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Abstract

In this paper we construct an accurate linear model describing the propagation
of both acoustic and gravity waves in water. This original model is obtained
by the linearization of the compressible Navier-Stokes equations with free sur-
face written in Lagrangian coordinates accounting for vertical variations of the
background temperature and density. The models from the literature can be
obtained from our model through two asymptotic analysis, one for the incom-
pressible regime and one for the acoustic regime. We also propose a method
to write the model in Eulerian coordinates. Our model includes many physical
properties, such as the existence of internal gravity waves or the variation of the
sound speed with depth.

1 Introduction

Several authors have proposed to use the propagation of acoustic waves in
the ocean to detect tsunamis, as the sound travels in water at approximately
1500 m s−1 and the velocity of tsunami wave is around 300 m s−1 [4]. The exis-
tence of hydro-acoustic signals generated by tsunami sources such as earthquakes
or landslides was shown in [27]. This motivates the mathematical modelling of
the propagation of both surface waves – the tsunami – and underwater acoustic
waves, also called hydroacoustic waves, in a compressible formulation.

The idea of using acoustic-gravity wave models for tsunami early-warning
systems dates back from 1950 [5]. In [26], the analytical and numerical analysis
of a two-dimensional linear model indicates that the pressure variations induced
by the tsunami are significant enough to be used for the improvement of the
tsunami early-warning systems.

For the description of the propagation of sound in water, the most common
model is a linear wave equation for the fluid potential [13]. When both surface
and acoustic waves are considered, different types of models were proposed. In
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[26] the acoustic equation for the fluid potential is coupled with a free-boundary
condition. The three-dimensional acoustic equation is analyzed in [22] and a
depth-integrated version is proposed in [24] in order to reduce the computa-
tional costs. This approach was further developped in a serie of papers ([3], [1],
[10]). Another approach was proposed in [20]. The equation is still on the fluid
potential, but it includes a gravity term. This model was the starting point
of an extensive work to describe the nonlinear interactions between acoustic
and gravity waves [14]. In other works, such as [25] and [2], the flow is not as-
sumed irrotational, so that the equations are written for the fluid velocity. They
include gravity terms and a vertical stratification for the background density,
temperature and salinity. This generalisation allows to study the internal waves
caused by the stratification of the fluid, and dispersion relations for the three
types of waves (acoustic, internal, surface) are obtained.

The above cited works share some common assumptions: irrotational flow,
homogeneous background density or barotropic fluid, and a constant speed of
sound. These modelling choices have a strong influence on the structure of the
equations, resulting in a variety of tools for their analysis an their numerical
approximation. For example, the irrotationality assumption allows to reduce
the number of unknowns, but the validity of this assumption in the compress-
ible case is not clear. The choice of a constant sound speed is also interesting
to question: in the ocean, the variation of the sound speed creates the SOFAR
channel, a horizontal strip in which the acoustic waves propagate with very little
energy loss. It can be interesting to write a model in which this phenomenon
appears naturally as it is the case when considering a vertically variable back-
ground density. Finally, because of the free-surface equation, the derivation
of an accurate linear wave model is difficult, and existing justification are not
completely convincing.

The aim of this work is to adress these modelling choices by deriving an
accurate linear model as rigorously as possible with only very few assumptions.
Salinity, thermal dissipation and viscosity are neglected, and in order to lin-
earize the equations we assume that the ocean is at equilibrium and at rest
before the earthquake, and that the source of the tsunami induces only a small
displacement of the water. The obtained model describes the propagation of
acoustic, internal and surface waves. In this model, the speed of sound results
from the imposed background temperature profile, so that the effects of the
SOFAR channel on the propagation of the hydroacoustic waves are naturally
present.

Another advantage of having a model with few assumptions is that a cas-
cade of simplified systems can be obtained from it. We indeed show that with
some simplifying assumptions, our model reduces to the models proposed in the
litterature. The analysis of these simplifications helps to understand the math-
ematical and physical choices made in these models. In this paper, this idea is
applied for two common simplifications: the decoupling of acoustic and gravity
waves, and the irrotationnality hypothesis.

The paper is organized as follows. In Sec. 2 the compressible Euler equations
for a free-surface flow are written, then the system is transformed in Lagrangian
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coordinates in order to keep an exact description of the free surface. After
linearization, a wave-like equation for the fluid velocity is obtained, and we show
that a particular formula for the energy is preserved locally and on the whole
domain. Finally the barotropic case is studied. In Sec. 3 the incompressible
limit and the acoustic limit of the wave equation are written in order to compare
the obtained model with linear models from the litterature. In Sec. 4, we present
a method allowing to write the model in Eulerian coordinates. The obtained
system can be linearized at the cost of an additional approximation, namely that
the equations have to be restricted to a fixed domain, and we show how to obtain
a linear free-surface condition. Finally, in Sec 5 we obtain a dispersion relation
which includes all of the physical effects mentioned above. In particular, it is a
generalization of the dispersion relation studied in [2] to the case of a varying
sound speed.

2 Linearization of compressible Euler equations
in Lagrangian coordinates

We consider a portion of the ocean away from the coast and at equilibrium: there
is no mean current and the temperature varies only vertically. In this work, we
do not take the presence of salinity into account, hence the ocean is assimilated
to pure water. The bottom and the surface of the domain are asssumed to
be parametrized as graphs, respectively the topography zb(x, y) ≥ 0 and the
free-surface elevation η(x, y, t). The ground displacement is assumed to take
place away from the coast, so that the domain is considered infinite in the (x, y)
plane, see Figure 1. Mathematically speaking, the domain is assumed to have
the following structure, for all time t of observation,

Ω(t) = {(x, y, z) ∈ R3 | zb(x, y) < z < η(x, y, t)}.

The boundary of the domain are then defined by

Γs(t) = {(x, y, z) ∈ R3 | z = η(x, y, t)},

and
Γb(t) = {(x, y, z) ∈ R3 | z = zb(x, y)− b(x, y, t)}.

The function b accounts for the only source term in our problem, namely the
ground displacement at the sea bottom. It is assumed that this displacement
starts at a time t0 > 0, so that b(x, y, 0) = 0.

2.1 Euler equation in Eulerian coordinate

2.1.1 Equations in the volume

The unknowns are the fluid velocity U, its density ρ, its pressure p, its tempera-
ture T , its internal energy e and its entropy s. The gradient over the horizontal
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(a) The domain Ω(0) at rest

Γb(t)

Γs(t)

z = η(x, y, t)

b(x, y, t)

(x, y)

z

(b) The domain Ω(t) for t > 0.

Figure 1: The domain Ω(t), (1a) for time t = 0, (1b) for time t > 0. In (1a)
typical profiles for the temperature and the density at rest are drawn.

components will be denoted ∇x,y.

For future reference the equations are written for a viscous fluid with thermal
dissipation. The stress tensor of a Newtonian fluid T has the form

T = (−p+ λ∇ ·U)I + 2µD(U)

Where D(U) is defined by D(U) = (1
2 (∂iU

j+∂jU
i))i,j=x,y,z and I is the identity

matrix in R3. The heat flux is denoted by q and is a function of ρ and T .

The conservation of mass, momentum and energy of a Newtonian fluid read,
in the domain Ω(t),

∂ρ

∂t
+∇ · (ρU) = 0,

∂

∂t
(ρU) +∇ · (ρU⊗U) +∇p = ρg +∇(λ∇ ·U) +∇ · (2µD(U)),

∂

∂t

(
ρ
|U|2

2
+ ρe

)
+∇ ·

(
(ρ
|U|2

2
+ ρe+ p)U

)
= ρg ·U +∇ · (λU∇ ·U) +∇ · (2µD(U) ·U)−∇ · q .

(1)

(2)

(3)

The acceleration of gravity is g = −g e3 with g > 0 and e3 is the unit vector in
the vertical direction, oriented upwards.

Among (ρ, e, T, p, s) only two variables are independent because of the Gibbs
law and of the equation of state [7]. When considering ρ and s as independent,
it is natural to introduce the scalar functions fe, fp and fT satisfying

e = fe(ρ, s), p = fp(ρ, s), T = fT (ρ, s),
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and from physical considerations the function fp must satisfy ∂ρfp(ρ, s) ≥ 0.
When considering p and T as the independent variables, we introduce

s = fs(p, T ) and ρ = fρ(p, T ).

Note that in this case the internal energy is given by

e = fe(fρ(p, T ), fs(p, T )).

The Gibbs law, commonly written

de =
p

ρ2
dρ+ Tds,

corresponds to a relation between the functions,

∂fe
∂ρ

=
fp
ρ2
,

∂fe
∂s

= fT . (4)

Our objective is to derive an equation for the pressure. Using (3)−U · (2) and
(4), one obtains as an intermediate step the evolution equation of the entropy,

ρT (
∂s

∂t
+ U · ∇s) = D(U)−∇ · q. (5)

The quantity D(U) is the dissipation, defined by

D(U) = λ(∇ ·U)2 + 2µD(U) : D(U)

Now, since p = fp(ρ, s) we have

∂p

∂t
+ U · ∇p =

∂fp
∂ρ

(
∂ρ

∂t
+ U · ∇ρ

)
+

1

Tρ

∂fp
∂s

(
∂s

∂t
+ U · ∇s

)
,

hence using (1) and (5) one obtains

∂p

∂t
+ U · ∇p = −∂fp

∂ρ
(ρ∇ ·U) +

1

Tρ

∂fp
∂s

(D(U)−∇ · q) . (6)

At this point we use the common assumption that the viscous term and the
thermal dissipation can be neglected compared to the advection term (see the
discussion in [17], Chap. 1). Moreover, since ∂ρfp(ρ, s) ≥ 0, we can introduce
the speed of sound c defined by

c2 =
∂fp
∂ρ

(ρ, s).

The equation (6) then reads

∂p

∂t
+ U · ∇p+ ρc2∇ ·U = 0. (7)
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Eq. (7) is used for the study of a compressible fluid, in the isentropic case and
when the viscosity and the thermal diffusion are neglected, see [7], Chap. 4.
Note that the speed of sound c can also be viewed as a function of p and T , in
that case we have

c2(p, T ) =
∂fp
∂ρ

(fρ(p, T ), fs(p, T )) .

In practice we choose to work directly with the expression c = c(p, T ) tabulated
in [6]. Note that here the temperature intervenes as a side variable, because
it is necessary to compute the speed of sound. However, we will see later that
having the temperature profile of the state at rest is needed.

2.1.2 Boundary conditions

The following boundary conditions hold,{
U · nb = ub = ∂tb on Γb,

p = pa on Γs.

(8)

(9)

The bottom boundary condition (8) is a non-penetration condition with a source
term. It models the tsunami source as a displacement of the ocean bottom with
velocity ub. The second condition (9) is a dynamic condition, where we assume
that the surface pressure is at equilibrium with a constant atmospheric pressure
pa. Also remark that one can show that the elevation η is solution of the
following kinematic equation

∂η

∂t
+ U ·

∂xη∂yη

−1

 = 0 on Γs(t). (10)

2.1.3 Initial conditions and equilibrium state

It is assumed that the initial state corresponds to the rest state, meaning that
η(x, y, 0) = H with the elevation at rest H being independent of space and
H > zb(x, y), therefore

Ω(0) = {(x, y, z) ∈ R3 | zb(x, y) < z < H}.

We choose the following initial conditions for the velocity, the temperature, the
density and the pressure,

U(x, y, z, 0) = 0, (11)

T (x, y, z, 0) = T0(z), ρ(x, y, z, 0) = ρ0(z), p(x, y, z, 0) = p0(z). (12)

Where T0, ρ0, p0 are functions defined on (0, H) but because of the topography
zb(x, y), the functions T, ρ, p need not to be defined from z = 0 for all (x, y).
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When the source term B vanishes, we have an equilibrium state around
U ≡ 0 if the functions T0, ρ0, p0 satisfy

∇p0 = ρ0g, ρ0 = fρ(p0, T0), p0(H) = pa. (13)

Hence, if T0(z) is given then the equation
dp0

dz
= −gfρ(p0, T0), z ∈ (0, H),

p0 = pa, z = H.

(14)

(15)

can be solved to compute p0, and then ρ0 is computed with ρ0 = fρ(p0, T0).
Note that, in the forthcoming sections the system (1), (2), (7) with boundary
conditions (8), (9) and initial conditions (11), (12) will be linearized around the
previously defined equilibrium state.

Remark : From the equations on p0 in Eq. (13) one sees that at equilibrium
the gradient of the pressure has only a component on the vertical coordinate,
hence the pressure can vary only vertically. From the equation of state in Eq.
(13) this implies that both the temperature and density depend also on the
vertical coordinate only. Indeed if they had horizontal variations the pressure
would also have vertical variations. The form of T0, ρ0, p0 in Eq. (12) is a direct
consequence of Eq. (11) when looking for an equilibrium state.

2.2 Lagrangian description

Although most of the works on free-surface flows are done in Eulerian coordi-
nates, the Lagrangian formalism is sometimes preferred, see for example [23]
and the references therein, or [9] for a precise derivation of linear models. Here
we choose the Lagrangian description in order to avoid any approximation on
the shape of the domain when we linearize the equations. The usual approxima-
tion made on the surface for the linear models in Eulerian coordinates consists
in evaluating the surface condition on pressure at a fixed height, rather than at
the actual, time-dependant free surface. The kinematic boundary condition is
also replaced by its linear approximation. For the derivation and justification
of the approximation, see [19], Chap. 3.

Let Ω̂ be the domain of the ocean at a reference time, with its surface
boundary Γ̂s and bottom boundary Γ̂b. The reference time is chosen before the
tsunami generation, so that the surface of the domain is horizontal. In fact the
following natural choice is made

Ω̂ = Ω(0), Γ̂s = Γs(0), Γ̂b = Γb(0).

The position at the reference time of a fluid particle is denoted

ξ = (ξ1, ξ2, ξ3) ∈ Ω̂.

7



Ω̂

Γ̂b

H
Γ̂s

(ξ1, ξ2)

ξ3

Φt
Ω(t)

Γb

Γs

(x, y)

z

Figure 2: The mapping φt between the reference domain Ω̂ and the domain
Ω(t).

At time t, the fluid has moved, the domain is Ω(t) and the new position of
a fluid particle is x = (x(ξ, t), y(ξ, t), z(ξ, t)) ∈ Ω(t). We denote by φ the
transformation from Ω̂ to Ω(t) that maps each particle from its reference position
ξ to its position x at time t (see Figure 2 ).

φ :

{
Ω̂ → Ω(t)

ξ 7→ x(ξ, t)

Hence one has x = φ(ξ, t). The transformation is assumed invertible, in partic-
ular we do not consider the case of wave breaking. We also define the displace-
ment,

d(ξ, t) = φ(ξ, t)− ξ.

The gradient of φ with respect to ξ is denoted F ,

F = ∇ξφ,

and its determinant is denoted J . Both F and J can be expressed as functions
of the displacement,

F = I +∇ξd, J = detF,

where ∇ξ is the gradient with respect to the coordinate system ξ. For a function

X(x, t) defined on the domain Ω(t), we introduce X̂(ξ, t) defined on Ω̂ by

X̂(ξ, t) = X(φ(ξ, t), t).

Finally, note that the velocity Û(ξ, t) = U(φ(ξ, t), t) is the time derivative of
the displacement d.

Û =
∂d

∂t
.

With this change of coordinates, the system (1), (2), (7) is now defined in the
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time-independent reference domain Ω̂ and it reads

∂ρ̂

∂t
+

ρ̂

|J |
∇ξ · (|J |F−1Û) = 0,

ρ̂
∂Û

∂t
+ F−T∇ξp̂ = ρ̂g,

∂p̂

∂t
+
ρ̂ĉ2

|J |
∇ξ · (|J |F−1Û) = 0.

(16)

(17)

(18)

The boundary conditions become{
Û · n̂b = ûb on Γ̂b,

p̂ = pa on Γ̂s,

where n̂b is a unit vector normal to Γ̂b and pointing toward the exterior of the
domain. The variables ρ̂, p̂, T̂ satisfy the same equation of state

p̂ = fp(ρ̂, T̂ ),

and the speed of sound is a function of the new variables, ĉ = c(ρ̂, ŝ).

Remark : in Lagrangian coordinates the continuity equation is traditionally
written (see e.g [16], Chap. 1)

ρ̂(ξ, 0) = ρ̂(ξ, t) |J(ξ, t)|,

which is equivalent to our equation (16). Indeed, from the calculus of functions
of several variables one can show that

∂J

∂t
= ∇ξ · (JF−1Û). (19)

Since the transformation φ is assumed invertible and close to the identity, its
Jacobian is strictly positive, so that J = |J |. Using the equality (19) in Eq.
(16) and multiplying by |J | yields

|J |∂ρ̂
∂t

+ ρ̂
∂|J |
∂t

= 0,

which means that ∂t(ρ̂|J |) = 0. Hence we have ρ̂(ξ, t)|J |(ξ, t) = ρ̂(ξ, 0)|J |(ξ, 0).
At initial time the transformation φ is the identity, then |J(ξ, 0)| = 1.

2.3 Linearization and wave equation

We assume that the source of the tsunami is a small displacement – compared
to the water height H – at the seafloor occuring in an ocean at rest as described
in Sec. 2.1.3. In particular for this rest state there is no mean current and the
temperature, pressure and density vary only vertically. The ratio of the bottom

9



displacement amplitude to the water height is denoted ε � 1, and the source
term can be expressed as

ûb = εûb,1 +O(ε2).

The linearization of the equations (16)-(18) around the rest state corresponds
to the following asymptotic expansion,

d(ξ, t) = εd1(ξ, t) +O(ε2),

ρ̂(ξ, t) = ρ̂0(ξ) + ερ̂1(ξ, t) +O(ε2),

p̂(ξ, t) = p̂0(ξ) + εp̂1(ξ, t) +O(ε2).

Note that the displacement has no zero order term, because the reference con-
figuration used to define the Lagrangian description is the state given by the
initial conditions. It holds then d0 = 0, Û0 = 0 and Ω̂ = Ω(0). From the
expansion one deduces the following Taylor expansions for the other functions,

Û = εÛ1 +O(ε2),

F = I + ε∇ξd1 +O(ε2),

(F )−1 = I− ε∇ξd1 +O(ε2),

J = 1 + ε∇ξ · d1 +O(ε2).

Injecting these expressions in Eq.(16)-(18) yields the system

∂

∂t
(ρ̂0 + ερ̂1) + ερ̂0∇ξ · Û1 = O(ε2),

ερ̂0
∂Û1

∂t
+ (I − ε∇ξd1)T∇ξp̂0 + ε∇ξp̂1 = (ρ̂0 + ερ̂1)g +O(ε2),

∂

∂t
(p̂0 + εp̂1) + ερ̂0c

2(p̂0, T̂0)∇ξ · Û1 = O(ε2).

By separating the powers of ε we obtain two systems: a limit system when ε→ 0
and a system for the first order corrections. Since the limit system correspond
to the initial conditions described in Sec. 2.1.3, it remains to study the first
order correction.

First-order correction: a wave-like equation for the velocity

The system for the correction terms reads in Ω̂,

ρ̂0
∂Û1

∂t
+∇ξp̂1 − (∇ξd1)T ∇ξp̂0 = ρ̂1g,

∂ρ̂1

∂t
+ ρ̂0∇ξ · Û1 = 0,

∂p̂1

∂t
+ ρ̂0ĉ

2
0 ∇ξ · Û1 = 0,

(20)

(21)

(22)
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with the boundary conditions{
Û1 · n̂b = ûb,1 on Γ̂b,

p̂1 = 0 on Γ̂s.

(23)

(24)

In this system the speed of sound is evaluated at the limit – or background –
pressure and temperature, ĉ0 = c(p̂0, T̂0). In particular, ĉ0 can be written as a
function of depth. With an adapted temperature profile it is then possible to
recover the typical speed of sound profile creating the SOFAR channel.

The correction pressure p̂1 and density ρ̂1 can be eliminated in (20) thanks
to the other equations: differentiating in time (20) and replacing ρ̂1 and p̂1 with

(21), (22) we obtain a second order equation for Û1,

ρ̂0
∂2Û1

∂t2
−∇ξ

(
ρ̂0ĉ

2
0∇ξ · Û1

)
− (∇ξÛ1)T ρ̂0g + ρ̂0∇ξ · Û1 g = 0 in Ω̂. (25)

Using (22), the surface boundary condition (24) is formulated for Û1, hence the
two boundary conditions for the wave-like equation (25) are{

Û1 · n̂b = ûb,1 on Γ̂b,

∇ξ · Û1 = 0 on Γ̂s.

(26)

(27)

The wave-like equation (25) is completed with vanishing initial condition for

Û1(0) and ∂tÛ1(0). System (25) includes both gravity and acoustic terms.
This equation, which describes the velocity of a compressible, non-viscous fluid,
in Lagrangian description, is called the Galbrun equation. It is used in helio-
seismology and in aeroacoustics ([18], [12]). However, the study of this equation
with the boundary conditions (26) - (27) and a nonhomogeneous density is, to
our knowledge, new.

An energy equation for the equation (25) can be obtained by taking the

scalar product of (25) with ∂tÛ1 and integrating over the domain. After some
computations (see Appendix, Sec. 7.1), we have

d

dt
E =

∫
Γ̂b

ρ̂0

(
c20∇ξ · Û1 − ρ̂0gÛ1 · e3

) ∂ûb,1
∂t

dσ, (28)

with the energy being the quadratic functional given by

E =

∫
Ω̂

ρ0
1

2

∣∣∣∣∣∂Û1

∂t

∣∣∣∣∣
2

dξ +
1

2

∫
Ω̂

ρ̂0

(
ĉ0∇ξ · Û1 −

g

ĉ0
Û1 · e3

)2

dξ

+
1

2

∫
Ω̂

ρ̂0Nb(Û1 · e3)2 dξ +
1

2

∫
Γ̂s

ρ̂0g(Û1 · e3)2 dσ.
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In the definition of the energy the scalar Nb is given by

Nb(ξ
3) = −

(
g2

ĉ0(ξ3)2
+ g

ρ′0(ξ3)

ρ0(ξ3)

)
,

In order to have only positive terms in the energy equation (28), Nb should be
positive. In this case we can define its square root, denoted N . The function
N is called the Brunt-Väisälä frequency, or buoyancy frequency. It is closely
related to the internal waves that appear in a stratified medium, see for example
[19], Chap. 4 and [7], Chap. 6. Numerical values for the buoyancy frequency are
available in [15]. In the ocean, the usual values of N2 are around 10−8 rad2s−2.
The sign of Nb depends on the choice of the state at equilibrimum: ρ′0 = dρ0/dz
has to be negative and satisfy

|ρ̂′0|
ρ̂0

>
g

ĉ20
.

With the term in g2/ĉ20, we see that the compressibility tends to take the fluid
away from its equilibrium. The stratification of the fluid must be strong enough
to counter this effect and keep the system stable (see the discussion in [7],
Chap.3). As a consequence, it is impossible to assume a homogeneous back-
ground density, to take the compressibility into account and to preserve an a
priori positive energy of the system at the same time. In the following, we as-
sume that the fluid has a stable stratification namely the function Nb is assumed
always positive and we will use N2 in the equations.

Remark : According to the equation of state (when the salinity is neglected)
ρ = fρ(p, T ), the stratification has two factors: it comes from a variation in tem-
perature and in pressure. The temperature profile can be chosen homogeneous,
but the effect of gravity – see Eq. (15) – prevents the pressure to be indepen-
dant of depth. Hence in a model with gravity, the fluid is always stratified with
density increasing with depth.

Remark : One can notice that the condition on ρ′0 is not explicit in Eq. (25)
and appears only when one is interested in the energy preservation, that is, in
the well-posedness of the equation.

The barotropic case

Finally we consider the barotropic case, which is a very common assumption
for the study of hydro-acoustic waves (see for example [2], [20], [26]). For a
barotropic fluid the pressure is a function of the density only,

fp(ρ, s) = fp(ρ) = p.

Then, using (13) and the definition of the speed of sound,

p̂′0 = ρ̂′0
dfp
dρ

(ρ̂0) ⇒ −ρ̂0g = ρ̂′0ĉ
2
0, (29)
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meaning that N2 = 0. This corresponds to the limit case where the density is
stratified because of the variation of pressure only. In order to use this equality,
we divide Eq. (25) by ρ̂0,

∂2Û1

∂t2
−∇ξ

(
ĉ20∇ξ · Û1

)
−
(
ρ̂′0
ρ0
ĉ20 + g

)
∇ξ · Û1e3 +∇ξ(Û1 · e3)g = 0, (30)

and when Eq. (29) holds, the equation (30) can be simplified and reads

∂2Û1

∂t2
−∇ξ

(
ĉ20∇ξ · Û1

)
+∇ξ(Û1 · e3)g = 0. (31)

Taking the curl of Eq. (31) yields

∂2∇ξ × Û1

∂t2
= 0 in Ω̂.

With the vanishing initial conditions we obtain that the velocity of a barotropic
fluid is irrotational. This is a well-known result, since the fluid is also iviscid
and subject to a potential force only ([11], Chap. 7). By the Helmholtz decom-
position theorem [8] the fluid velocity is written as the gradient of a potential

ψ defined up to a constant. The expression Û1 = ∇ξψ is used in Eq. (31), to
obtain

∇ξ
(
∂2ψ

∂t2
− ĉ20∆ξψ + g

∂ψ

∂ξ3

)
= 0. (32)

The potential ψ being defined up to a constant. it can always be sought as the
solution of

∂2ψ

∂t2
− ĉ20∆ξψ + g

∂ψ

∂ξ3
= 0, (33)

The equation (33) is multiplied by ρ̂0/ĉ
2
0, and we use g/ĉ20 = −ρ̂′0/ρ̂0,

ρ̂0

ĉ20

∂2ψ

∂t2
− ρ̂0∆ξψ − ρ̂′0

∂ψ

∂ξ3
= 0.

And since ρ0 depends only on ξ3, the two last terms can be rewritten,

ρ̂0

ĉ20

∂2ψ

∂t2
−∇ξ · (ρ̂0∇ξψ) = 0. (34)

Hence ψ satisfies a wave equation. The boundary conditions are then deduced
from Eq. (26) and Eq. (27),

∇ξψ · n̂b = ûb,1 on Γ̂b,

ĉ20∆ξψ =
∂2ψ

∂t2
+ g

∂ψ

∂ξ3
= 0 on Γ̂s.

(35)

(36)

The system (33),(35),(36) is the first-order system obtained in [20], where the
irrotationality assumption is made independantly from the fact that the fluid is
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barotropic and the boundary conditions are obtained with the linearized surface
condition. This shows that the linearization made in [20] gives exactly the same
result as the linearization strategy we have presented.

An energy equation can be then obtained for the system (34),(35),(36). The
equation (34) is multiplied by ∂tψ and integrated by parts,∫

Ω̂

ρ̂0

ĉ20

∂ψ

∂t

∂2ψ

∂t2
dξ +

∫
Ω̂

ρ̂0∇
(
∂ψ

∂t

)
· ∇ψ dξ

−
∫

Γ̂s

ρ̂0
∂ψ

∂t
∇ψ · e3 dσ +

∫
Γ̂b

ρ̂0
∂ψ

∂t
∇ψ · nb dσ = 0.

With the boundary conditions (35) - (36) and after simplifications it holds

d

dt
Ebar = −

∫
Γ̂b

ρ̂0
∂ψ

∂t
ûb,1 dσ,

where the energy Ebar is defined by

Ebar =
1

2

∫
Ω̂

ρ̂0

ĉ20

(
∂ψ

∂t

)2

dξ +
1

2

∫
Ω̂

ρ̂0|∇ψ|2 dξ +
1

2

∫
Γ̂s

ρ̂0

g

(
∂ψ

∂t

)2

dξ.

In order to write the barotropic system as a wave equation, and then obtain the
energy equation, it is necessary to use the background density ρ̂0 even if it does
not appear in Eq. (33). The correct manipulation was found by comparison
with the general case described by Eq. (25).

In this section we have derived a linear model around a state at rest for the
compressible Euler equation with free surface. The equations are valid for a
generic equation of state and for a temperature varying vertically. An energy
equation can be obtained for this system, and it gives a condition on the fluid
stratification. We have shown that in the barotropic case the system (25) is
equivalent to the first-order scalar equation of [20]. The goal of the next section
is to continue the comparison of Eq. (25) with other models, by writing its
approximation for two asymptotic regimes.

3 Two limits of the system

There are two main types of models for the inviscid free-surface flows: the in-
compressible models, when the acoustic waves are neglected, and the acoustic
models, when the effect of gravity is neglected. In this section we write two sim-
plified versions of the system (25)-(27) corresponding to each case. The wave
equation (25) is written in non-dimensional form, and we show that it depends
on a small nondimensional parameter. A simplified model is then obtained by
passing formally to the limit when the small parameter vanishes. By making
the appropriate choice for the time scale we obtain first an incompressible ap-
proximation, then an acoustic approximation.
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3.1 Non-dimensional equation

We introduce the following characteristic scales for the system: a time τ , a hor-
izontal scale L, a vertical scale H, a density ρ̄, and a fluid velocity U . Since
the speed of sound is not assumed constant, we denote by C its characteristic
magnitude. Finally, the surface waves velocity is of the order of

√
gH [4]. We

focus on a non-shallow water formulation, hence we take L = H. For a shallow
water version of the equation one would choose H � L.

Two dimensionless numbers are introduced: the Froude number and the
Mach number, respectively defined by

Fr =
U√
gH

, Ma =
U

C
.

To fix the idea, we choose the following numerical values respectively for the
speed of sound, the fluid velocity and the surface waves velocity: C ∼ 1480 m s−1,
U ∼ 1 m s−1 and

√
gH ∼ 100 m s−1. The dimensionless numbers are then

Fr = 0.01, Ma = 6.10−4.

The characteristic scale for time will be fixed later, as it will depend on the
regime we want to study. The variables are put in non-dimensional form and
the dimensionless variables are denoted with a ·̃, except for the space and time
variable for the sake of conciseness. The adimensionned domain is denoted
by Ω̃ and its surface and bottom boundary are respectively Γ̃s and Γ̃b. The
non-dimensional system reads, after simplification by the factor ρ̄U ,

ρ̃0

τ2

∂2Ũ1

∂t2
− C2

L2
∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+
g

L
ρ̃0

(
∇ξ
(
Ũ1,0 · e3

)
−∇ξ · Ũ1,0 e3

)
= 0, (37)

with the boundary conditions{
Ũ1 · ñb = ũb,1 on Γ̃b,

∇ξ · Ũ1 = 0 on Γ̃s,

(38)

(39)

where ũb,1 is a dimensionless source term.

3.2 Incompressible limit

In order to study the incompressible limit, the characterisic time τ is chosen to
follow the surface waves, which are much slower than the acoustic waves. We
take L/τ =

√
gH. The equation (37) becomes

ρ̃0
∂2Ũ1

∂t2
− Fr

Ma
∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+ ρ̃0

(
∇ξ
(
Ũ1 · e3

)
−∇ξ · Ũ1 e3

)
= 0.
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The small parameter δ = Ma/Fr ∼ 6.10−2 is introduced in the equation,

ρ̃0
∂2Ũ1

∂t2
− 1

δ2
∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+ ρ̃0

(
∇ξ
(
Ũ1 · e3

)
−∇ξ · Ũ1 e3

)
= 0, (40)

and the goal is now to study the behaviour of the problem (40) when δ goes to
zero. We make the following ansatz for Ũ1,

Ũ1 = Ũ1,0 + δ2Ũ1,2 + o(δ2),

where Ũ1,0, Ũ1,1 and Ũ1,2 are independant of δ. Since Eq. (40) has only even

powers of δ, the term Ũ1,1 is equal to zero. Replacing Ũ1 by its ansatz in the
wave equation (40) and separating the powers of δ yields an equation for each
term of the asymptotic developement of Ũ1. The equation obtained with the
terms in δ−2 reads

∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1,0

)
= 0, (41)

and the equation obtained with the terms δ0 reads

ρ̃0
∂2Ũ1,0

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1,2

)
+ρ̃0

(
∇ξ
(
Ũ1,0 · e3

)
−∇ξ · Ũ1,0 e3

)
= 0. (42)

With the terms in δ0 of the boundary conditions we have{
∇ξ · Ũ1,0 = 0 on Γ̃s,

Ũ1,0 · ñb = ũb,1 on Γ̃b.

(43)

(44)

And the terms in δ2 of the boundary conditions read{
∇ξ · Ũ1,2 = 0 on Γ̃s,

Ũ1,2 · ñb = 0 on Γ̃b.

(45)

(46)

Property of the limit solution

We focus first on Eq. (41) with the boundary conditions (43), (44). The Hel-
moltz decomposition of Ũ1,0 reads

Ũ1,0 = ∇ξϕ1,0 +∇ξ ×ψ1,0,

where ϕ1,0 vanishes on Γ̃s and Γ̃b. Injecting the decomposition of Ũ1,0 in Eq.
(41) yields

∇ξ
(
ρ̃0c̃

2
0 ∆ξϕ1,0

)
= 0,

hence the term inside the gradient is constant in space. Since the velocity Ũ1,0

is equal to zero at infinity, we obtain that ∆ξϕ1,0 = 0 in Ω̃ (the quantity ρ̃0c̃0
being always strictly positive). With the vanishing boundary conditions for
ϕ1,0, we obtain that ϕ1,0 is equal to zero everywhere in Ω̃. Then, taking the

divergence of Ũ1,0 yields

∇ξ · Ũ1,0 = ∇ξ · (∇ξ ×ψ1,0) = 0,

hence Ũ1,0 is divergence-free.
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Limit equation

We consider now the equation (42). Using the fact that the divergence of Ũ1,0

vanishes and rearranging some terms we obtain

ρ̃0
∂2Ũ1,0

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1,2

)
+∇ξ

(
ρ̃0Ũ1,0 · e3

)
− ρ̃′0(Ũ1,0 ·e3) e3 = 0. (47)

Taking the curl of this equation yields

∇ξ ×

(
ρ̃0
∂2Ũ1,0

∂t2
− ρ̃′0(Ũ1,0 · e3) e3

)
= 0, (48)

This means that these terms can be expressed as the gradient of a potential
function defined up to a constant and denoted −ϕ̃0,

ρ̃0
∂2Ũ1,0

∂t2
− ρ̃′0(Ũ1,0 · e3) e3 = −∇ξϕ̃0. (49)

The new function ϕ̃0 can be understood as the Lagrange multiplier for the
incompressibility constraint. However, one must be cautious that ϕ̃0 is not
similar to a pressure in this case, and rather plays the role of a velocity potential,
as we will see later in the case of homogeneous density. The function ϕ̃0 can be
expressed differently, indeed by using its definition (49) in the equation (47) we
have

∇ξ
(
−ϕ̃0 − ρ̃0c̃

2
0∇ξ · Ũ1,2 + ρ̃0Ũ1,0 · e3

)
= 0,

and since the potential ϕ̃0 is defined up to a constant, it can be chosen such
that, in Ω̂, we have

ϕ̃0 = −ρ̃0c̃
2
0∇ξ · Ũ1,2 + ρ̃0Ũ1,0 · e3. (50)

We deduce from this equality and (45) the boundary condition

ϕ̃0 = ρ̃0Ũ1,0 · e3 on Γ̃s. (51)

To recover a dimensional system, the terms are multiplied by their corresponding
characteristic scales, and ϕ̂0 = ρ̄Uϕ̃0 is defined. The limit solution Û1,0 =

UŨ1,0 satisfiesρ̂0
∂2Û1,0

∂t2
− gρ̂′0(Û1,0 · e3) e3 + g∇ξϕ̂0 = 0 in Ω̂,

∇ξ · Û1,0 = 0 in Ω̂,

(52)

(53)

with the boundary conditions
Û1,0 · n̂b = ûb,1 on Γ̂b,

∇ξ · Û1,0 = 0 on Γ̂s,

ϕ̂0 = gρ̂0Û1,0 · e3 on Γ̂s,

(54)

(55)

(56)
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We derive an energy equation for the system (52)-(56) with the boundary con-
ditions (54), (55), (56). Taking the scalar product of (52) with ∂tŨ1,0 and

integrating over Ω̂ yields

1

2

d

dt

∫
Ω̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ−
∫

Ω̂

ρ̂′0(Û1,0 ·e3) e3 ·
∂Û1,0

∂t
dξ+

∫
Ω̂

g
∂Û1,0

∂t
·∇ξϕ̂0 dξ = 0.

(57)
The last term of Eq. (57) is integrated by parts. With the vanishing divergence

of Û1,0 and the bottom condition (54) it holds∫
Ω̂

g
∂Û1,0

∂t
· ∇ξϕ̂0 dξ =

∫
Γ̂s

gϕ̂0
∂Û1,0

∂t
· e3 dσ −

∫
Γ̂b

gϕ̂0
∂ûb,1
∂t

dσ,

then ϕ̂0 is replaced in the surface integral using Eq. (56),

1

2

d

dt

∫
Ω̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ −
∫

Ω̂

ρ̂′0(Û1,0 · e3) e3 ·
∂Û1,0

∂t
dξ

+

∫
Γ̂s

gρ̂0Û1,0 · e3
∂Û1,0

∂t
· e3 dσ =

∫
Γ̂b

gϕ̂0
∂ûb,1
∂t

dσ. (58)

By defining the energy

Eincomp =
1

2

∫
Ω̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ − 1

2

∫
Ω̂

ρ̂′0|Û1,0 · e3|2 +
1

2

∫
Γ̂s

ρ̂0|Û1,0 · e3|2,

the equation (57) can be formulated in the following way,

d

dt
Eincomp =

∫
Γ̂b

gϕ0
∂ûb,1
∂t

.

Recall that ρ̂′0 < 0, so Eincomp is a positive quadratic functional.

Finally, note that the boudary conditions can be expressed differently, by
using the equations (52) and (56). The bottom boundary condition is obtained
by taking the scalar product of Eq. (52) with ñb, and replacing the first term
with Eq. (54) differentiated twice in time,

−ρ̂0
∂2ûb,1
∂t2

− gρ̂′0(Û1,0 · e3) e3 · n̂b + g∇ξϕ̂0 · n̂b = 0. (59)

For the surface condition, the equation (56) is differentiated twice in time and

the term in ∂ttÛ1,0 is replaced with (52),

∂2ϕ̂0

∂t2
− ρ̂′0(Û1,0 · e3) +

∂ϕ̂0

∂ξ3
= 0 on Γ̃s. (60)
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The boundary conditions (59), (60) will be more convenient for the homoge-
neous case.

The system (53)-(52) represents an incompressible fluid. However, this sys-
tem is different from the classical Poisson equation found in the litterature [19]
because of the assumption of a nonhomogeneous background density.

Remark : The condition |ρ̂′0|/ρ̂0 > g/ĉ20 is no longer required because the
destabilizing effects in the energy equation (28) come from the compressibility,
and here it is neglected. This can be seen by formally assuming that the sound
velocity is infinite, then N2 = −ρ̂′0/ρ̂0. Nevertheless, density must still decrease
with depth, but can be homogeneous.

Case of homogeneous density

For the sake of comparison with other models, let us assume now that the ocean
at rest has a homogeneous density, ρ̃′0 = 0. Taking the divergence of (52) yields

∆ξϕ̂0 = 0. (61)

The equation is completed with the boundary conditions (59), (60)
∇ξϕ̂0 · n̂b = −ρ̂0g ûb,1 on Γ̂b,

∂2ϕ̂0

∂t2
+ g

∂ϕ̂0

∂ξ3
= 0 on Γ̂s.

(62)

(63)

Eq. (61) - (62) is the Poisson equation, with boundary conditions, satisfied
by the velocity flow in an incompressible homogeneous free-surface fluid ([19],
Chap. 3.1.). Note that it was required that ρ̃′0 6= 0 in the system (25) to obtain
an a priori positive energy. Here this assumption is dropped, however a rather
simple energy identity can be derived: multiplying Eq. (61) by ∂tϕ̂0, integrating
by parts and using Eq. (62)- (63), we obtain∫

Ω̂

∆ξϕ̂0
∂ϕ̂0

∂t
dξ = −

∫
Ω̂

∇ξϕ · ∇ξ
(
∂ϕ̂0

∂t

)
dξ

−
∫

Γ̂s

1

g

∂ϕ̂0

∂t

∂2ϕ̂0

∂t2
dσ +

∫
Γ̂b

ρ̂0g
∂ϕ̂0

∂t
ûb,1 dσ. (64)

We define the energy

EPoisson =
1

2

(∫
Ω̂

|∇ξϕ̂|2 dξ +

∫
Γ̂s

1

g
(
∂ϕ̂0

∂t
)2 dσ

)
,

Then it holds
d

dt
EPoisson = −

∫
Γ̂b

ρ̂0g
∂ϕ̂0

∂t
ûb,1 dσ.

19



3.3 Acoustic limit

Another possible simplification of the system (25) - (27) is to keep only the
acoustic terms. This choice is justified for short time scale, because the propa-
gation speed of the acoustic waves and the gravity waves have different orders
of magnitude ([20]).

With the timescale L/τ = C, corresponding to the acoustic wave, and with
the same small parameter δ = Ma/Fr as before, the system (37) becomes

ρ̃0
∂2Ũ1

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+ δ2ρ̃0

(
∇ξ
(
Ũ1 · e3

)
−∇ξ · Ũ1 e3

)
= 0 in Ω̃, (65)

With the boundary conditions{
Ũ1 · ñb = ũb,1 on Γ̃b,

∇ξ · Ũ1 = 0 on Γ̃s.

As before, we make the following ansatz for Ũ1,

Ũ1 = Ũ1,0 + δ2Ũ1,2 + o(δ2).

One can see that the limit term δ → 0 for the volumic equation (65) is

ρ̃0
∂2Ũ1,0

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1,0

)
= 0. (66)

Taking the curl of this equation yields

∂2

∂t2

(
∇ξ × (ρ̃0Ũ1,0)

)
= 0,

hence the curl of ρ̃0Ũ1,0 is constant in time due to the vanishing initial con-
ditions. By the Helmoltz decomposition theorem, it can be expressed as the
gradient of some function ψ̃0 defined up to a constant,

ρ̃0Ũ1,0 = ∇ξψ̃0.

By subsituting in equation (66) we have

∇ξ

(
∂2ψ̃0

∂t2
− ρ̃0c̃

2
0∇ξ ·

(
ρ̃−1

0 ∇ξψ̃0

))
= 0,

then it holds
∂2ψ̃0

∂t2
− ρ̃0c̃

2
0∇ξ ·

(
ρ̃−1

0 ∇ξψ̃0

)
= 0,
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since ψ̃0 is defined up to a constant. We need the boundary conditions to
conclude. Evaluating (66) at the surface yields

ρ̃0
∂2Ũ1,0

∂t2
− ∂

∂ξ3

(
ρ̃0c̃

2
0∇ξ · Ũ1,0

)
e3 = 0 on Γ̃s. (67)

We take the cross product of (67) with the normal to the surface of the domain,
which is e3, and replace the velocity by the scalar potential ψ̃0.

∇

(
∂2ψ̃0

∂t2

)
× e3 = 0 on Γ̃s. (68)

This implies that the tangential derivative of ψ̃0 vanishes on the surface. Since
ψ̃0 is defined up to a constant, it holds ∂2

ttψ̃0 = 0 on Γ̃s, and with the vanishing
initial conditions this implies that ψ̃0 = 0 on Γ̃s. To recover a dimensional
system, the terms are multiplied by their corresponding characteristic scales,
and ψ̂0 = ρ̄UL ψ̃0 is defined. The system reads then

∂2ψ̂0

∂t2
− ρ̂0ĉ

2
0∇ξ ·

(
ρ̂−1

0 ∇ξψ̂0

)
= 0 in Ω̂, (69)

with the boundary conditions{
∇ξψ̂0 · n̂b = ûb,1 on Γ̂b,

ψ̂0 = 0 on Γ̂s.

(70)

(71)

An energy equation can be obtained by multiplying Eq. (73) by ∂tψ/(ρ0ĉ
2
0) and

integrating over the domain. The result reads after an integration by parts

d

dt
Eacoustic = −

∫
Γ̂b

1

ρ̂0

∂ψ̂0

∂t
ûb,1 dσ, (72)

where the acoustic energy is

Eacoustic =
1

2

∫
Ω̂

1

ρ̂0ĉ20

∂ψ̂0

∂t
dξ +

1

2

∫
Ω̂

1

ρ̂0
|∇ψ̂0|2 dξ.

Homogeneous case

When the density ρ̂0 is constant, the equation (69) becomes

∂2ψ̂0

∂t2
− ĉ20∆ψ0 = 0 in Ω̂. (73)

Eq. (73) is completed with the boundary conditions{
∇ξψ̂0 · n̂b = ûb,1 on Γ̂b,

ψ̂0 = 0 on Γ̂s.

(74)

(75)
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We recover the well-known linear acoustic equation ([16], Chap. 10.).

In this section we obtained two limit systems for the equation (25), respec-
tively in the incompressible regime and in the acoustic regime. We also showed
that classical models, such as the Poisson equation for an incompressible fluid, or
the acoustic wave equation, can be obtained as the formal limits of the equation
(25) with the additional assumption of an homogeneous density. The equations
with their boundary conditions and the associated energy for the general model
and its different simplifications are summarized in Appendix, Table 1.

Remark : In the litterature, the boundary condition used for the propagation
of acoustic waves in a free-surface, irrotational fluid, for a homogeneous density
at equilibrium are the same as (63), see for example [28], [26], [24]. In those
models, the acoustic and the gravity waves are decoupled, with the acoustic
waves propagating inside the domain and the gravity waves propagating at the
surface. One can also notice that the boundary conditions (75) and (74) ob-
tained from the acoustic approximation coincide with [20].

Remark : In the sections 3.2 and 3.3, the equations (61) - (63) and (73)-(74)
use the Lagrangian description whereas the equations from the litterature use
the Eulerian description. In the general case, the use of different coordinate
systems would cause two problems. First, when doing the change of coordi-
nates, new terms should appear from the space or time differentiation. Second,
the description of the domain is different, and this implies that the boundary
conditions are not evaluated at the same location. In the next section we will
show that the first problem does not exist in our case, due to the lack of a
background velocity. As for the second problem, the linear eulerian models are
obtained by evaluating the boundary conditions at a fixed water height. To this
regard they use the same boundary as if they were in a Lagrangian description
of the domain, so that the comparison remains valid.

4 The model in Eulerian coordinates

The equations we have been working on are defined on the reference domain
Ω̂. However, the linear equations for the acoustic-gravity waves are generally
written in Eulerian coordinates. In order to compare our model with those from
the litterature, the equations must be formulated on the moving domain Ω(t).
In this section we present a method to write the system in Eulerian coordinate.

4.1 General method

The aim is to write the equation on a moving domain Ω(t), hence a transfor-
mation φ : Ω̂ → Ω(t) is needed. We start by using a first order approximation
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of the real transformation φ. The transformation φ is developed for small dis-
placements,

φ(ξ, t) = I + εφ1(ξ, t) +O(ε2).

Let φε(ξ, t) = I+εφ1(ξ, t) be its first order approximation. φε is used to define
the equivalent domain and its boundary,

Ωε(t) = φε(Ω̂), Γs,eq = (φε(Γ̂s)), Γb,eq = (φε(Γ̂b)). (76)

The coordinates on the equivalent domain are written x = (x, y, z). For any
generic function X̂(ξ, t) defined in Ω̂, a function X(x, t) is defined in Ωε by the
following change of variables

X(x, t) = X̂(φ−1
ε (x, t), t),

which is equivalent to
X̂(ξ, t) = X(φε(ξ, t), t), (77)

as long as φε is invertible. Then, if the function X̂ has a first-order approx-
imation X̂ = X̂0 + εX̂1 + O(ε2), then the function X also has a first-order
approximation X = X0 + εX1 +O(ε2) and it holds (see Appendix, Sec. 7.2)

∇ξX̂0 = ∇X0, (78)

∂X̂0

∂t
=
∂X0

∂t
, (79)

∇ξX̂1 = (∇ξd1)T∇X0 +∇X1, (80)

∂X̂1

∂t
=
∂X1

∂t
+ U1 · ∇X0. (81)

In the following, when writing the equations satisfied by the free surface of Ωε,
we will also use

∂φε
∂t

= εÛ1. (82)

4.2 The model in Eulerian coordinates

Using the change of variable (77) in the system (20)-(22) and with the equalities
(78)-(81) we obtain the following system for U1, p1, ρ1 defined in Ωε,

ρ0
∂U1

∂t
+∇p1 = ρ1g,

∂ρ1

∂t
+∇ · (ρ0U1) = 0,

∂p1

∂t
+∇p0 ·U1 + ρ0c

2
0 ∇ ·U1 = 0.

(83)

(84)

(85)

And p0, ρ0 satisfy the limit equations
∂ρ0

∂t
= 0,

∇p0 = ρ0g.

(86)

(87)
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We assume in the following that the equations (83)-(87) are defined in Ω̂. It
would be true if Ω̂ ⊂ Ωε, but the inclusion is in general not verified. The
assumption is therefore not entirely satisfactory and has partly motivated the
present work. Assuming that (83)-(87) are defined in Ω̂, it remains to write the
boundary conditions on the boundary of Ω̂.

Boundary conditions and free surface description

Following the approach of [23], we show that a description for the free surface
can be obtained. In the following, the components of the fluid velocity are
denoted U = (U1

1 , U
2
1 , U

3
1 )T . The surface is defined by Γs,eq = φε(Γ̂s), and

we assume that at each time t it can be parametrized as the graph ηε. The
elevation ηε is a function of x, y, and t and can be decomposed in the following
way,

ηε(x, y, t) = H + εη1(x, y, t). (88)

From the correspondence between the free surface and the particle displacement,
it holds

φ3
ε(ξ

1, ξ2, H, t) = ηε
(
x(ξ1, ξ2, H, t), y(ξ1, ξ2, H, t), t

)
. (89)

Differentiating (89) in time and using the equation (82) yields

εÛ3
1 (ξ1, ξ2, H, t) =

∂ηε
∂t

+ εÛ1
1 (ξ1, ξ2, H, t)

∂ηε
∂x

+ εÛ2
1 (ξ1, ξ2, H, t)

∂ηε
∂y

.

We use the change of variables φε(ξ, t) = Id+ εφ1(ξ, t),

εU3
1 (φε(ξ

1, ξ2, H, t), t) =
∂ηε
∂t

+ εU1
1 (φε(ξ

1, ξ2, H, t), t)
∂ηε
∂x

+ εU2
1 (φε(ξ

1, ξ2, H, t), t)
∂ηε
∂y

.

After a Taylor developement and keeping only the terms in ε, it holds

U3
1 (x, y,H, t) =

∂η1

∂t
, (90)

this is the linearized equation for the free surface.

Then the dynamic boundary conditions are linearized. With the change of
variables, the boundary conditions (15), (23) and (24) become

U1 · nb = ub,1 on Γb,eq., (91)

p0 = pa on Γs,eq, (92)

p1 = 0 on Γs,eq. (93)

If we linearize (93) only we would miss the first-order term coming from (92).
From (92) and (93) we deduce the boundary condition for the pressure

p0 + εp1 = pa on Γs,eq. (94)
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A Taylor developement of p0 and p1 around z = H on Γs,eq yields

p0(H) + ε(p1(x, y,H, t) + p′0(H)η1) +O(ε2) = pa.

After an identification of the powers of ε it holds

p0(H) = pa, p1(x, y,H, t) = ρ0(x, y,H, t)g η1(x, y, t). (95)

In a similar way, the linearization of Eq. (91) reads

U3
1 (x, y, zb)− U1

1 (x, y, zb) ∂xzb − U2
1 (x, y, zb) ∂yzb = ub,1(x, y, t). (96)

Hence the equations for U1, ρ1, p1 can be fully defined on the domain Ω̂, with an
error in O(ε2). Finally, note that for the system (83)-(85) with the boundary
conditions (95),(96) and the kinematic condition (90), an energy is available,
locally as well as over a whole water column (see [19], [21]).

In this section we have derived the linear equation in Eulerian coordinates,
even though an approximation on the domain in which the equations are defined
was necessary. The computations of Sec. 4.1 also justify that in the absence of
mean flow and with the evaluation of the boundary conditions at a fixed height,
the linear system in Eulerian coordinates is similar to the one in Lagrangian
coordinate, up to terms in O(ε2). At the same time, the linearization in the La-
grangian coordinates is better defined. For this reason the system in Lagrangian
coordinates is preferred for the rest of this work. We conclude this paper by the
study of the dispersion relation obtained from Eq. (25).

5 Dispersion relation

In this section we derive the dispersion relation from Eq. (25) and solve it nu-
merically. First note that if one defines the equivalent pressure pε, the equivalent
density ρε and the equivalent velocity Uε by

pε = p0 + εp1, ρε = ρ0 + ερ1, Uε = εU1,

then a combination of the equations (83) - (87) yields the following system for
pε, ρε and Uε,

ρ0
∂Uε

∂t
+∇pε = ρεg +O(ε2), (97)

∂ρε
∂t

+∇ · (ρ0Uε) = O(ε2), (98)

∂pε
∂t

+∇p0 ·Uε + ρ0c
2
0 ∇ ·Uε = O(ε2). (99)

This system is comparable – up to the terms in O(ε2) – to the system studied
in [2]. From this system of equation, the authors give a thorough analysis of the
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dispersion relation for a stratified compressible fluid. This motivates the study
of the dispersion relation for the wave-like equation (25).

In order to make the computations clearer, the problem is restricted to a 2-
dimensional configuration in ξ1 and ξ3. Following the approach of [2], the wave
angular frequency ω and the horizontal wave-number frequency kx are defined,
and we seek a solution of the form

ρ̂0Û1(ξ1, ξ3, t) =

(
Ũ1(ξ3)

Ũ3(ξ3)

)
ei(kxξ

1−ωt). (100)

First Eq. (25) is written differently to make the unknown ρ̂0Û1 appear.

∂2ρ̂0Û1

∂t2
−∇ξ(ĉ20∇ξ ·(ρ̂0Û1))−∇ξ

(
ĉ20N

2
0

g
ρ0Û1 · e3

)
−g∇ξ ·(ρ̂0Û1) e3 = 0 (101)

Injecting the ansatz (100) in Eq. (101) yields

ω2Ũ1 + ikx

(
ĉ20(ikxŨ

1 + (Ũ3)′) +
ĉ20N

2

g
Ũ3

)
= 0, (102)

ω2Ũ3 + ∂3

(
ĉ20(ikxŨ

1 + (Ũ3)′
)

+ ∂3

(
ĉ20N

2

g
Ũ3

)
+ g(ikxŨ

1 + (Ũ3)′) = 0.

(103)

Using the equation (102), the horizontal component Ũ1 is expressed as a function
of the vertical component,

Ũ1 = −ikx
ĉ20D(Ũ3)′ + (ĉ20 − gD)Ũ3

D(ω2 − c20k2
x)

,

where D is a depth scale, defined by

1

D
=
N2

g
+

g

ĉ20
=
ρ′0
ρ0
.

We also define the quantity

S = 2
ĉ′0
ĉ0
.

Replacing Ũ1 in the equation (103) yields, after some computations,

(Ũ3)′′ +

(
1

D
+ ω2S2

)
(Ũ3)′

+

(
ω2

c20
+ k2

x

N2 − ω2

ω2
− D′

D2
+ S

(
g

ĉ20
+
N2

g

ω2

ω2 − c20k2
x

))
Ũ3 = 0.
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In order to write an harmonic equation the following change of variable is made,

Ũ3(z) = Ũ3(H)F (z) exp

(∫ H

z

α

2
dz′

)
, α =

1

D
+ ω2S.

Then F (0) = 0, F (H) = 1 and F satisfies the equation

F ′′ + k2
zF = 0 (104)

where the vertical wave-number kz is defined by

k2
z + k2

x

N2 − ω2

ω2
+
ω2

ĉ20
− 1 + 2D′

4D2
− 1

2
ω2S′

+ S

(
g

ĉ20
+
N2

g

ω2

ω2 − ĉ20k2
x

− ω2

2D
− 1

4
ω4S

)
= 0, (105)

Eq. (105) is the dispersion relation for the two wave-numbers kx, kz and the
frequency ω. If the speed of sound is assumed constant, then S ≡ 0 and one
recovers exactly the same inner dispersion relation as [2].

Remark: When kz depends on z, it is not clear whether the solution to (104),

and then the profile Ũ3, can be written explicitely. When kz is constant in z,
as in [2], the expression of the profile Ũ3 is used with the boundary conditions
to obtain a boundary dispersion relation. In our case kz is not a constant, and
the boundary dispersion relation is not easily deduced.

Numerical approximation of the dispersion relation

An evaluation of the equation (105) is possible once the limit state for the pres-
sure and the density is computed. The differential equation for the pressure
(13) is numerically solved for the temperature profile shown in Fig. 3a. Then
the density and the speed of sound are computed from the tabulations given
in [6]. Fig. 3b, 3c show the obtained density and speed of sound. With these
profiles the dispersion relation (105) is computed. Fig 4 shows the contours of
the vertical wave-number as a function of the horizontal wave-number and the
angular frequency, at different depths. For the sake of comparison, the plotted
variables are the adimensionned variables δx = kxH, δz = kzH and log10(δω),
where δω = ω

√
H/g.

Although Fig 4 is close to the one in [2], one can notice the influence of the
depth on the contour. The equation (105) is not further studied in this work,
but this first result suggests that the variation of the parameters ĉ0, N,D with
depth plays a non-negligible role in the waves dispersion.

6 Conclusion and future work

In this work we have presented an original system describing the propagation of
the acoustic-gravity waves in an inviscid free-surface flow. Through a rigorous
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Figure 3: Temperature, density and sound velocity profiles used for the compu-
tation of the dispersion relation where ξ3 = 0 is the seafloor and ξ3 = 4000 m
is the ocean surface.
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(a) ξ3 = 2000 m (b) ξ3 = 3600 m.

(c) ξ3 = 4000 m.

Figure 4: Contour of the vertical wave-number as a function of the horizontal
wave-number and the angular frequency, at different depths. 4a: ξ3 = 2000 m,
4b: ξ3 = 3600 m, 4c: ξ3 = 4000 m.
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linearization of the compressible Euler equation we have obtained a model able
to represent many physical phenomenons, such as the SOFAR channel or the
propagation of internal waves. The variety of these phenomenons is well repre-
sented in the dispersion relation.

In the derivation only few assumptions are made and some common sim-
plifying hypotheses were avoided. In particular, the fluid is rotational and a
generic equation of state can be used. Note also that in the present work the
source term is a displacement of the seabed, but this is not restrictive and other
source terms could be used (a change in the surface pressure for example). With
additional assumptions compatible with the derivation of the system, such as
considering a barotropic fluid, or restricting the model to the incompressible
regime or to the acoustic regime, we are able to recover simpler models widely
studied in the litterature. Hence the mathematical study of the more complete
model can help gain insight on the other ones. The linear model in Lagrangian
coordinates can also be used to recover the linearized Euler equations in Eule-
rian coordinates. This brings a clear understanding of the usual – nevertheless
non satisfactory – assumption that is used to derive the aformentionned models
in Eulerian coordinates.

The wave-like formulation of the model makes it a good candidate for a
numerical approximation by the finite elements method. The fact that it pre-
serves an energy suggests that the problem is well-posed, which motivates a
more thorough study of the mathematical problem. These two aspects will be
investigated in a future work.
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Journal de Mathématiques Pures et Appliquées, 78(10):1013–1042, 1999.

[10] B. Gomez and U. Kadri. Near real-time calculation of submarine fault prop-
erties using an inverse model of acoustic signals. Applied Ocean Research,
109:102557, 2021.

[11] E. Guyon, editor. Physical hydrodynamics. Oxford University Press, Oxford
; New York, 2001. OCLC: ocm47048231.
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7 Appendix

7.1 The energy equation

In this section an energy equation for the system (25) is obtained. Recall that
the system (25) reads in Ω̂,

ρ̂0
∂2Û1

∂t2
−∇ξ

(
ρ̂0ĉ

2
0∇ξ · Û1

)
− (∇ξÛ1)T ρ̂0g + ρ̂0∇ξ · Û1 g = 0,
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with the boundary conditions{
Û1 · nb = ûb,1 on Γ̂b,

∇ξ · Û1 = 0 on Γ̂s.

By taking the scalar product of (25) with ∂tÛ1 and integrating over the domain
we have∫

Ω̂

∂Û1

∂t
·

(
ρ̂0
∂2Û1

∂t2

)
dξ −

∫
Ω̂

∂Û1

∂t
·
(
∇ξ
(
ρ̂0ĉ

2
0∇ξ · Û1

))
dξ

+

∫
Ω̂

∂Û1

∂t
·
(
∇ξ(Û1 · e3) ρ̂0g

)
dξ −

∫
Ω̂

∂Û1

∂t
·
(
ρ̂0∇ξ · Û1 g e3

)
dξ = 0.

(106)

For the first integral of (106) it holds

∫
Ω̂

∂Û1

∂t
·

(
ρ̂0
∂2Û1

∂t2

)
dξ =

d

dt

∫
Ω̂

ρ0
1

2

∣∣∣∣∣∂Û1

∂t

∣∣∣∣∣
2

dξ. (107)

The second term of (106) is integrated by parts, using ∇ξ ·Û1 = 0 on the surface

and Û1 · n̂b = b̂1 at the bottom (hence ∂t(Û1 · n̂b) = ∂tb̂1),

−
∫

Ω̂

∂Û1

∂t
· ∇ξ

(
ρ0c

2
0∇ξ · Û1

)
dξ =

1

2

d

dt

∫
Ω̂

ρ̂0ĉ
2
0|∇ξ · Û1|2 dξ

−
∫

Γ̂b

ρ0c
2
0∇ξ · Û1

∂b̂1
∂t

dσ. (108)

For the computation of the two last integral of (106), we define

(I) =

∫
Ω̂

∂Û1

∂t
·
(
∇ξ(Û1 · e3) ρ̂0g

)
dξ −

∫
Ω̂

∂Û1

∂t
·
(
ρ̂0∇ξ · Û1 g e3

)
dξ,

an we denote by n̂ be the vector normal to the boundary ∂Ω. (I) is integrated
by parts and reads

(I) =

∫
∂Ω

ρ̂0gÛ1 · e3
∂Û1

∂t
· n̂dσ −

∫
Ω̂

gÛ1 · e3∇ξ · (ρ̂0
∂Û1

∂t
) dξ

−
∫

Ω̂

ρ̂0g
∂Û1

∂t
· e3∇ξ · Û1 dξ.

The boundary term is simplifed using ∂t(Û1 · n̂b) = ∂tb̂1 at the bottom. On
the boundary Γ̂s, the surface is horizontal hence the normal vector is the unit

33



vector e3, so it holds

(I) =

∫
Γ̂b

ρ̂0gÛ1 · e3
∂b̂1
∂t

dσ +

∫
Γ̂s

ρ̂0gÛ1 · e3
∂Û1

∂t
· e3 dσ

−
∫

Ω̂

gÛ1 · e3∇ξ · (ρ̂0
∂Û1

∂t
) dξ −

∫
Ω̂

ρ̂0g
∂Û1

∂t
· e3∇ξ · Û1 dξ. (109)

Next we develop the gradient in the third integral of Eq. (109). Note that ρ̂0

depends only on the vertical coordinate, then we have

−
∫

Ω̂

g Û1 ·e3
∂Û1

∂t
·∇ξρ̂0 = −

∫
Ω̂

g Û1 ·e3
∂Û1 · e3

∂t

dρ̂0

dξ3
= −1

2

d

dt

∫
Ω̂

ρ̂′0g |Û1 ·e3|2,

hence we obtain

(I) =

∫
Γ̂b

ρ̂0gÛ1 · e3
∂b̂1
∂t

dσ +
1

2

d

dt

∫
Γ̂s

ρ̂0g|Û1 · e3|2 dσ

− 1

2

d

dt

∫
Ω̂

gρ̂′0|Û1 · e3|2 dξ −
∫

Ω̂

ρ̂0gÛ1 · e3
∂

∂t
(∇ξ · Û1) dξ

−
∫

Ω̂

ρ̂0g
∂Û1

∂t
· e3∇ξ · Û1 dξ. (110)

The two last terms of (110) are put together,

(I) =

∫
Γ̂b

ρ̂0gÛ1 · e3
∂b̂1
∂t

dσ +
1

2

d

dt

∫
Γ̂s

ρ̂0g|Û1 · e3|2 dσ

− 1

2

d

dt

∫
Ω̂

gρ̂′0|Û1 · e3|2 dξ − d

dt

∫
Ω̂

ρ̂0gÛ1 · e3∇ξ · Û1 dξ. (111)

Summing the terms (107), (108) and (111) yields

d

dt

∫
Ω̂

ρ0
1

2

∣∣∣∣∣∂Û1

∂t

∣∣∣∣∣
2

dξ +
1

2

d

dt

∫
Ω̂

ρ̂0

(
ĉ0∇ξ · Û1 −

g

ĉ0
Û1 · e3

)2

dξ

− 1

2

d

dt

∫
Ω̂

ρ̂0(Û1 · e3)2

(
g2

ĉ20
+
gρ̂′0
ρ̂0

)
dξ +

1

2

d

dt

∫
Γs

ρ̂0g(Û1 · e3)2 dσ

=

∫
Γ̂b

ρ0

(
c20∇ξ · Û1 − ρ̂0gÛ1 · e3

) ∂ûb,1
∂t

dσ,

and by defining

Nb = −
(
g2

ĉ20
+
gρ̂′0
ρ̂0

)
,

we obtain the energy equation (28).

34



7.2 Space and time derivatives in Ωε

In this section we derive the relations between the zero- and first-order approx-
imation in Eulerian and in Lagrangian coordinates, when differentiating with
respect to time or space. First note that φ0 and φ1 can be expressed in terms
of the displacement d. From the assumption of small displacements it holds
d = εd1 +O(ε2), then identifying the powers of ε and summing yields

φε(ξ, t) = ξ + εd1(ξ, t).

From the change of coordinate we have

∇ξX̂ = (∇ξφε)T∇X = (Id+ ε∇ξd1)T∇X,

and using this identity for X̂ = X̂0 + εX̂1 yields

∇ξ(X̂0 + εX̂1) = ∇X0 + ε
(
(∇ξd1)T∇X0 +∇X1

)
+O(ε2).

By identifying the powers of ε it holds

∇ξX̂0 = ∇X0, ∇ξX̂1 = (∇ξd1)T∇X0 +∇X1.

The same method is used for the time derivative. Starting with

∂X̂

∂t
(ξ, t) =

∂X

∂t
(φε(ξ), t) +

∂φε
∂t

(ξ) · ∇X(φε(ξ), t),

we obtain after replacing X and X̂ by their first order approximation,

∂X̂0

∂t
+ ε

∂X̂1

∂t
=
∂X0

∂t
+ ε

(
∂X1

∂t
+
∂d1

∂t
· ∇X0

)
+O(ε2).

With ∂td1(ξ, t) = Û1(ξ, t) = U1(x, t) it holds

∂X0

∂t
+ ε

(
∂X1

∂t
+ U1 · ∇X0

)
+O(ε2).

We identify the powers of ε,

∂X̂0

∂t
=
∂X0

∂t
,

∂X̂1

∂t
=
∂X1

∂t
+ U1 · ∇X0.

35



E
q
u

a
ti

o
n

in
Ω̂

B
o
u

n
d

a
ry

co
n

d
it

io
n

s
E

n
er

g
y

G
en

er
a
l

m
o
d
el

(S
ec

.
2
.3

)

ρ̂
0
∂

2
Û
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û
b
,1
,

Γ̂
b

∂
2
ϕ̂

0

∂
t2

+
g
∂
ϕ̂

0

∂
ξ3

=
0,

Γ̂
s

E P
o
is
s
o
n

=
1 2

( ∫ Ω̂

|∇
ξ
ϕ̂
|2

d
ξ

+

∫ Γ̂
s

1 g
(
∂
ϕ̂

0

∂
t

)2
d
σ

)

A
co

u
st

ic
li
m

it
(S

ec
.

3
.3

)

∂
2
ψ̂

0

∂
t2
−
ρ̂

0
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