State of the Art

In this section, we list significant contributions from the literature regarding: (1) model generation, in which
a dataset from the real manufacturing system is used to build a model that can reproduce the system structure
and parameters, and (2) model tuning, in which simulation models are modified with the goal to highlight
most significant information. Then, we discuss on the research gap that we wish to cover with this paper.

2.1. Model Generation
The automated generation of a simulation model typically starts with data collection. Data are gathered

from the system and organized in event logs which record the production steps followed by each part and
the corresponding time stamps. Starting from the available data, the material flows are identified. Given the
sequence of activities performed by each part in the system, the structure of the production process can be
inferred (e.g., system layout, operations precedences); hence, the system topology is discovered. Further,
processing and waiting times can be retrieved from the data, together with the parameters of the statistical
distributions describing the production dynamics. The control policies applied in the manufacturing system
(e.g., routing and dispatching rules) can also be retrieved. Finally, the model may be converted to another
modeling framework (e.g., from graph model to Petri Net) as well as to executable code, which allows for
the validation of the obtained simulation models before being used to take decisions. We may divide model
generation procedures in two main categories: (1) techniques which rely on an underlying structure, and (2)
approaches which do not assume a specific logical structure. The former techniques consider that the logic
of the model is known, and they interpret model generation as the translation of the logic into simulation
code. The latter methods start from a more general point and infer the logic from the available data. The
next two sections discuss on relevant contributions for model generation.

2.1.1. Model Generation with an underlying structure
According to Mathewson [17], a simulation generator is “a software tool that translates the logic of a

model into the code of a simulation language, enabling a computer to mimic a modelers behavior”. Among
others, Shimizu and Van Zoest [18] developed an integrated software approach in which MANUPLAN
models can be translated into SIMAN models. To date, this procedure enabled a simulation model of a
factory to be developed in two days. Gong and McGinnins [19] developed a simulation code generator
which compiles a system description into a simulation code (e.g., SIMAN). The user can update the system
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design in the model by modifying an input database and running the simulation code generator. The authors
demonstrated their approach with the operations and information flows of an automated guided vehicle
for manufacturing cells. Son et al. [20] developed a methodology for automatically generating simulation
models for specific manufacturing scenarios. A neutral language has been designed to semantically describe
the simulation model, together with a model translator that converts the neutral description into syntax of
specific simulation packages. Mueller et al. [21] introduced an approach in which the simulation model
for a semiconductor manufacturing plant is generated from an input file that represents the simulation data
specification. The simulation model is a Petri Net and it is built exploiting an object-oriented framework:
several manufacturing system components are mapped into sub-graphs of a Petri Net and are represented
by empty objects. Then, simulation model instances are created by populating the Petri Net data structure.
Mesabbah et al. [22] proposed an automated simulation model builder adapted for health-care applications.
The methodology couples model generation with machine learning algorithms that allow for the prediction
of system performances based on real-time data stream. Indeed, classifiers are constructed making use of
historical data to predict several patient performance metrics, such as length of stay and next activities.

2.1.2. Model Generation without an underlying structure
Recent approaches exploit Process Mining (PM) for simulation model generation [23, 13]. PM is a dis-

cipline aiming to discover and exploit valuable information from event logs available in information systems
[24]. Process Mining allows not only to estimate parameters and causal relationships, but also logical rela-
tionships such as precedences among activities. Hence, it may be used to discover the topological structure
of a manufacturing system. Bergmann et al. [25] introduced a methodology for recognizing the behavior of
a manufacturing system in terms of production policies. Several data mining methods are tested (i.e. neural
networks, support vector machines, decision trees) with the goal to recognize which policies are applied in
the system generating data. Farooqui et al. [26] designed a methodology for the automated generation of
formal models of robotic systems starting from the robot code structure and data. Milde and Reinhart [27]
developed an approach for joint material flow discovery, parameter estimation, and control policies identifi-
cation from manufacturing systems event logs. Martin et al. [28] improved inter arrival times modeling by
including the mining of parts queuing at the entrance of the system in a model parameter estimation method-
ology. The authors used the proportion of entities queuing at arrival as in the event log to approximately
estimate the parameters of the inter arrival times distribution. Denno et al. [29] developed a methodology
to mine the production system structure and used genetic programming to link colored Petri Net states with
exceptional system states. Ferreira and Vasilyev [30] combined PM with logical decision trees to under-
stand the causes of process delays. Martin et al. [31] used PM to retrieve daily availability records from
an event log, by considering a resource availability with both a temporal dimension and the possibility of
intermediate interruptions. Martin et al. [32] designed an algorithm to mine how operational activities are
batched within a production environment. The authors defined three batch processing types, presented a
resource-activity centered approach to identify batching behavior, and introduced batch processing metrics
to acquire knowledge on the batch characteristics and their influence on process execution. Pourbafrani et
al. [33] designed an approach to generate automatically a system dynamics simulation model. The authors
developed an algorithm to detect the relationships between specific system features such as arrival rates
and waiting times using time windows and correlation measures. Popovics and Monostori [14] designed an
approach for automatically gathering data from Programmable Logic Controllers (PLCs) with the aim to
achieve simulation model generation capabilities. The approach is based on parsing the code of a PLC and
derive useful information at an higher abstraction level. Choueiri et al. [34] proposed a predictive model
with the aim to use PM to predict online the cycle-times in industrial environments.
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Figure 2: Example of a spaghetti model (from [35]).

2.2. Model Tuning

The availability of an up-to-date process model can result to be insufficient since an automated model
generation procedure could model some parts of the system with an excessive level of detail. A common
term referring to over-complex models is the spaghetti model effect [35]. These models are not only ex-
cessive in terms of size, but also inaccurate in estimating performance measures. From intuition, the more
we tend to represent each single path in the system, the less data are available to estimate parameters on
that path such as processing and waiting times. Spaghetti models are also harder to understand, as they
may differ significantly from the physical system generating the data. Therefore, once a model has been
generated, it is worth noticing if the model level of detail is reasonable for its intended application. In its
most basic form, model tuning is a method to modify a model toward a desired size.

Son et al. [36] introduced the concept of log profiling and trace clustering. The event log is split
into homogeneous subsets for each observed case. Then, specific features are calculated for each case (for
instance, the number of times a certain operator has intervened on that case) and a resulting vector of features
is assigned to each case. Clustering techniques are then used to group common traces, and PM is applied
separately on each cluster. Gunther and Van der Aalst [37] developed a fuzzy miner algorithm through
an attribute analysis and a consequent abstraction of the mined event log. The method assigns metrics to
nodes and arcs based on both significance and correlation scores. Then, three main steps are performed:
(1) conflict resolution, in which activities which are connected by arcs in both directions are analyzed with
the goal to remove the connection if less significant to the rest of the model; (2) edge filtering, where the
least significant edges are removed; (3) nodes aggregation and abstraction: the least significant nodes are
either removed or aggregated in clusters, which will inherit the precedence relationships and the connections
between nodes. All the steps are based on edge and nodes cutoff parameters that are user-defined thresholds.
Bose and Van der Aalst [38] introduced patterns definitions of commonly used process model constructs,
together with an iterative method that captures these manifestations and creates abstractions. The method
finds repeated patterns in the traces (e.g., loops) and generates hierarchical abstractions that are treated as
activities and inserted in a new trace database. The corrected traces are then mined to generate a model.
Prodel [39] developed a model reduction procedure to generate simulation models of a health-care provider.
The author formalized the model reduction procedure with a mathematical programming model and solved
it using a tabu search heuristic. The objective is to find the model that best fits the event log of the system
based on replayability scores.
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2.3. Discussion
Although PM-based approaches can be used effectively for adjusting the model level of detail, most

of the available approaches are appropriate for business process mining and may not be optimal for man-
ufacturing applications. For instance, fuzzy mining [37] exploits the activity names to derive correlation
measures that can lead to activity clustering. This approach is certainly proper for a service operation (e.g.,
bank, call center) but may be of little use in production systems, where names could be simply sensor or ma-
chine identifiers. Trace clustering [36] effectively produces models with a lower complexity. However, this
is only true for some of the discovered clusters, which are highlighting the entities following the simplest
paths, while several other clusters which may be linked to complex production dynamics are still present
in the log. Another option is the a-priori definition of patterns in the log [38], which is also helpful as
pre-processing activity. Yet, it is strongly based on topology of the discovered relations, and has no clear
link with the underlying system generating the data.

This work focuses on modeling discrete parts manufacturing systems [40]. Our focus is on how to
properly build and tune digital models which are excessively exhaustive for the user purposes and have to
be modified toward a reasonable level of detail. Simulation models for manufacturing systems typically
represent components such as parts, resources (e.g., machines, conveyors, operators), and the paths along
which the parts are flowing in the system. Hence, in a model tuning procedure, it is desirable to keep track
of how much the main components of a simulation model are being represented and, possibly, reduced.
Most PM contributions have defined fitness values that determine the ability of a model to reproduce the
behavior in the event log [41]. However, simply being able to replay an event log may be insufficient if
the resulting model produces bad predictions. In this work, we concentrate on the ability of the model
to reproduce the characteristics and to estimate the performance of the system under study. Hence, we
outline model generation starting from the PM-based discovery of the manufacturing system structure and
characteristics. Then, we address the issue of model tuning by exploiting manufacturing systems properties
such as buffer capacities and re-entrant material flows, as indicators of the degree with which a model is
correctly representing the data log.

3. Manufacturing System Discovery

Figure 3 outlines the main steps covered by this work. Let us assume the manufacturing system is equipped
with a Manufacturing Execution System that aggregates production data in an event log. The log is used
to discover the manufacturing system logical structure and its parameters. A digital model Ω0 is built by a
model generation procedure. Then, depending on the users requirements, the model can be tuned toward a
desired level of detail. In this section, we outline the data-based system discovery and model generation,
while in section 4 we present the proposed model tuning method.

3.1. The Event Log
Event logs are files that aggregate all the data produced by the manufacturing system. In general, the

event log may contain several types of information, such as part flows, resources identifiers, and quality
check outcomes. In this work, we assume the availability of event logs containing three main information
types: (1) the activity identifier n ∈ N, (2) the work-piece identifier h ∈ H, and (3) the timestamps tS(n,h)
and tF(n,h) indicating the moment at which the n-th activity has started and finished on the h-th piece,
respectively. Further, we assume that the time span covered by the event log corresponds to the time horizon
of interest. Let us define each row of the log as event and we define trace θh ∈Θ the set of events experienced
by the h-th work-piece, where Θ is the set of all the traces identified from the log1. A trace is the specific

1In general: |Θ| ≤ |H|.
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Figure 3: Graphical map of manufacturing system discovery and digital twin generation.

Table 1: Example of event log used in this work.

Time stamp Activity Part ID Activity type

2020-11-12 09:31:32 S1 1 start
2020-11-12 09:31:36 S1 1 finish
2020-11-12 09:31:41 S1 2 start
2020-11-12 09:31:46 S1 2 finish
2020-11-12 09:31:48 C1 1
2020-11-12 09:32:02 C1 2
2020-11-12 09:32:12 S2 1 start
2020-11-12 09:32:24 S2 1 finish
2020-11-12 09:32:29 S2 2 start
2020-11-12 09:32:33 C2 1
2020-11-12 09:32:34 S2 2 finish
2020-11-12 09:32:39 C2 2
2020-11-12 09:32:44 S3 1 start
2020-11-12 09:32:58 S3 1 finish
2020-11-12 09:32:59 S3 2 start
2020-11-12 09:33:00 S3 2 finish

route that each part followed in the system. It can be expressed as a series of activity identifiers. Hence,
each h-th part has a corresponding trace θh = {n(1),n(2), . . . ,n(eh), . . . ,n(#h)}, where #h is the number of the
activities performed by the h-th part and eh indicates the sequential position of the activity as observed in
the log for part h. Table 1 shows an example of event-log generated by the manufacturing system of Figure
1. In this example, the trace of part h = 1 is θ1 = {S1,C1,S2,C2,S3}.

3.2. Digital Models
We may represent a simulation model as a directed graph, in which nodes represent the manufacturing

activities, and arcs represent the material flow relationships between the activities. Let us define a model
Ω as a tuple Ω = (N,A) where N is the set of nodes and A ⊆ N×N is the set of arcs in the model. For
instance, the graph model obtained in Figure 1c is defined by the set of nodes N = {1,3,6} and the set of
arcs A = {(1,3),(3,6)}. Nodes and arcs may also contain information about the system characteristics:
the logical layout (i.e. precedences among activities), the capability of holding work-in-progress parts, the
production volume over a certain time span, the routing policies, and the flow times. Hence, each node
n ∈ N is a tuple n = (Pn,Sn,κn,φn,πn,ξn,τn), where Pn,Sn are sets of predecessor and successor nodes,
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Table 2: Notation for digital models.

Nodes n ∈ N Pn Predecessor nodes set.
Sn Successor nodes set.
κn Buffer capacity of a node.
φn Frequency of a node.
ξn Number of close events on a node.
πn Node branching policy tuples set.

Tn = {τk,n} Nodes flow times matrix.

Arcs a ∈ A ηa = (n,m) Nodes connected by an arc.
ca Buffer capacity of an arc.
fa Number of events on an arc.
ea Number of close events on an arc.

Ta = {tk,a} Arc flow times matrix.

respectively, κn is the buffer capacity of the node, φn the frequency of occurrence of the respective activity,
πn the set of branching probabilities, ξn the number of events close in time, and Tn the flow times matrix.
Similarly, each arc a ∈ A is a tuple a = (ηa,ca, fa,ea,Ta), where ηa is a tuple of connected nodes, ca the
buffer capacity of the arc, fa the occurrence frequency, ea the number of close events, and Ta the arc flow
times matrix. Table 2 summarizes the notation for the nodes and arcs of the models used in the rest of this
work. The properties of nodes and arcs are populated through the model generation procedure, which is
described in the next section.

3.3. Model Generation

Model generation is a procedure which links the data in the event log with a digital model Ω. The
first step is the identification of the traces. This procedure characterizes the possible sequences of events
in the system. Starting from the event log, a unique set of activities N is created and the traces of all the
|H| parts are identified. Then, the traces are used to retrieve precedence relationships among activities.
Hence, a node exists in the model if a certain activity has been performed by at least one part, and an
arc indicates that a production step has followed another in at least one trace. Specifically, arc (n,m)
exists if ∃h ∈H|n,m ∈ θh∧ tF(n,h)< tS(m,h). In the following paragraphs, we elaborate on node and arc
characteristics.

Nodes. A node identifies an activity. Each node is linked to its predecessors and successors nodes (Pn,
Sn). Namely, two sets of nodes that represent the activities done before (Pn) and after (Sn) the n-th node,
respectively. A node is also defined by the following properties: (1) capacity, (2) frequency, (3) close events.
The capacity of a node κn is defined as the maximum amount of work-pieces that can be processed together
by the corresponding production activity. It can be estimated as follows:

κ̂n = maxk | tS(n,h− k)≤ tF(n,h) ∀n ∈ N. (1)

The frequency φn indicates the number of times the corresponding activity has been observed in the log,
while ξn indicates the number of events that have been identified as close in time on the n-th node. In general,
we define activities on the n-th node to be close in time if their time stamps satisfy |tF(n,h)− tS(n,h)| ≤ ζN ,
where ζN is a user-defined threshold. Additional parameters define the branching policies πn and the flow
times. The former is a set of tuples of the kind (s, ps) where s ∈ Sn is the target node and ps the probability
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that a work-piece will perform activity s after the node n. The probability ps may be estimated as follows:

p̂s =
φs

∑o∈Sn φo
∀s ∈ Sn. (2)

The flow times are described by a matrix, where each element indicates the time work-piece h took to flow
in node n. Hence:

τh,n = tF(n,h)− tS(n,h) ∀h ∈H,n ∈ N. (3)

Arcs. An arc is a connector between two nodes. The nodes connected by the a-th arc are collected in
a tuple ηa = (n,m) ⊆ N×N. We may conveniently identify an arc with its connected nodes tuple. The
capacity ca of an arc is defined as the maximum amount of work-pieces that has resided on the arc at the
same time, as retrieved from the event log. Namely:

ca = maxk | tF(n,h− k)≤ tS(m,h) ∀a ∈ A |ηa = (n,m). (4)

The number of work-pieces that have been observed flowing through the arc is indicated by fa, while ea is
the number of events that have been identified as close in time on the a-th arc, hence in which their time
stamps satisfy |tS(m,h)− tF(n,h)| ≤ ζA, where ζA is a user-defined threshold and ηa = (n,m). Flow times
are defined by the matrix Ta = {th,a} where each element indicates the time that the h-th work-piece took to
flow in arc a:

th,a = tS(m,h)− tF(n,h) ∀h ∈H,∀a ∈ A |ηa = (n,m). (5)

Model generation identifies the nodes and arcs and collects them in an directed graph Ω0, which is
populated with the properties of nodes and arcs through Algorithm 2 in Appendix A. Once a graph model
is created, it can be converted into a simulation model that is able to estimate the system performance
indicators such as production throughput or system time. Indeed, from process mining literature we know
that a graph model has a Petri Net equivalent [42]. Among others, one of the conversion procedures that
can be used is the α-algorithm, which can be found in [35]. Notice that also simulation graphs (i.e., event
relationship graphs) can be obtained, for instance exploiting direct conversion from Petri Nets [43]. Further
details on model generation and conversion steps are available in related works [44, 45].

4. Model Tuning

We may define model tuning as a procedure that aims to adapt an existing model in order to satisfy com-
plexity requirements, which can be expressed in terms of maximum number of nodes or arcs. In general, let
us define Ω0 = (N0,A0) the model generated by the procedure described in section 3.3, and Ω j = (N j,A j)
is a j-th alternative graph model. Among the alternative models satisfying the user-requirements in terms
of level of detail, model tuning finds the one that maximizes an adequacy-related score. The score can be
computed by the function Φ(Ω) in equation (6), which determines how acceptably a model Ω represents
the real production system.

Φ(Ω) = ∑
i

wi Ri(Ω) (6)

where each score Ri(Ω) is a function that describes how well does the model Ω represent the i-th character-
istic of the system, and wi is the weight of the i-th score. This way, the score of a model is directly linked
to the event log and the following properties of the manufacturing system: (1) buffer sizes, (2) events close
in time, (3) re-entrant flows, (4) split and merge points, and (5) activity occurrence frequency. We have
defined five Ri(Ω) functions which are listed in section 4.1. Table 3 summarizes the notation used for the
model tuning.
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Table 3: Notation for the proposed model tuning method.

Parameters:

Umax
A maximum number of arcs allowed: Umax

A ∈ [1, |A0|].
Umax

N maximum number of nodes allowed: Umax
N ∈ [2, |N0|].

X = {χn,m} matrix of precedences among activities:
χn,m is 1 if ∃n,m ∈ N0,h ∈H|tF(n,h)≤ tS(m,h), 0 otherwise.

L boolean value that is 1 if self-loops are allowed, 0 otherwise.
νin maximum number of input arcs in a node: νin ∈ [0,maxn∈N0{Pn}].
νout maximum number of output arcs from a node: νout ∈ [0,maxn∈N0{Sn}].
ιi j number of loops in which the arc (i, j) is involved.

Decision Variables:

β = {βi} vector of included activities:
βi is 1 if the i-th activity is included in the graph, 0 otherwise.

Γ = {γi j} matrix of connectors between activities:
γi j is 1 if the i-th activity is followed by the j-th, 0 otherwise.

M = {mci} matrix of cluster composition:
mci is 1 if the c-th cluster includes the i-th activity, 0 otherwise.

4.1. Model Adequacy Score Functions

The score functions that we have defined are the following:

• Buffers. R1 is a function that represents the buffer capacity of the system. The aim is to favor the
inclusion of nodes and arcs with a higher buffer capacity.

R1(Ω) = r(A)1

∑
a∈A

ca

∑
a∈A0

ca
+ r(N)

1

∑
n∈N

κn

∑
n∈N0

κn
(7)

where r(N)
1 and r(A)1 balance the relative weight of nodes and arcs, respectively.

• Close events. R2 is a function related to the number of events in the system which occur within a short
time window. For example, in a production line the moment a part leaves a buffer may correspond to
the recorded time it enters the downstream station. R2 favors the exclusion of nodes and arcs related
to activities that are done within short time frames.

R2(Ω) =
r(A)2
|A| ∑

a∈A
(1− ea

fa
)+

r(N)
2
|N| ∑

n∈N
(1− ξn

φn
) (8)

where r(N)
2 and r(A)2 balance the relative importance of node and arc properties, respectively.

• Re-entrant flows. R3 is related to the loops in the material flow. A loop may simply represent a
station that withdraws parts from a conveyor, performs a certain activity, and then releases the parts
back to the conveyor. Since the performance of the loop influences the production rate of the system,

10



it is desirable to preserve it in the representation. This function encourages the inclusion of parts in
the model which are involved in loops.

R3(Ω) =
1
|A| ∑n∈N

∑
m∈N

γnmιnm (9)

where ιnm is 1 if the arc (n,m) is a portion of a loop in the model, 0 otherwise. Loops are identified
as cycles in a directed graph Ω = (N,A) with the algorithm defined in [46].

• Split and merge. R4 is a routing score defined in [39]. For instance, in a manufacturing system the
logic of the material flow may be defined by splitting or merging points along the physical conveyors,
i.e. positions in which alternative activities following or preceding the n-th node are possible. In such
locations, relevant decisions may have to be taken (e.g., prioritizing). Therefore, it may be desirable
to keep the nodes with multiple connected arcs.

R4(Ω) = r(in)4 ∑
n∈N

∑
x∈Sn

γnx + r(out)
4 ∑

n∈N
∑

l∈Pn

γln (10)

where r(in)4 and r(out)
4 balance the relative significance of inbound and outbound arcs, respectively.

• Frequency. R5 is a function representing the number of parts flowing in the nodes and arcs of the
model. The aim is to favor the inclusion of nodes and arcs which are visited with a higher frequency
(i.e. the preferred path).

R5(Ω) = r(A)5

∑
a∈A

fa

∑
a∈A0

fa
+ r(N)

5

∑
n∈N

φn

∑
n∈N0

φn
(11)

where r(N)
5 and r(A)5 balance the relative importance of nodes and arcs, respectively.

4.2. Mathematical Programming Formulation

Without loss of generality, we assume that the size of a model is defined by the number of nodes and it
is used as single criterion for pursuing model reduction goals. Let us define Umax

N as the desired number of
nodes in the model. If the desired model size is either equal or it exceeds the one of the initial model Ω0
(that is, if the number of nodes in the model satisfies the user-imposed constraint |N0| ≤Umax

N ) the solution
to the problem is trivial and it corresponds to Ω0. Otherwise, a reduced model has to be found. This can be
obtained in two ways: (1) by reducing the number of nodes in the model, thus omitting certain activities,
(2) by grouping the existing nodes and arcs in clusters c ∈ C. A cluster is a node. Specifically, we indicate
mnc = 1 if node n belongs to cluster c, 0 otherwise; an arc a belongs to a cluster if its connected nodes
also belong to it (n,m ∈ C∧n,m ∈ ηa). The goal of model tuning is to find the model Ω = (N∪C,A) that
maximizes the score Φ defined in equation (6) while satisfying a set of constraints (e.g., number of nodes).

Model tuning may be expressed as a mathematical programming model through equations (12) - (22).
The decision variables are defining the selection of nodes and arcs to keep or aggregate in the model.
Specifically, βi defines if the i-th activity is kept in the representation or not, γi j guarantees the precedences
of activities are maintained. The clustering of nodes is represented by variable mic.

11



max
Ω

Φ(Ω) (12)

s.t. ∑
i

βi ≤ Umax
N (13)

∑
i j

γi j ≤ Umax
A (14)

γi j ≤MXMT ∀i, j (15)

∑
i

mik ≤ 1 ∀k (16)

γi j ≤ βi ∀i, j (17)

γi j ≤ β j ∀i, j (18)

γii ≤ L ∀i (19)

∑
i

γi j ≤ νin ∀ j (20)

∑
j

γi j ≤ νout ∀i (21)

βi,γi j,mci ∈ {0,1} ∀i, j,c. (22)

The optimization function (12) represents the maximization of the model score expressed by equation
(6). Constraints (13) and (14) limit the number of nodes and arcs included in the model, respectively.
Constraints (15) translate the precedences among events to precedences among clusters. Constraints (16)
force each activity to be included in at most one cluster. Constraints (17) and (18) guarantee that arcs are
included only between existing nodes. Constraints (19) allow or forbid for self-loops depending on the
value of L. Constraints (20) and (21) limit the number of input and output arcs from each node, depending
on νin and νout . Constraints (22) state the nature of the decision variables.

4.3. Solution Methodology
The model tuning problem described in equations (12) - (22) is solved with the local search algorithm

described in Algorithm 1. Algorithm 1 is based on the possibility to generate neighbors of a model. A
neighbor is derived by means of either two moves: (1) aggregation, in which two nodes are merged in a
cluster, (2) reduction, in which one node is removed from the model. The following section elaborates on
the moves, while section 4.3.2 explains the local search algorithm.

4.3.1. Removal and Aggregation Rules
In both aggregation and reduction moves, new arcs may be added in order to maintain the flow of parts,

and clusters may be added to represent node groups. In this case, the newly introduced elements inherit
the properties of the removed parts. Figure 4 represents an example of this idea. In the reduction case,
node 2 is removed from the model, hence also the connected arcs (1,2) and (2,3) have been removed. To
guarantee the flow of parts, arc (1,3) is added. The properties of the added arc are derived from the ones
of all the removed elements. In the aggregation case, a new node cluster is created by merging nodes 1 and
2. We may define two support indicator functions: α(x,c) is 1 if element x has been aggregated in cluster
c, 0 otherwise; ρ(x,a) is 1 if element x has been removed and, as a consequence, arc a has been added, 0
otherwise. We define the following inheritance rules:
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Figure 4: Properties inheritance example: a) reduction, b) aggregation.

• Frequency. New arcs or clusters inherit the maximum frequency of events observed in any of the
removed elements.

Reduction:
fa = max{max

n∈N
{φn},max

b∈A
{ fb}} ∀n,b |ρ(n,a) = 1∧ρ(b,a) = 1. (23)

Aggregation:

φc = max{max
n∈N
{φn},max

a∈A
{ fa}} ∀n,a |α(n,c) = 1∧α(a,c) = 1. (24)

• Contemporary Events. New arcs or clusters inherit the minimum number of events close in time of
the removed elements.

Reduction:
fa = min{min

n∈N
{ξn},min

b∈A
{eb}} ∀n,b |ρ(n,a) = 1∧ρ(b,a) = 1. (25)

Aggregation:
ξc = min{min

n∈N
{ξn},min

a∈A
{ea}} ∀n,a |α(n,c) = 1∧α(a,c) = 1. (26)

• Capacity. New arcs or clusters inherit the sum of the capacity of the removed elements.

Reduction:
ca = ∑

n,b |ρ(n,a)=1∧ρ(b,a)=1
κn + cb (27)

Aggregation:
κc = ∑

n,a |α(n,c)=1∧α(a,c)=1
κn + ca (28)

4.3.2. Algorithm
Algorithm 1 is a depth-first local search algorithm. At each step, a certain number of neighbors can be

generated. The neighbors generation function is described by Algorithm 3 in Appendix A. Let us call σA

and σR the number of neighbor models generated by aggregation and reduction, respectively. Hence, at each
step, two sets of neighbors MA and MR are generated, and |MA| = σA, |MR| = σR. Let us accept the short
notation Ni, Ai indicating the node and arc sets of the model selected at the i-th iteration of Algorithm 1.
At any i-th iteration, the complete exploration of the neighbors set is achieved when σA = σR = |Ni|. Since
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Algorithm 1: Local Search – Find the most adequate model Ω f of size Umax
N .

1 Input: Graph model Ω0, size limit Umax
N ;

2 Output: Graph model Ω f ;
3 STEP 0: assign Ωcurrent ←Ω0; i← 0;
4 while (i≤ Imax)¬(#N(Ωcurrent)≤Umax

N ) do
5 STEP 1: Generate σA +σR neighbors of Ωcurrent (Algorithm 2);
6 STEP 2: Sort neighbors based on score Φ;
7 STEP 3: Set Ωcurrent ← argmax{Ω∈MA∪MR}Φ(Ω), i← i+1;
8 end
9 return Ω f ←Ωcurrent ;

a neighbor is defined by the reduction of the model size by one node, |Ni| neighbors can be generated by
means of reduction moves, while |Ai| neighbors by means of aggregation moves. For saving computation
time, we may also set σA,σR < |Ni|. As a consequence, it is necessary to define a neighbor generation rule,
which defines which nodes are to be considered for either aggregation or reduction moves. We have defined
three neighbor generation rules: (1) Frequency. Neighbors are generated by aggregating or reducing first
the nodes with the lowest frequency; (2) Contemporary Events. Neighbors are generated by aggregating
or reducing first the nodes with the highest number of contemporary events; (3) Capacity. This policy
prescribes to aggregate or reduce first the nodes connected by arcs of the lowest capacity. It is worth to
notice that other rules can be developed. The choice of which rule to observe depends on the intended use
of the digital model and on the manufacturing system involved.

4.4. Parameters Estimation

Once a final model Ω f has been identified, the parameters governing the behavior of the physical system
have to be estimated. The main parameters that influence the performance of a discrete parts manufacturing
system are parts arrival behavior and part processing distributions. In this work, we assume both arrival
times and processing times are available from the event log, and we use the Empirical Cumulative Distri-
bution Function as estimate. Specifically, if a node does not belong to any cluster, the processing times of
the respective activity n can be derived from the event log simply by extracting the time the h-th part spent
in activity with equation (3), whereas in case the nodes have been clustered by model tuning, we consider
processing times of the cluster as the inter departure times from the cluster:

τh,n = tF(n,h)− tF(n,h−1) ∀n ∈ C,h ∈H. (29)

4.5. Control Policies Identification

At the end of model tuning, a graph model Ω f is obtained. Since model tuning may change both nodes
and arcs, new split or aggregation points may have been created in the graph. Hence, control policies have
to be estimated again by evaluating πn∀n ∈ N∪C. It is worth to notice that the focus of this work is not
on policies estimation, hence the identification of only frequency-based control policies is sufficient for
our scopes. However, realistic settings can present a much higher level of complexity, and smarter mining
algorithms can be developed for the identification of the control policies [27].
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4.6. Note on Implementation

The previous sections outlined the proposed procedure to derive a digital twin of a manufacturing sys-
tem. Once the proposed algorithms have been implemented, practicians can deploy the model development
in production environments. In the following, summarize the main steps to be followed. Let us refer to λ as
a performance indicator of interest (e.g., system time, throughput). The user may decide: (1) The desired
level of detail Umax

N ; (2) an acceptable difference between the performance obtained by the digital model
and the real system one, ελ . Namely, once a model is obtained, we may consider it as validated if equation
(30) is statistically confirmed.

|λreal−λmodel| ≤ ελ . (30)

Figure 5 represents a flow chart of the main steps that lead to a complete, usable digital twin. If a model in
the format described in section 3.3 is already available, the user may directly consider Model Tuning, which
is done if the level of detail is not representing the user expectations. If a model is tuned, its parameters and
control policies have to be updated as well. Once an adjusted model is available, it can be converted and
used to estimate system performance. Next, the model is validated. It is reasonable to assume that the user
expectations in terms of performance will be related to the required level of detail. In the experiments of
section 5, ε will be quantified. If validation is passed, the model can be used as digital twin of the production
system. Otherwise, a new model has to be generated, after a revision of the user’s inputs.

5. Numerical Experiments

This section elaborates on the experiments done to validate the approach proposed in this work. Specifically,
we have performed the following tests:

1. Calibration. The goal is to determine which configuration of weights contributes the most to the
objective function of the model tuning problem described in section 4.2.

2. Test Case 1: six-station flow line. The scope is to verify the behavior of the proposed approach by
comparing the performance estimated by the obtained simulation models with the real system one
(i.e. validation).

3. Test Case 2: six-station flow line with additional sensors. The goal is to determine if records in the log
from activities unrelated with the manufacturing process are correctly aggregated via model tuning.

4. Test Case 3: real manufacturing line. The objective is to apply the proposed approach to a realistic
event log.

5.1. Calibration

The goal of this section is to determine which configuration of weights contributes the most to the objec-
tive function described in equation (12). The function is a weighted sum of the scores defined in section
4.1. Specifically, there are five weights w and eight weights r. All the weights are in the interval [0,1].
Experiments have been done by taking as reference the manufacturing flow line with six stations depicted
in Figure 6. The flow line processes one part type. Stations process parts in sequence and each station can
process one part at a time. Each station s is processing parts with processing times ps. Part inter arrival
times are described by the variable pa. Inter arrival and processing times are distributed according to an
exponential distribution with mean 1min. Each station s has an input buffer Cs. The first buffer is infinite,
hence all arriving parts are accepted, while buffers C2 to C6 can store maximum 10 parts each. A simulation
model of the flow line has been developed in Rockwell Arena and used to generate five independent event
logs through simulation experiments representing the production of 1000 parts.
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Figure 5: Graphical map of the implementation phase of the proposed approach.

Figure 6: 6-station flow line used for the experiments in this work. Squares depict stations, while inter-operational buffers are represented as
triangles.
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Figure 7: Calibration – Main effects plots of the w and r weights influence on the normalized objective function value Φ̄(Ω).

For the calibration experiments, we have exploited a space-filling design with a 256 points over the
values of the weights of objective function (12). Each point has been replicated five times. The replications
are defined by the event logs, which represent specific realizations of the system parameters and settings.
Hence, in each replication, models have been generated from an independent log and tuned with Umax

N = 3.
For each experimental point, the value of the objective function Φ(Ω f ) has been calculated. Since the
value of Φ depends on the particular configuration of the weights, we have used the normalized value Φ̄ for
comparisons, defined as follows:

Φ̄(Ω f ) =
∑i wiRi(Ω f )

∑i wi
. (31)

Figure 7 shows the main effects plots obtained in the calibration experiment, suggesting a high value
for w1, w2, w4, and w5, whilst maintaining a low value for w3. This is also coherent with the fact that R3
is referred to loops, which are not present in the flow line. Table 4 presents the ANOVA analysis on the w
and r weights. Considering a confidence level of 95%, w1, w2, and w3 are significantly contributing to the
objective function value. The fact that w4 and w5 are not significant is reasonable since R4 is collecting the
influence of routing nodes, which are not present in a flow line, and R5 depends on the frequency on the
nodes and arcs, which is constant for the flow line since no branching points are present. The influence of
the r scores is less clear from the graph, while the ANOVA table suggests that all of them have an influence
except for r(A)1 and r(N)

2 . Given the aforementioned results, the following experiments have been done using:
w1 = w2 = 1, w3 = 0, w4 = w5 = 0.5 and r(A)1 = 0, r(N)

1 = r(A)2 = 1, r(N)
2 = 0, r(in)4 = 0.8, r(out)

4 = r(A)5 = 1,
r(N)

5 = 0.6.

5.2. Test Case 1: 6-station flow line

The first test case has been developed using the simulation model of the 6-station flow line described
in section 5.1. The model has been used to generate 10 independent event logs, each representing the
production of 1000 pieces. The objective of the experiment is to verify if a reduced model can still correctly
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Table 4: Calibration – ANOVA table for the objective function weights w and r.

Source DF Adj. SS Adj. MS F-Value P-Value

w1 5 1.6803 0.33605 83.54 0.000
w2 5 3.9386 0.78773 195.81 0.000
w3 5 2.8950 0.57899 143.93 0.000
w4 5 0.0114 0.00227 0.57 0.727
w5 5 0.0827 0.01654 4.11 0.001
r(A)1 5 0.0591 0.01182 2.94 0.012
r(N)

1 5 0.7786 0.15573 38.71 0.000
r(A)2 5 0.1063 0.02127 5.29 0.000
r(N)

2 5 0.0575 0.01150 2.86 0.014
r(in)4 5 0.6497 0.12994 32.30 0.000
r(out)

4 5 0.5449 0.10899 27.09 0.000
r(A)5 5 0.5834 0.11668 29.00 0.000
r(N)

5 5 0.6181 0.12363 30.73 0.000
Error 1214 4.8838 0.00402
Total 1279 19.9532

estimate the performances of the real system. This has been done by varying the required size Umax
N in the

interval [4,6]. Hence, for each log, three alternative models have been generated. In order to validate the
generated models, each of them has been used to simulate the production of 1000 pieces in experiments
replicated five times each. For this purpose, we have converted each obtained graph model Ω f into a
simulation model in Rockwell Arena, which we used to estimate the performances in terms of throughput
T H [parts/min] and system time ST [min]. Table 5 summarizes the obtained performances (mean values
among the five replications). The maximum computation time to obtain a tuned model is 43.29s. The
warm up period has been identified with the Marginal Standard Error Rule [47]. Figure 8 shows the results
obtained for the fifth log of the original system, where the throughput and system time of the original system
are marked with a red dashed line and are 0.846 parts/min and 29.0min, respectively. We can notice how
both system time and throughput are changing depending on which model version we are using to simulate.
As expected, the estimated performances are worsening with smaller dimensions of the models. However,
it is worth to notice that for the most reduced model (Umax

N = 4), the mean absolute error is 5% for the
throughput and 7% for the system time. These errors can be acceptable depending on the intended use of
the digital models. For instance, the model could be used for initial estimations and definition of lower or
upper bounds on decision variables. Further, in the best cases observed, the mean absolute error is 0.23%
for the throughput and 0.62% for the system time.

Increasing the log length. Next, we have investigated how the availability of data could influence the ob-
tained results. For this purpose, we have used the original system for a simulation experiment producing
20000 parts. The resulting event log has been used to generate digital models with Umax

N = 6 (i.e. the most
accurate). In each case, we have used a different number of data points. Specifically, we have selected the
event log partition of the first Hmax parts, where Hmax ∈ {10,100,1000,10000,20000}. Then, we have used
the generated model to estimate: (1) the throughput, (2) the system time, (3) the buffer capacities, and (4)
the processing times. Figure 9 summarizes the obtained results. Figure 9a represents the throughput. It is
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Figure 8: Test Case 1 – Results of the experiments in the flow line case (fifth event log): a) throughput; b) system time.

possible to see that 20000 parts are needed to reach an accurate throughput estimate. Figure 9b suggests
that for the system time 10000 parts may be sufficient. Figure 9c shows how the estimation of the buffer
capacities changes depending on the number of parts observed. The figure suggests that for reaching the
correct buffer capacity estimation (i.e. Cs = 10∀s ∈ [2,6]), the data from 1000 parts are necessary. Figure
9d shows the Cumulative Distribution Function of the processing time p3. From the figure it is possible to
notice that data points from 1000 parts are needed to be close to the real function.

5.3. Test Case 2: 6-station flow line with sensor inputs

The second test case has the goal to check if the tuning procedure is properly aggregating the model
components. The experiment has been done by adding two virtual sensors to the second station of the
line, each reporting to the event log. Figure 10a depicts the second station configuration, in which we
have used the notation S2,1 for the manufacturing operation, while S2,2 and S2,3 represent the passage of
parts at the sensor devices. The recording operation takes a deterministic duration equal to one hundredth
of the mean processing time (p2,2 = p2,3 = p̄2,1/100). These sensors may represent PLCs which record
additional information, such as electrical tension values or quality check results. Although adding rows to
the event log, these recordings are not relevant to the manufacturing operations and do not alter the system
performance. Figure 10b represents the obtained model with Umax

N = 6. It can be noticed that the model
tuning has correctly aggregated nodes from operations very close in terms of time. The obtained model is
equivalent to the one derived in section 5.2 with Umax

N = 6, hence the same considerations regarding the
performance estimation are valid.

5.4. Test Case 3: real manufacturing line

In this test, we aim to test the behavior of the proposed model tuning method in the development of a
model for a real production system. The analyzed system is an automatic assembly line of electric motor
stators for hybrid vehicles. The stator is composed by several components and its assembly process consists
of 18 main operations. Table 6 summarizes the assembly process phases. The stator production line is a
closed loop line composed by several work stations. Each station follows a first come first served rule and
can work one piece at a time. Stations are connected one another by conveyors. Each stator sub-assembly
is placed on a dedicated pallet which moves on the conveyors. A portion of each conveyor is used as inter-
operational buffer, and the buffer capacity is defined by the position of a dedicated sensor. Figure 11 shows
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Table 5: Test Case 1 – Results obtained in terms of throughput (T H) and system time (ST ) for both the complete and reduced models. For all the
experiments, the Absolute Error (AE) is provided. The maximum half width confidence interval is 0.2% for the throughput and 2.8% for the system
time.

Event logs

Umax
N 1 2 3 4 5 6 7 8 9 10 Mean

T H Original 0.849 0.828 0.860 0.868 0.846 0.862 0.812 0.818 0.864 0.813 0.842

T H
4 0.780 0.807 0.831 0.820 0.808 0.835 0.729 0.763 0.810 0.809 0.799
5 0.801 0.788 0.822 0.822 0.788 0.795 0.772 0.769 0.812 0.774 0.794
6 0.824 0.823 0.848 0.845 0.844 0.849 0.807 0.810 0.843 0.842 0.834

AE
4 0.069 0.021 0.028 0.048 0.038 0.028 0.083 0.055 0.054 0.004 0.043
5 0.048 0.040 0.037 0.046 0.058 0.067 0.040 0.050 0.053 0.039 0.048
6 0.025 0.005 0.011 0.022 0.002 0.014 0.005 0.008 0.021 0.029 0.014

ST Original 30.9 33.2 37.0 31.4 29.0 38.0 34.5 34.0 30.9 32.1 33.1

ST
4 29.0 27.2 24.4 25.4 24.2 26.1 30.9 27.0 26.1 26.6 26.7
5 36.4 32.5 33.5 30.5 33.4 34.4 38.6 36.6 30.7 34.6 34.1
6 34.7 31.7 33.7 33.0 32.6 34.6 31.9 35.1 33.6 32.3 33.3

AE
4 1.9 6.1 12.5 5.9 4.7 11.8 3.5 7.0 4.8 5.5 6.4
5 5.5 0.7 3.5 0.8 4.5 3.6 4.2 2.7 0.2 2.6 2.8
6 3.8 1.5 3.2 1.6 3.7 3.3 2.6 1.1 2.7 0.2 2.4

Figure 9: Test Case 1 – Results of the experiments with different number of input data points: a) throughput; b) system time, c) buffer capacities,
d) cumulative distribution function of processing time p3.
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Figure 10: Test Case 2 – a) discovered graph for the original system; b) tuned model graph obtained with Umax
N = 6.

Table 6: Test Case 3 – Description of the processes on the electric motor assembly line.

Op. Number Process Description Op. Number Process Description

0 Load 9 Press
1 Marking Check 10 Welding
2 Paper Insertion 11 Blowing
3 Assembly (3 parallel stations) 12 Electrical Tests Pre-finishing
4 Forming (2 steps) 13 Finishing
5 Forming (2 steps) 14 Electrical Tests Post-finishing
6 Material removal 15 Visual Quality Check
7 Welding 16 Rework station
8 Assembly 17 Unload

Figure 11: Test Case 3 – a) Layout of the stator assembly line (section for which the event log was made available). Stations are represented
by squares, while inter-operational buffers are depicted as triangles. – Graph models obtained for the stator assembly line: b) complete model
(|N|= 9); c) tuned model (Umax

N = 7).
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Table 7: Test Case 3 – Extract from the available event log for two work-pieces (Part IDs have been coded for confidentiality reasons).

Part ID Activity Time stamp (start) Time stamp (finish) Result Scrap

1 1 2017-12-18 14:49:56 2017-12-18 14:52:11 OK NO
2 1 2017-12-18 14:52:00 2017-12-18 14:53:44 OK NO
1 2 2017-12-18 14:54:13 2017-12-18 14:54:20 OK NO
2 2 2017-12-18 14:54:45 2017-12-18 14:54:53 OK NO
1 3c 2017-12-18 15:32:11 2017-12-18 15:36:03 OK NO
1 4a 2017-12-18 15:43:29 2017-12-18 15:43:54 OK NO
1 4b 2017-12-18 15:43:55 2017-12-18 15:44:14 OK NO
2 3c 2017-12-18 16:00:10 2017-12-18 16:04:03 OK NO
2 4a 2017-12-18 16:07:26 2017-12-18 16:07:51 OK NO
2 4b 2017-12-18 16:07:52 2017-12-18 16:08:11 OK NO
1 5a 2017-12-18 16:24:50 2017-12-18 16:25:47 OK NO
1 5b 2017-12-18 16:24:50 NA OK NO
2 5a 2017-12-18 16:43:12 2017-12-18 16:44:11 OK NO
2 5b 2017-12-18 16:44:24 2017-12-18 16:45:31 OK NO

the portion of the manufacturing system for which the event log was made available by the company, and
table 7 shows an extract of the log.

The available event log is composed by 5000 events spanning two days of regular production. The
company has used this log to estimate the effective cycle times of the assembly process. From the log we
can observe that the number of recorded operations is 9. This is because operations 4 and 5 are effectively
composed by two consecutive steps. Further, operation 3 can be performed in parallel over three different
locations, hence there is a material flow split between operations 2 and 3, and the flow is merged again
before operation 4. The model generation procedure and the tuning method proposed respectively in sec-
tions 3 and 4 have been used to build a digital twin of the real system. Figure 11b shows the obtained
complete model of the assembly line section, while Figure 11c illustrates the tuned model representing
the line section with Umax

N = 7 nodes. As expected, the nodes corresponding to similar operations (i.e.,
consecutive manufacturing steps) have been aggregated. Notice that – in this case – the assembly process
layout is available, hence it is known that the analyzed section consists of 7 main operations. Therefore,
further reductions would not be wise since they could exclude real process phases from the representation.
This experiment has demonstrated that the model generation and tuning methodology defined in this work
can be effectively used to discover the manufacturing system structure and develop its simulation model,
aggregating activities which are correlated in the physical process.

6. Conclusions

The capability to generate an accurate discrete event simulation model in a short time is essential to achieve
digital twin potentials. In this work, we described a method for discovering production systems struc-
tures and automatically develop digital models starting from the event logs of manufacturing systems. The
proposed automated generation and tuning method can positively contribute to Real-time Simulation ap-
plications, since it guarantees that an updated and reasonably detailed model of the physical system can
be obtained at any time within one minute and with minimal manual intervention. Being data-driven, a
reasonable implementation guidance is to integrate the logic within a production control system such as a
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Manufacturing Execution System. Thanks to the recent Industry 4.0 revolution, digitization efforts are be-
ing undertaken by both large businesses and small and medium enterprises. As a consequence, we believe
a large number of users will have access to the proposed approach capabilities.

Several limitations still have to be solved. The proposed approach is application-agnostic and can be
applied to several types of manufacturing systems. However, there may be significant differences among
different system types. For instance, job shops are characterized by several independent part flows, which
may result in a more complex identification of the system structure. At the same time, the estimation of
certain parameters might be more straightforward; for example, the buffer sizes in a job shop may be con-
sidered as infinite. Further work shall be dedicated to develop different features of the approach targeting
specific production systems. In this work, we have used a unique part identifier. As a consequence, the
model generation procedure and the tuning method are not suited for assembly/disassembly lines in which
multiple components may be tracked, and new part assembly identifiers may be added along the production.
In this work, we have investigated relatively small model reductions. Future works shall also investigate the
resilience and outcomes of realistic applications where production systems could be composed by hundreds
of activities. For this purpose, specific rules may have to be developed. For instance, smarter model tuning
moves could aggregate parallel activities or remove more than two nodes at a time if the model structure
suggests it. In addition, the developed local search algorithm can be enhanced toward computational effi-
ciency and the avoidance of local optima. Moreover, the correct choice of the specific model tuning rule is
not trivial and this requires an assessment of the advantages of using a specific rule or objective function
Φ depending on the type of manufacturing system. Further, in this work we have assumed that both inter
arrival times and processing times can be estimated from the event log. In general, a situation of partial
knowledge is much more realistic. For instance, the buffer capacities might be available in advance, while
the processing times of certain stations might be unknown. A systematic study on the value of prior infor-
mation has to be done. Another assumption in this work is the inclusion of only flow split policies, and the
consequent identification of routing rules solely based on the frequency. The discovery of control policies
can be extended, for instance by introducing machine learning algorithms in the model tuning framework.
Also the identification of priority rules for assembly points can be addressed by future works. Notice also
that model tuning can also be performed on simulation graphs [48], the proper balance between the two
methods shall be examined. Last but not least, in this work we have tested the proposed approach with a
real case spanning two production days. Given the data-driven model generation, the accuracy of the model
may be superiorly limited by the recorded events in the log. Minimal requirements in terms of observed
time of production shall be investigated.

APPENDIX A

In this appendix, we present two of the algorithms that have been developed for model tuning. Al-
gorithm 2 is used to generate an initial model Ω0 starting from an event log. Algorithm 3 produces a set
of σA +σR neighbors of an input model Ω. OrderNodesArcs is a function that returns the ordered lists
of nodes and arcs, based on the ranking that satisfies the user-defined priority rule. GenerateNeighbor-
ByAggregation(Ω, (n,m)) is a function that generates a neighbor of model Ω, starting from the aggregation
of nodes (n,m) into a cluster, while respecting the inheritance rules defined in section 4.3.1. Similarly,
GenerateNeighborByReduction(Ω, n) is a function that generates a neighbor of model Ω, starting from the
removal of node n, while respecting the inheritance rules defined in section 4.3.1.

23



Algorithm 2: Model Generation – Find the initial model Ω0.

1 Input: Event Log;
2 Output: Graph model Ω0;

3 Definition: Count(i|Condition) returns the number of times Condition is satisfied for element i.

4 STEP 1 – Generate traces set Θ and unique activities set N;
5 STEP 2 – Activity relations:
6 for n ∈ N do
7 for θh ∈Θ do
8 for j← 1to#i−1 do
9 A← A∪{(n( j),n( j+1))};

10 Sn( j) ← Sn( j) ∪{n( j+1)};
11 Pn( j+1) ← Pn( j+1) ∪{n( j)};
12 end
13 end
14 end
15 STEP 3 – Calculate frequencies:
16 for h ∈H do
17 for event ∈ θh do
18 for n ∈ N do
19 if n ∈ θh then
20 φn =Count(n|n ∈ θh)
21 end
22 end
23 for a ∈ A do
24 if (n,m) ∈ θh |ηa = (n,m)∧ j(n) = j(m)−1 then
25 fa =Count(n|n ∈ θh)
26 end
27 end
28 end
29 end
30 STEP 4 – Calculate buffer capacities:
31 for n ∈ N do
32 n← κn = maxk | tS(n,h− k)≤ tF(n,h);
33 end
34 for a ∈ A do
35 a← ca = maxk | tF(n,h− k)≤ tS(m,h) n,m|ηa = (n,m);
36 end
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Algorithm 2: Model Generation – Find the initial model Ω0 (continued).

37 STEP 5 – Calculate contemporary events:
38 for a ∈ A do
39 a← ea =Count(h| |tS(m,h)− tF(n,h)| ≤ ζA);

40 for n ∈ N do
41 n← ξn =Count(h| |tS(n,h)− tF(n,h)| ≤ ζN);

42 STEP 6 – Calculate branching policies:
43 for n ∈ N do
44 for s ∈ Sn do

45 p̂s =
φs

∑o∈Sn φo
;

46 πn← πn∪{(s, p̂s)}
47 n← πn

48 return Ω0←{N,A};

Algorithm 3: Model Tuning – Generate neighbors of model Ω.

1 Input: Model Ω, number of neighbors from aggregation σA, number of neighbors from reduction
σR, priority rule;

2 Output: neighbor model sets MA,MR ;

3 {N′,A′}← OrderNodesArcs(Ω, priority rule);
4 while |MA|< σA do
5 Take first two nodes n,m in N′;
6 Ω′← GenerateNeighborByAggregation(Ω, (n,m));
7 MA←Ω′, N′← N′ \{n,m};
8 end
9 while |MR|< σR do

10 Take first node n in N′;
11 Ω′← GenerateNeighborByReduction(Ω, n);
12 MR←Ω′, N′← N′ \{n};
13 end

14 return MA,MR;
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