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Abstract

In this paper we construct an accurate linear model describing the
propagation of both acoustic and gravity waves in water. This original
model is obtained by the linearization of the compressible Euler equations,
written in Lagrangian coordinates. The system is studied in the isentropic
case, with a free surface, an arbitrary bathymetry, and vertical variations
of the background temperature and density. We show that our model is
an extension of some models from the litterature to the case of a non-
barotropic fluid with a variable sound speed. Other models from the
literature are recovered from our model through two asymptotic analysis,
one for the incompressible regime and one for the acoustic regime. We
also propose a method to write the model in Eulerian coordinates. Our
model includes many physical properties, such as the existence of internal
gravity waves or the variation of the sound speed with depth.

1 Introduction

Several authors have proposed to use the propagation of acoustic waves in
the ocean to detect tsunamis, as the sound travels in water at approximately
1500 m s−1 and the velocity of tsunami wave is around 300 m s−1 (Constantin,
2009). The existence of hydro-acoustic signals generated by tsunami sources
such as earthquakes or landslides was shown in Tolstoy (1950). This motivates
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the mathematical modelling of the propagation of both surface waves – the
tsunami – and underwater acoustic waves, also called hydroacoustic waves, in a
compressible formulation.

The idea of using acoustic-gravity waves for tsunami early-warning systems
dates back from 1950 (Ewing et al., 1950). A more recent study (Stiassnie, 2010)
indicates that the pressure variations induced by the tsunami are significant
enough to be used for the improvement of the tsunami early-warning systems.

For the description of the propagation of sound in water, the most common
model is a linear wave equation for the fluid potential, i.e. for an irrotational
fluid (Jensen et al., 2011). When both surface and acoustic waves are considered,
different types of models are available. In his work, Stiassnie (2010) studies the
acoustic equation for the fluid potential coupled with a free-boundary condition.
The three-dimensional acoustic equation is analyzed by Nosov & Kolesov (2007)
and a depth-integrated version is proposed by Sammarco et al. (2013) in order
to reduce the computational costs. This approach was further developped in
a serie of papers (Cecioni et al., 2014; Abdolali et al., 2015; Gomez & Kadri,
2021).

Another approach was proposed by Longuet-Higgins (1950) where the equa-
tion is still on the fluid potential, but includes a gravity term. This equation,
including second order terms, made it possible for the first time to explain the
seismic noise generated worldwide by waves interactions in the ocean (Stutz-
mann et al., 2012). This model was also the starting point of an extensive
work to describe the nonlinear interactions between acoustic and gravity waves
(Kadri & Stiassnie, 2013). In other works, such as Smith (2015) and Auclair
et al. (2021), the flow is not assumed irrotational, so that the equations are
written for the fluid velocity. They include gravity terms and a vertical stratifi-
cation for the background density, temperature and salinity. This generalisation
allows to study the internal waves caused by the stratification of the fluid, and
dispersion relations for the three types of waves (acoustic, internal, surface) are
obtained.

The above cited works share one or several of the following assumptions :
irrotational flow, homogeneous background density or barotropic fluid, and a
constant speed of sound. These modelling choices have a strong influence on
the structure of the equations, resulting in a variety of tools for their analysis
and their numerical approximation. For example, the irrotationality assumption
allows to reduce the number of unknowns, but the validity of this assumption in
the compressible case is not clear. Furthermore, in the models that do not as-
sume irrotational flow, the bed is assumed to be flat, even though bed variations
are a key element impacting tsunami and acoustic wave propagation (Caplan-
Auerbach et al., 2014). In the ocean, the choice of a constant sound speed may
be not appropriate since the variation of the sound speed creates the SOFAR
channel, a horizontal strip in which the acoustic waves propagate with very little
energy loss. Quantifying the impact of these approximations requires the use of
simulations based on a more complete model. Finally, the free-surface equation
induces a strong nonlinearity in the system. Indeed, the domain on which the
equation are written depends on the solution to the equations. The common
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approach for the linearization of the system consists in writing the linear equa-
tions on the unperturbed domain. However, by doing so an approximation on
the domain is made, in addition to the approximation made on the solution.
It is not clear how to quantify the magnitude of the error made by the two
combined approximations.

The aim of this work is to adress these modelling choices by deriving an
accurate linear model as rigorously as possible with only very few assumptions
for hydro-acoustic, internal and surface waves propagating in a fluid over an
arbitrary bathymetry. Salinity, thermal dissipation and viscosity are neglected,
and in order to linearize the equations we assume that the ocean is at equilibrium
and at rest before the earthquake or landslide occurs, and that the tsunami
source induces a small displacement of the water. In this model, the speed
of sound results from the imposed background temperature profile, so that the
effects of the SOFAR channel on the propagation of the hydroacoustic waves are
naturally present. The obtained model is comparable to the model of Auclair
et al. (2021), however our model includes a bathymetry and a variable sound
speed. Moreover our approach differs on several aspects:

• The problem is formulated as a second-order equation, which allows the
use of numerical solver dedicated to wave propagation problem such as
Specfem (Komatitsch & Tromp, 1999). Specfem uses spectral finite ele-
ments to compute acoustic and/or elastic wave propagations, and is widely
used in the seismology community, as for example to simulate seismic
waves generated by landslides (Kuehnert et al., 2020). In addition to the
acoustic waves already modelled in Specfem, the model proposed in the
present paper includes the linear water waves.

• The method used to write the linearization of a free-surface flow is generic,
and can be applied to extend the model. A possible extension would
include second-order terms (a similar work was done in Longuet-Higgins
(1950) in the barotropic case). Another possibility is to take into account
the interaction with the Earth. In particular, one can consider the elastic
deformations of the ocean bottom, that are shown to impact the travel
time of tsunami waves (Abdolali et al., 2019).

Another advantage of having a model with few assumptions is that a cas-
cade of simplified systems can be obtained from it. We indeed show that with
some simplifying assumptions, our model reduces to the models proposed in the
litterature. The analysis of these simplifications helps to understand the math-
ematical and physical choices made in these models. For example, the most
common model for the propagation of hydro-acoustic waves (Stiassnie, 2010;
Nosov & Kolesov, 2007; Sammarco et al., 2013) is recovered from the proposed
model by assuming a barotropic fluid and a constant background density.

We also show that our model and the simplified models are energy-preserving.
Our model is a linear version of the Euler equations, and the equation account-
ing for the energy conservation may be modified by the linearization. To ensure
that the obtained model is physically relevant, we check that an equation for
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the energy conservation holds in the linear case. Beyond this aspect, the energy
preservation allows to write stable numerical schemes (Allaire, 2015). Indeed,
the properties of a numerical scheme are often related to the preservation of a
discrete energy. For these reasons, the energy preservation is a key feature, both
in the continuous and in the discrete level.

The paper is organized as follows. In Sec. 2 the compressible Euler equations
for a free-surface flow are written, then the system is transformed in Lagrangian
coordinates in order to keep an exact description of the free surface. After
linearization, a wave-like equation for the fluid velocity is obtained and we show
that the energy of the system is preserved. In Sec. 3, we show that with
additionnal assumptions, the model reduces to other linear models from the
litterature. The barotropic case is studied, then the incompressible limit and
the acoustic limit of the wave equation are written. In Sec. 4, we present
a method allowing to write the model in Eulerian coordinates. The obtained
system can be linearized at the cost of an additional approximation, namely
that the equations have to be restricted to a fixed domain, and we show how to
obtain a linear free-surface condition. Finally, in Sec 5 we obtain a dispersion
relation which includes all of the physical effects mentioned above. In particular,
it is a generalization of the dispersion relation studied in the work of Auclair
et al. (2021) to the case of a varying sound speed.

2 Linearization of compressible Euler equations
in Lagrangian coordinates

We derive here a linear model around a state at rest for the isentropic compress-
ible Euler equation with a free surface and an arbitrary bathymetry, valid for a
generic equation of state and a generic vertical temperature profile. We aim at
deriving a model which is physically relevant in the sense that is preserves or
dissipate energy. For this reason, we will analyse the energy equation associated
to this system and show that preservation or dissipation of energy requires a
condition on the fluid stratification that is related to the internal waves.

We consider a portion of the ocean away from the coast and at equilibrium:
there is no mean current and the temperature varies only vertically. In this
work, we do not take the presence of salinity into account, hence the ocean
is assimilated to pure water. The bottom and the surface of the domain are
asssumed to be parametrized as graphs, respectively the topography zb(x, y) ≥ 0
and the free-surface elevation η(x, y, t). The reference level z = 0 is situated
inside the earth at an arbitrary level. The ground displacement induced by an
earthquake or landslide source is assumed to take place away from the coast,
so that the domain is considered infinite in the (x, y) plane, see Figure 1. The
domain is assumed to have the following description, for all time t,

Ω(t) = {(x, y, z) ∈ R3 | zb(x, y) < z < η(x, y, t)}. (1)
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(a) The domain Ω(0) at rest.

Γb(t)
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z

(b) The domain Ω(t) for t > 0.

Figure 1: The domain Ω(t), (1a) for time t = 0, (1b) for time t > 0. In (1a)
typical profiles for the temperature and the density at rest are drawn.

The boundary of the domain are then defined by

Γs(t) = {(x, y, z) ∈ R3 | z = η(x, y, t)}, (2)

and
Γb(t) = {(x, y, z) ∈ R3 | z = zb(x, y)− b(x, y, t)}. (3)

The function b is the source term, namely the normal displacement of the seabed.
It can represent for example an earthquake or a landslide. It is assumed that
this displacement starts at a time t0 > 0, so that b(x, y, 0) = 0.

2.1 Euler equation in Eulerian coordinate

2.1.1 Equations in the volume

The unknowns are the fluid velocity U , its density ρ, its pressure p, its temper-
ature T , its internal energy e and its entropy s.

For future reference the equations are written for a viscous fluid with thermal
dissipation. The stress tensor of a Newtonian fluid T has the form

T = (−p+ λ∇ ·U)I + 2µD(U), (4)

Where D(U) is defined by D(U) = ( 1
2 (∂iU

j+∂jU
i))i,j=x,y,z and I is the identity

matrix in R3. The heat flux is denoted by q and is a function of ρ and T .
The conservation of mass, momentum and energy of a Newtonian fluid read,
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in the domain Ω(t),

∂ρ

∂t
+∇ · (ρU) = 0,

∂

∂t
(ρU) +∇ · (ρU ⊗U) +∇p = ρg +∇(λ∇ ·U) +∇ · (2µD(U)),

∂

∂t

(
ρ
|U |2

2
+ ρe

)
+∇ ·

(
(ρ
|U |2

2
+ ρe+ p)U

)
= ρg ·U +∇ · (λU∇ ·U) +∇ · (2µD(U) ·U)−∇ · q .

(5)

(6)

(7)

The acceleration of gravity is g = −g e3 with g > 0 and e3 is the unit vector in
the vertical direction, oriented upwards.

In order to describe the acoustic waves, we derive an equation for the pres-
sure. Among (ρ, e, T, p, s) only two variables are independent because of the
Gibbs law and of the equation of state (Gill, 1982). When considering ρ and
s as independent, it is natural to introduce the scalar functions fe, fp and fT
satisfying

e = fe(ρ, s), p = fp(ρ, s), T = fT (ρ, s). (8)

With the Gibbs law (∂fe/∂ρ = fp/ρ
2 and ∂fe/∂s = fT ), one has

∂e

∂t
+U · ∇e =

fp
ρ2

(
∂ρ

∂t
+U · ∇ρ

)
+ fT

(
∂s

∂t
+U · ∇s

)
. (9)

Using (7)−U · (6) and (9), one obtains as an intermediate step the evolution
equation of the entropy,

ρT (
∂s

∂t
+U · ∇s) = λ(∇ ·U)2 + 2µD(U) : D(U)−∇ · q. (10)

Now, since p = fp(ρ, s) we have

∂p

∂t
+U · ∇p =

∂fp
∂ρ

(
∂ρ

∂t
+U · ∇ρ

)
+

1

Tρ

∂fp
∂s

(
∂s

∂t
+U · ∇s

)
, (11)

hence using (5) and (10) one obtains

∂p

∂t
+U ·∇p = −∂fp

∂ρ
(ρ∇ ·U)+

1

Tρ

∂fp
∂s

(
λ(∇ ·U)2 + 2µD(U) : D(U)−∇ · q

)
.

(12)
At this point we use the common assumption that the viscous term and the
thermal dissipation can be neglected compared to the advection term (see
Lannes, 2013, Chap. 1). With (10) we see that this is equivalent to assuming
that the flow is isentropic. Moreover, from physical considerations the function
fp must satisfy ∂ρfp(ρ, s) ≥ 0, hence we can introduce the speed of sound c
defined by

c2 =
∂fp
∂ρ

(ρ, s). (13)
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The equation (12) then reads

∂p

∂t
+U · ∇p+ ρc2∇ ·U = 0. (14)

Eq. (14) is used for the study of a compressible fluid in the isentropic case, see
Gill (1982), Chap. 4. Note that the speed of sound c can also be viewed as a
function of p and T , in that case we have

c2(p, T ) =
∂fp
∂ρ

(fρ(p, T ), fs(p, T )) . (15)

In practice we choose to work directly with the expression c = c(p, T ) tabulated
in IAPWS-SR7 (2009). Note that here the temperature intervenes as a side
variable, because it is necessary to compute the speed of sound. However, we
will see later that only the temperature profile of the state at rest is needed to
close the system.

2.1.2 Boundary conditions

The following boundary conditions hold,{
U · nb = ub = ∂tb on Γb,

p = pa on Γs.

(16)

(17)

The bottom boundary condition (16) is a non-penetration condition with a
source term. It models the tsunami source as a displacement of the ocean bottom
with velocity ub. We denote by nb the unit vector normal to the bottom and
oriented outwards. The second condition (17) is a dynamic condition, where we
assume that the surface pressure is at equilibrium with a constant atmospheric
pressure pa. Note that the elevation η is solution of the following kinematic
equation

∂η

∂t
+U ·

∂xη∂yη

−1

 = 0 on Γs(t). (18)

2.1.3 Initial conditions and equilibrium state

It is assumed that the initial state corresponds to the rest state, meaning that
η(x, y, 0) = H with the elevation at rest H being independent of space and
H > zb(x, y), therefore

Ω(0) = {(x, y, z) ∈ R3 | zb(x, y) < z < H}. (19)

We choose the following initial conditions for the velocity, the temperature, the
density and the pressure,

U(x, y, z, 0) = 0, (20)

T (x, y, z, 0) = T0(z), ρ(x, y, z, 0) = ρ0(z), p(x, y, z, 0) = p0(z). (21)
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Where T0, ρ0, p0 are functions defined on (0, H) but because of the topography
zb(x, y), the functions T, ρ, p need not to be defined from z = 0 for all (x, y).

When the source term ub vanishes, we have an equilibrium state around
U ≡ 0 if the functions T0, ρ0, p0 satisfy

∇p0 = ρ0g, ρ0 = fρ(p0, T0), p0(H) = pa. (22)

Hence, if T0(z) is given, the system
dp0

dz
= −gfρ(p0, T0), z ∈ (0, H),

p0 = pa, z = H.

(23)

(24)

can be solved to compute p0, and then ρ0 is computed with ρ0 = fρ(p0, T0).
Note that, in the forthcoming sections the system (5), (6), (14) with boundary
conditions (16), (17) and initial conditions (20), (21) will be linearized around
the previously defined equilibrium state.

2.2 Lagrangian description

Although most of the works on free-surface flows are done in Eulerian coordi-
nates, the Lagrangian formalism is sometimes preferred, see for example the
paper from Nouguier et al. (2015) and the references therein, or the work of
Godlewski et al. (1999) for a precise derivation of linear models. Here we choose
the Lagrangian description in order to avoid any approximation on the shape
of the domain when we linearize the equations. The usual approximation made
on the surface for the linear models in Eulerian coordinates consists in eval-
uating the surface condition on pressure at a fixed height, rather than at the
actual, time-dependant free surface. The kinematic boundary condition is also
replaced by its linear approximation. For the derivation and justification of the
approximation, see Lighthill (1978, Chap. 3).

Let Ω̂ be the domain of the ocean at a reference time, with its surface
boundary Γ̂s and bottom boundary Γ̂b. The reference time is chosen before the
tsunami generation, so that the surface of the domain is horizontal. In fact the
following natural choice is made

Ω̂ = Ω(0), Γ̂s = Γs(0), Γ̂b = Γb(0). (25)

The position at the reference time of a fluid particle is denoted

ξ = (ξ1, ξ2, ξ3) ∈ Ω̂. (26)

At time t, the fluid has moved, the domain is Ω(t) and the new position of
a fluid particle is x = (x(ξ, t), y(ξ, t), z(ξ, t)) ∈ Ω(t). We denote by φ the
transformation from Ω̂ to Ω(t) that maps each particle from its reference position
ξ to its position x at time t (see figure 2 ).

φ :

{
Ω̂ → Ω(t)

ξ 7→ x(ξ, t)
(27)
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Ω̂

Γ̂b

H
Γ̂s

(ξ1, ξ2)

ξ3

Φt
Ω(t)

Γb

Γs

(x, y)

z

Figure 2: The mapping φt between the reference domain Ω̂ = Ω(0) and the
domain Ω(t).

Hence one has x = φ(ξ, t). The transformation is assumed invertible, in particu-
lar we do not consider the case of wave breaking. We also define the deplacement
of the fluid. For each fluid particle with initial position ξ, its displacement is
defined by

d(ξ, t) = φ(ξ, t)− ξ. (28)

The gradient of φ with respect to ξ is denoted F ,

F = ∇ξφ, (29)

and its determinant is denoted J . Both F and J can be expressed as functions
of the displacement,

F = I +∇ξd, J = detF, (30)

where ∇ξ is the gradient with respect to the coordinate system ξ. For a function

X(x, t) defined on the domain Ω(t), we introduce X̂(ξ, t) defined on Ω̂ by

X̂(ξ, t) = X(φ(ξ, t), t). (31)

Finally, note that the velocity Û(ξ, t) = U(φ(ξ, t), t) is the time derivative of
the displacement d.

Û =
∂d

∂t
. (32)

With this change of coordinates, the system (5), (6), (14) is now defined in the
time-independent reference domain Ω̂ and it reads

∂ρ̂

∂t
+

ρ̂

|J |
∇ξ · (|J |F−1Û) = 0,

ρ̂
∂Û

∂t
+ F−T∇ξp̂ = ρ̂g,

∂p̂

∂t
+
ρ̂ĉ2

|J |
∇ξ · (|J |F−1Û) = 0.

(33)

(34)

(35)
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The boundary conditions become{
Û · n̂b = ûb on Γ̂b,

p̂ = pa on Γ̂s,

where n̂b is a unit vector normal to Γ̂b and pointing toward the exterior of the
domain. The variables ρ̂, p̂, T̂ satisfy the same equation of state

p̂ = fp(ρ̂, T̂ ), (36)

and the speed of sound is a function of the new variables, ĉ = c(ρ̂, ŝ).

2.3 Linearization and wave equation

We assume that the source of the tsunami is a displacement of magnitude a at
the seafloor occuring in an ocean at rest as described in Sec. 2.1.3. In particular,
for this rest state there is no mean current and the temperature, pressure and
density vary only vertically. The magnitude of the displacement is assumed
small compared to the water height H. The ratio of the bottom displacement
amplitude to the water height is denoted ε = a/H � 1 , and the source term
can be expressed as

ûb = εûb,1 +O(ε2). (37)

The linearization of the equations (33)-(35) around the rest state corresponds
to the following asymptotic expansion,

d(ξ, t) = εd1(ξ, t) +O(ε2), (38)

ρ̂(ξ, t) = ρ̂0(ξ) + ερ̂1(ξ, t) +O(ε2), (39)

p̂(ξ, t) = p̂0(ξ) + εp̂1(ξ, t) +O(ε2). (40)

Note that the displacement has no zero order term, because the reference con-
figuration used to define the Lagrangian description is the state given by the
initial conditions. It holds then d0 = 0, Û0 = 0 and Ω̂ = Ω(0).

Remark: In comparison with the linearization done in Auclair et al. (2021),
where the expansion of the density and the pressure is justified with the de-
composition into hydrostatic and non-hydrostatic components, the asymptotic
expansion (39) - (40) is obtained in a more straightforward way. Indeed it only
requires the assumption of a small perturbation.

From the expansion one deduces the following Taylor expansions for the
other functions,

Û = εÛ1 +O(ε2), (41)

F = I + ε∇ξd1 +O(ε2), (42)

(F )−1 = I− ε∇ξd1 +O(ε2), (43)

J = 1 + ε∇ξ · d1 +O(ε2). (44)

10



Injecting these expressions in Eq.(33)-(35) yields the system

∂

∂t
(ρ̂0 + ερ̂1) + ερ̂0∇ξ · Û1 = O(ε2),

ερ̂0
∂Û1

∂t
+ (I − ε∇ξd1)T∇ξp̂0 + ε∇ξp̂1 = (ρ̂0 + ερ̂1)g +O(ε2),

∂

∂t
(p̂0 + εp̂1) + ερ̂0c

2(p̂0, T̂0)∇ξ · Û1 = O(ε2).

(45)

(46)

(47)

By separating the powers of ε we obtain two systems: a limit system when ε→ 0
and a system for the first order corrections. Since the limit system correspond
to the initial conditions described in Sec. 2.1.3, the model reduces to the first
order system.

First-order system: a wave-like equation for the velocity

The system for the correction terms reads in Ω̂,

ρ̂0
∂Û1

∂t
+∇ξp̂1 − (∇ξd1)T ∇ξp̂0 = ρ̂1g,

∂ρ̂1

∂t
+ ρ̂0∇ξ · Û1 = 0,

∂p̂1

∂t
+ ρ̂0ĉ

2
0 ∇ξ · Û1 = 0,

(48)

(49)

(50)

with the boundary conditions{
Û1 · n̂b = ûb,1 on Γ̂b,

p̂1 = 0 on Γ̂s.

(51)

(52)

In this system the speed of sound is evaluated at the limit – or background –
pressure and temperature, ĉ0 = c(p̂0, T̂0). In particular, ĉ0 can be written as a
function of depth. With an adapted temperature profile it is then possible to
recover the typical speed of sound profile creating the SOFAR channel.

The pressure p̂1 and density ρ̂1 can be eliminated in (48) thanks to the other
equations: differentiating in time (48) and replacing ρ̂1 and p̂1 with (49), (50)

we obtain a second order equation for Û1,

ρ̂0
∂2Û1

∂t2
−∇ξ

(
ρ̂0ĉ

2
0∇ξ · Û1

)
− (∇ξÛ1)T ρ̂0g + ρ̂0∇ξ · Û1 g = 0 in Ω̂. (53)

Using (50), the surface boundary condition (52) is formulated for Û1, hence the
two boundary conditions for the wave-like equation (53) are{

Û1 · n̂b = ûb,1 on Γ̂b,

∇ξ · Û1 = 0 on Γ̂s.

(54)

(55)
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The wave-like equation (53) is completed with vanishing initial condition for

Û1(0) and ∂tÛ1(0). The system (53) includes both gravity and acoustic terms.
This equation, which describes the velocity of a compressible, non-viscous fluid,
in Lagrangian description, is called the Galbrun equation. It is used in helio-
seismology and in aeroacoustics (Legendre, 2003; Maeder et al., 2020; Hägg &
Berggren, 2021). However, to our knowledge, this equation has never been used
to describe the propagation of hydro-acoustic waves.

We show now that the system (53), (54), (55) is energy-preserving. A model
describing a physical system should either preserve or dissipate an energy, and
this property makes it also possible to write a stable numerical scheme. Here
the energy equation is obtained by taking the scalar product of (53) with ∂tÛ1

and integrating over the domain. After some computations (see Appendix, Sec.
6), we have

d

dt
E =

∫
Γ̂b

ρ̂0

(
c20∇ξ · Û1 − ρ̂0gÛ1 · e3

) ∂ûb,1
∂t

dσ, (56)

with the energy being the quadratic functional given by

E =

∫
Ω̂

ρ0
1

2

∣∣∣∣∣∂Û1

∂t

∣∣∣∣∣
2

dξ +
1

2

∫
Ω̂

ρ̂0

(
ĉ0∇ξ · Û1 −

g

ĉ0
Û1 · e3

)2

dξ

+
1

2

∫
Ω̂

ρ̂0Nb(Û1 · e3)2 dξ +
1

2

∫
Γs

ρ̂0g(Û1 · e3)2 dσ. (57)

The scalar Nb is the squared Brunt-Väsisälä frequency, defined by

Nb(ξ
3) = −

(
g2

ĉ0(ξ3)2
+ g

ρ̂′0(ξ3)

ρ̂0(ξ3)

)
. (58)

The Brunt-Väisälä frequency, or buoyancy frequency, is closely related to the
internal waves that appear in a stratified medium (Gill, 1982, Chap. 6). In the
ocean, the usual values of Nb are around 10−8 rad2s−2 (King et al., 2012).

The physical interpretation for the different terms in the energy is clearer
when one writes the wave-like equation (53) in terms of the displacement d1

instead of the velocity Û1. Using ∂td1 = Û1 and integrating Eq. (53) once in
time with the vanishing initial conditions for the displacement, one obtains

ρ̂0
∂2d1

∂t2
−∇ξ

(
ρ̂0ĉ

2
0∇ξ · d1

)
− (∇ξd1)T ρ̂0g + ρ̂0∇ξ · d1 g = 0 in Ω̂. (59)

The exact same steps of Appendix 6, with d1 instead of Û1, yield the energy
equation

d

dt
Ed =

∫
Γ̂b

ρ̂0

(
c20∇ξ · d1 − ρ̂0gd1 · e3

)
ûb,1 dσ, (60)
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with the energy

Ed =

∫
Ω̂

ρ̂0
1

2

∣∣∣Û1

∣∣∣2 dξ +
1

2

∫
Ω̂

ρ̂0

(
ĉ0∇ξ · d1 −

g

ĉ0
d1 · e3

)2

dξ

+
1

2

∫
Ω̂

ρ̂0Nb(d1 · e3)2 dξ +
1

2

∫
Γs

ρ̂0g(d1 · e3)2 dσ. (61)

The first term in Eq. (61) is the kinetic energy. We show that the second term
of Eq. (61) corresponds to the acoustic energy. First, using Eq. (50) with
the vanishing initial conditions yields ρ̂0ĉ

2
0 · ∇ξd1 = −p̂1. We define then the

acoustic pressure
pa = p̂1 −∇p̂0 · d1. (62)

Indeed, in Lagrangian coordinates, the pressure perturbation p̂1 has two contri-
butions: the small variations in acoustic pressure, and the background pressure
being evaluated at a new position. With the definition of pa and the equation
(24), it holds for the second term of (61)

1

2

∫
Ω̂

ρ̂0

(
ĉ0∇ξ · d1 −

g

ĉ0
d1 · e3

)2

dξ =
1

2

∫
Ω̂

p2
a

ρ̂0ĉ20
dξ, (63)

which is the usual expression for the acoustic energy (Lighthill, 1978). The last
term of (61) is the potential energy associated to the surface waves. Finally,
the third term of (61) is the potential energy associated to the internal gravity
waves (Lighthill, 1978), under the condition

Nb > 0. (64)

When Nb is positive, it is denoted Nb = N2, where N is the buoyancy frequency.
The sign of Nb depends on the choice of the state at equilibrium: ρ̂′0 = dρ̂0/dz
has to be negative and satisfy

|ρ̂′0|
ρ̂0

>
g

ĉ20
. (65)

With the term in g2/ĉ20, we see that the compressibility tends to take the fluid
away from its equilibrium. The stratification of the fluid must be strong enough
to counter this effect and keep the system stable (see the discussion in Gill, 1982,
Chap. 3). As a consequence, if one wants the model to preserve the energy of
the system, the background density should not be assumed homogeneous. In
the following, we assume that the fluid has a stable stratification, namely that
the function Nb is assumed always positive. We will use the notation N2 in the
rest of this paper.

Remark : According to the equation of state (when the salinity is neglected)
ρ = fρ(p, T ), the background density varies because of the variations in temper-
ature and in pressure. The temperature profile can be chosen homogeneous, but
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the effect of gravity – see Eq. (24) – prevents the pressure to be independent
of depth. Hence in a model with gravity, the fluid is always stratified with the
density increasing with depth.

Remark : One can notice that the condition (65) is not explicit in Eq. (53).
We obtain this condition when imposing that the energy Ed is positive.

3 Derivation of simplified models

In order to compare with existing models, we present several simplifications of
our model. We first show that in the barotropic case the system (53) - (55)
is equivalent to the first-order scalar equation of Longuet-Higgins (1950). Our
model also reduces to well-known models in the acoustic and incompressible
asymptotic regimes, as demonstrated below. Further numerical implementa-
tions of our model will make it possible to quantify the impact of assumptions
made in more simple models, in particular in the case of acoustic-gravity wave
generation by earthquakes or landslides in the ocean.

3.1 The barotropic case

We consider the barotropic case, which is a very common assumption for the
study of hydro-acoustic waves (see for example Longuet-Higgins (1950), Sti-
assnie (2010)). For a barotropic fluid the pressure is a function of the density
only,

fp(ρ, s) = fp(ρ) = p.

Then, using Eq. (22) and the definition of the speed of sound,

p̂′0 = ρ̂′0
dfp
dρ

(ρ̂0) ⇒ −ρ̂0g = ρ̂′0ĉ
2
0, (66)

meaning that the Brunt-Väisälä frequency vanishes, N2 = 0. This corresponds
to the case where the density is stratified because of the variation of pressure
only. In order to use this equality, we divide Eq. (53) by ρ̂0,

∂2Û1

∂t2
−∇ξ

(
ĉ20∇ξ · Û1

)
−
(
ρ̂′0
ρ0
ĉ20 + g

)
∇ξ · Û1e3 +∇ξ(Û1 · e3)g = 0, (67)

and when Eq. (66) holds, the equation (67) can be simplified and reads

∂2Û1

∂t2
−∇ξ

(
ĉ20∇ξ · Û1

)
+∇ξ(Û1 · e3)g = 0. (68)

Taking the curl of Eq. (68) yields

∂2∇ξ × Û1

∂t2
= 0 in Ω̂. (69)
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With the vanishing initial conditions we obtain that the velocity of a barotropic
fluid is irrotational. This is a well-known result, since the fluid is also inviscid
and subject to a potential force only (Guyon, 2001, Chap. 7). By the Helmholtz
decomposition theorem (Girault & Raviart, 1986) the fluid velocity is written as

the gradient of a potential ψ defined up to a constant. The expression Û1 = ∇ξψ
is used in Eq. (68), to obtain

∇ξ
(
∂2ψ

∂t2
− ĉ20∆ξψ + g

∂ψ

∂ξ3

)
= 0. (70)

The potential ψ being defined up to a constant, it can always be sought as the
solution of

∂2ψ

∂t2
− ĉ20∆ξψ + g

∂ψ

∂ξ3
= 0. (71)

The equation (71) is multiplied by ρ̂0/ĉ
2
0, and we use g/ĉ20 = −ρ̂′0/ρ̂0,

ρ̂0

ĉ20

∂2ψ

∂t2
− ρ̂0∆ξψ − ρ̂′0

∂ψ

∂ξ3
= 0. (72)

And since ρ̂0 depends only on ξ3, the two last terms can be rewritten,

ρ̂0

ĉ20

∂2ψ

∂t2
−∇ξ · (ρ̂0∇ξψ) = 0. (73)

Hence ψ satisfies a wave equation. The boundary conditions are then deduced
from Eq. (54) and Eq. (55),

∇ξψ · n̂b = ûb,1 on Γ̂b,

ĉ20∆ξψ =
∂2ψ

∂t2
+ g

∂ψ

∂ξ3
= 0 on Γ̂s.

(74)

(75)

The system (71),(74),(75) is the first-order system obtained in Longuet-Higgins
(1950). In Longuet-Higgins (1950), the derivation is quite different since the
irrotationality assumption is made independantly from the fact that the fluid is
barotropic, and the boundary conditions are obtained from a linearized surface
condition. The linearization made in Longuet-Higgins (1950) gives exactly the
same result as the linearization strategy we have presented.

We show that the system (73),(74),(75) is energy-preserving. The equation
(73) is multiplied by ∂tψ and integrated by parts,∫

Ω̂

ρ̂0

ĉ20

∂ψ

∂t

∂2ψ

∂t2
dξ +

∫
Ω̂

ρ̂0∇
(
∂ψ

∂t

)
· ∇ψ dξ

−
∫

Γ̂s

ρ̂0
∂ψ

∂t
∇ψ · e3 dσ +

∫
Γ̂b

ρ̂0
∂ψ

∂t
∇ψ · nb dσ = 0. (76)

With the boundary conditions (74) - (75) and after simplifications it holds

d

dt
Ebar = −

∫
Γb

ρ̂0
∂ψ

∂t
ûb,1 dσ, (77)
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where the energy Ebar is defined by

Ebar =
1

2

∫
Ω̂

ρ̂0

ĉ20

(
∂ψ

∂t

)2

dξ +
1

2

∫
Ω̂

ρ̂0|∇ψ|2 dξ +
1

2

∫
Γs

ρ̂0

g

(
∂ψ

∂t

)2

dξ. (78)

The first term of Eq. (78) is the acoustic energy. Indeed, with (14) and (66)
one can show that the acoustic pressure pa and the potential ψ satisfy the usual
relation pa = −ρ̂0∂tψ (Lighthill, 1978, Chap.3). The second term of (78) is the
kinetic energy. Finally, with (75), one sees that the third term of (78) is the
potential energy of the surface waves. In order to obtain the energy equation
for the barotropic system (73), it is necessary to use the background density ρ̂0

even if it does not appear in Eq. (73). The correct manipulation for writing
the energy equation was found by comparison with the general case described
by Eq. (53).

Finally, note that when assuming a homogeneous density in the equation
(73), the system (73)-(75) reduce to

∂2ψ

∂t2
− ĉ20∆ψ = 0 in Ω̂

∇ξψ · n̂b = ûb,1 on Γ̂b,

∂2ψ

∂t2
+ g

∂ψ

∂ξ3
= 0 on Γ̂s.

(79)

(80)

(81)

and the energy equation (78) is not modified by this assumption. However,
assuming a homogeneous density is not compatible with the derivation of the
system (73)-(75), which relies on the equality g/ĉ20 = −ρ̂′0/ρ̂0. The model (79)-
(81) can be understood as a barotropic model with the additional assumption
that both −ρ̂′0/ρ̂0 and g/ĉ20 are neglected inside the domain.

3.2 Two asymptotic regimes of the system

In this section we write the limit models for two asymptotic regimes of the
system (53)-(55). We consider the incompressible regime, where the acoustic
waves are neglected, and the acoustic regime, where the effect of gravity is
neglected. The wave equation (53) is written in non-dimensional form, and we
show that it depends on a small non-dimensional parameter. A simplified model
is then obtained by passing formally to the limit when the small parameter
vanishes. By making the appropriate choice for the time scale we obtain first
an incompressible approximation, then an acoustic approximation.

3.2.1 Non-dimensional equation

We introduce the following characteristic scales for the system: a time τ , a hor-
izontal scale L, a vertical scale H, a density ρ̄, and a fluid velocity U . Since the
speed of sound is not assumed constant, we denote by C its characteristic mag-
nitude. Finally, the surface waves velocity is of the order of

√
gH (Constantin,
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2009). We focus on a non-shallow water formulation, hence we take L = H. For
a shallow water version of the equation one would choose H � L.

Two dimensionless numbers are introduced: the Froude number and the
Mach number, respectively defined by

Fr =
U√
gH

, Ma =
U

C
. (82)

To fix the idea, we choose the following numerical values respectively for the
speed of sound, the fluid velocity and the surface waves velocity: C ∼ 1480 m s−1,
U ∼ 1 m s−1 and

√
gH ∼ 100 m s−1. The dimensionless numbers are then

Fr = 0.01, Ma = 6.10−4. (83)

The characteristic scale for time will be fixed later, as it will depend on the
regime we want to study. The variables are put in non-dimensional form and
the dimensionless variables are denoted with a ·̃, except for the space and time
variable for the sake of conciseness. The adimensionned domain is denoted
by Ω̃ and its surface and bottom boundary are respectively Γ̃s and Γ̃b. The
non-dimensional system reads, after simplification by the factor ρ̄U ,

ρ̃0

τ2

∂2Ũ1

∂t2
− C

2

L2
∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+
g

L
ρ̃0

(
∇ξ
(
Ũ1 · e3

)
−∇ξ · Ũ1 e3

)
= 0, (84)

with the boundary conditions{
Ũ1 · ñb = ũb,1 on Γ̃b,

∇ξ · Ũ1 = 0 on Γ̃s,

(85)

(86)

where ũb,1 is a dimensionless source term.

3.2.2 Incompressible limit

We show that in the incompressible regime, our model is an extension of the
classical free-surface Poisson equation to the case of a variable background den-
sity.

In order to study the incompressible limit, the characterisic time τ is chosen
to follow the surface waves, which are much slower than the acoustic waves. We
take L/τ =

√
gH. The equation (84) becomes

ρ̃0
∂2Ũ1

∂t2
− Fr

Ma
∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+ ρ̃0

(
∇ξ
(
Ũ1 · e3

)
−∇ξ · Ũ1 e3

)
= 0. (87)

The small parameter δ = Ma/Fr ∼ 6.10−2 is introduced in the equation,

ρ̃0
∂2Ũ1

∂t2
− 1

δ2
∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+ ρ̃0

(
∇ξ
(
Ũ1 · e3

)
−∇ξ · Ũ1 e3

)
= 0, (88)
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and the goal is now to calculate the limit of equation (88) when δ goes to zero.
We make the following ansatz for Ũ1,

Ũ1 = Ũ1,0 + δ2Ũ1,2 +O(δ3), (89)

where Ũ1,0, Ũ1,1 and Ũ1,2 are independant of δ. Since Eq. (88) has only even

powers of δ, the term Ũ1,1 is equal to zero. Replacing Ũ1 by its ansatz in the
wave equation (88) and separating the powers of δ yields an equation for each
term of the asymptotic development of Ũ1. The equation obtained with the
terms in δ−2 reads

∇ξ
(
ρ̃0c̃

2
0∇ξ · Ũ1,0

)
= 0, (90)

and the equation obtained with the terms δ0 reads

ρ̃0
∂2Ũ1,0

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1,2

)
+ ρ̃0

(
∇ξ
(
Ũ1,0 · e3

)
−∇ξ · Ũ1,0 e3

)
= 0. (91)

With the terms in δ0 of the boundary conditions we have{
∇ξ · Ũ1,0 = 0 on Γ̃s,

Ũ1,0 · ñb = ũb,1 on Γ̃b.

(92)

(93)

And the terms in δ2 of the boundary conditions read{
∇ξ · Ũ1,2 = 0 on Γ̃s,

Ũ1,2 · ñb = 0 on Γ̃b.

(94)

(95)

We show now that the limit model represents an incompressible flow. The
Helmoltz decomposition of Ũ1,0 reads

Ũ1,0 = ∇ξϕ1,0 +∇ξ ×ψ1,0, (96)

where ϕ1,0 vanishes on Γ̃s and Γ̃b. Injecting the decomposition of Ũ1,0 in Eq.
(90) yields

∇ξ
(
ρ̃0c̃

2
0 ∆ξϕ1,0

)
= 0, (97)

hence the term inside the gradient is constant in space. Since the velocity Ũ1,0

is equal to zero at infinity, we obtain that ∆ξϕ1,0 = 0 in Ω̃ (the quantity ρ̃0c̃0
being always strictly positive). With the vanishing boundary conditions for
ϕ1,0, we obtain that ϕ1,0 is equal to zero everywhere in Ω̃. Then, taking the

divergence of Ũ1,0 yields

∇ξ · Ũ1,0 = ∇ξ · (∇ξ ×ψ1,0) = 0, (98)

hence Ũ1,0 is divergence-free.

Now, using the property ∇ · Ũ1,0 in the equation (91) and rearranging some
terms, we obtain

ρ̃0
∂2Ũ1,0

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1,2

)
+∇ξ

(
ρ̃0Ũ1,0 · e3

)
− ρ̃′0(Ũ1,0 · e3) e3 = 0. (99)
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Taking the curl of this equation yields

∇ξ ×

(
ρ̃0
∂2Ũ1,0

∂t2
− ρ̃′0(Ũ1,0 · e3) e3

)
= 0, (100)

This means that these terms can be expressed as the gradient of a potential
function defined up to a constant and denoted −ϕ̃0,

ρ̃0
∂2Ũ1,0

∂t2
− ρ̃′0(Ũ1,0 · e3) e3 = −∇ξϕ̃0. (101)

The new function ϕ̃0 can be understood as the Lagrange multiplier for the
incompressibility constraint. However, one must be cautious that ϕ̃0 is not
similar to a pressure in this case, and rather plays the role of a velocity potential,
as we will see later in the case of homogeneous density. The function ϕ̃0 can be
expressed differently. By using the definition (101) in the equation (99) we have

∇ξ
(
−ϕ̃0 − ρ̃0c̃

2
0∇ξ · Ũ1,2 + ρ̃0Ũ1,0 · e3

)
= 0, (102)

and since the potential ϕ̃0 is defined up to a constant, it can be chosen such
that, in Ω̂, we have

ϕ̃0 = −ρ̃0c̃
2
0∇ξ · Ũ1,2 + ρ̃0Ũ1,0 · e3. (103)

We deduce from this equality and (94) the boundary condition

ϕ̃0 = ρ̃0Ũ1,0 · e3 on Γ̃s. (104)

To recover a dimensional system, the terms are multiplied by their corresponding
characteristic scales, and ϕ̂0 = ρ̄Uϕ̃0 is defined. The limit solution Û1,0 = UŨ1,0

satisfies ρ̂0
∂2Û1,0

∂t2
− gρ̂′0(Û1,0 · e3) e3 + g∇ξϕ̂0 = 0 in Ω̂,

∇ξ · Û1,0 = 0 in Ω̂,

(105)

(106)

with the boundary conditions
Û1,0 · n̂b = ûb,1 on Γ̂b,

∇ξ · Û1,0 = 0 on Γ̂s,

ϕ̂0 = ρ̂0Û1,0 · e3 on Γ̂s,

(107)

(108)

(109)

We show that the model (105)-(109) preserves an energy. Taking the scalar
product of (105) with ∂tŨ1,0 and integrating over Ω̂ yields

1

2

d

dt

∫
Ω̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ−
∫

Ω̂

gρ̂′0(Û1,0 ·e3) e3 ·
∂Û1,0

∂t
dξ+

∫
Ω̂

g
∂Û1,0

∂t
·∇ξϕ̂0 dξ = 0.

(110)
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The last term of Eq. (110) is integrated by parts. With the vanishing divergence

of Û1,0 and the bottom condition (107) it holds∫
Ω̂

g
∂Û1,0

∂t
· ∇ξϕ̂0 dξ =

∫
Γ̂s

gϕ̂0
∂Û1,0

∂t
· e3 dσ −

∫
Γ̂b

gϕ̂0
∂ûb,1
∂t

dσ, (111)

then ϕ̂0 is replaced in the surface integral using Eq. (109),

1

2

d

dt

∫
Ω̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ −
∫

Ω̂

gρ̂′0(Û1,0 · e3) e3 ·
∂Û1,0

∂t
dξ

+

∫
Γ̂s

gρ̂0Û1,0 · e3
∂Û1,0

∂t
· e3 dσ =

∫
Γ̂b

gϕ̂0
∂ûb,1
∂t

dσ. (112)

By defining the energy

Eincomp =
1

2

∫
Ω̂

ρ̂0

∣∣∣∣∣∂Û1,0

∂t

∣∣∣∣∣
2

dξ− 1

2

∫
Ω̂

gρ̂′0|Û1,0 ·e3|2 dξ+
1

2

∫
Γ̂s

gρ̂0|Û1,0 ·e3|2 dσ,

(113)
the equation (110) can be formulated in the following way,

d

dt
Eincomp =

∫
Γb

gϕ0
∂ûb,1
∂t

. (114)

Each term of Eincomp has the same interpretation as in E . Note that the acous-
tic term of E is not present in Eincomp. The potential energy associated to the
internal waves is also written differently, as in the formal limit ĉ0 → ∞ the
buoyancy frequency reads N2 = −gρ̂′0/ρ̂0.

Remark : The condition |ρ̂′0|/ρ̂0 > g/ĉ20 is no longer required because the
destabilizing effects in the energy equation (56) come from the compressibility,
and here it is neglected. This can be seen by formally assuming that the sound
speed is infinite, then the squared buoyancy frequency reads N2 = −gρ̂′0/ρ̂0.
Density must still decrease with depth, but can be homogeneous.

The system (106)-(105) represents an incompressible fluid. However, this
system is different from the classical Poisson equation found in the litterature
(Lighthill, 1978) because of the assumption of a nonhomogeneous background
density. For the sake of comparison with other models, assume now that the
ocean at rest has a homogeneous density, ρ̂′0 = 0. Taking the divergence of Eq.
(105) yields

∆ξϕ̂0 = 0. (115)

The boundary conditions are written differently to ease the comparison. The
bottom boundary condition is obtained by taking the scalar product of Eq.
(105) with n̂b, and replacing the first term with Eq. (107) differentiated twice
in time,

− ρ̂0
∂2ûb,1
∂t2

− gρ̂′0(Û1,0 · e3) e3 · n̂b + g∇ξϕ̂0 · n̂b = 0. (116)
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For the surface condition, the equation (109) is differentiated twice in time and

the term in ∂2
ttÛ1,0 is replaced with (105),

∂2ϕ̂0

∂t2
− gρ̂′0(Û1,0 · e3) + g

∂ϕ̂0

∂ξ3
= 0 on Γ̃s. (117)

With the assumption of a homogeneous density, the boundary conditions (116),
(117) read then 

∇ξϕ̂0 · n̂b = −ρ̂0g ûb,1 on Γ̂b,

∂2ϕ̂0

∂t2
+ g

∂ϕ̂0

∂ξ3
= 0 on Γ̂s.

(118)

(119)

The Poisson equation (115) with boundary conditions (118) - (119) is the system
satisfied by the velocity flow of an incompressible homogeneous free-surface fluid
(Lighthill, 1978, Chap. 3.1). Note that it was required that ρ̃′0 6= 0 in the system
(53) to obtain an a priori positive energy. Here this assumption is dropped,
however a rather simple expression for the preserved energy can be derived:
multiplying Eq. (115) by ∂tϕ̂0, integrating by parts and using Eq. (118)- (119),
we obtain∫

Ω̂

∆ξϕ̂0
∂ϕ̂0

∂t
dξ = −

∫
Ω̂

∇ξϕ · ∇ξ
(
∂ϕ̂0

∂t

)
dξ

−
∫

Γs

1

g

∂ϕ̂0

∂t

∂2ϕ̂0

∂t2
dσ +

∫
Γb

ρ̂0g
∂ϕ̂0

∂t
ûb,1 dσ. (120)

We define the energy

EPoisson =
1

2

(∫
Ω̂

|∇ξϕ̂|2 dξ +

∫
Γ̂s

1

g
(
∂ϕ̂0

∂t
)2 dσ

)
, (121)

Then it holds
d

dt
EPoisson = −

∫
Γb

ρ̂0g
∂ϕ̂0

∂t
ûb,1 dσ. (122)

By comparison with the energy of the barotropic system (78), we see that the
first term of (121) is the kinetic energy and the second term of (121) is the
potential energy associated to the surface waves.

3.2.3 Acoustic limit

Another possible simplification of the system (53) - (55) is to keep only the
acoustic terms. This choice is justified for short time scale, because the propa-
gation speed of the acoustic waves and the gravity waves have different orders
of magnitude (Longuet-Higgins, 1950). Here we show that in the acoustic limit,
the model reduces to a classical acoustic equation.
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With the timescale L/τ = C, corresponding to the acoustic wave, and with
the same small parameter δ = Ma/Fr as before, the system (84) becomes

ρ̃0
∂2Ũ1

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1

)
+ δ2ρ̃0

(
∇ξ
(
Ũ1 · e3

)
−∇ξ · Ũ1 e3

)
= 0 in Ω̃,

(123)
With the boundary conditions{

Ũ1 · ñb = ũb,1 on Γ̃b,

∇ξ · Ũ1 = 0 on Γ̃s.

(124)

(125)

As before, we make the following ansatz for Ũ1,

Ũ1 = Ũ1,0 + δ2Ũ1,2 +O(δ3). (126)

One can see that the limit term δ → 0 for the volumic equation (123) is

ρ̃0
∂2Ũ1,0

∂t2
−∇ξ

(
ρ̃0c̃

2
0∇ξ · Ũ1,0

)
= 0. (127)

Taking the curl of this equation yields

∂2

∂t2

(
∇ξ × (ρ̃0Ũ1,0)

)
= 0, (128)

hence the curl of ρ̃0Ũ1,0 is affine in time. Moreover, it is equal to zero due to
the vanishing initial conditions. By the Helmoltz decomposition theorem, the
term ρ̃0Ũ1,0 can be expressed as the gradient of some function ψ̃0 defined up to
a constant,

ρ̃0Ũ1,0 = ∇ξψ̃0. (129)

By subsituting in equation (127) we have

∇ξ

(
∂2ψ̃0

∂t2
− ρ̃0c̃

2
0∇ξ ·

(
ρ̃−1

0 ∇ξψ̃0

))
= 0, (130)

then it holds
∂2ψ̃0

∂t2
− ρ̃0c̃

2
0∇ξ ·

(
ρ̃−1

0 ∇ξψ̃0

)
= 0, (131)

since ψ̃0 is defined up to a constant. We need the boundary conditions to
conclude. Evaluating (127) at the surface yields

ρ̃0
∂2Ũ1,0

∂t2
− ∂

∂ξ3

(
ρ̃0c̃

2
0∇ξ · Ũ1,0

)
e3 = 0 on Γ̃s. (132)

Using the surface condition (125) in the equation (132) yields

ρ̃0
∂2Ũ1,0

∂t2
= 0 on Γ̃s. (133)
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With the definition of the potential ψ̃0 it holds

∂2∇ψ̃0

∂t2
= 0 on Γ̃s, (134)

hence one has
∂2ψ̃0

∂t2
= C(t) on Γ̃s, (135)

where C does not depend on space. Moreover, since ψ̃0 vanishes at infinity
the constant C is equal to zero, hence ∂2

ttψ̃0 = 0 on Γ̃s. With the vanishing
initial conditions this implies that ψ̃0 = 0 on Γ̃s. To recover a dimensional
system, the terms are multiplied by their corresponding characteristic scales,
and ψ̂0 = ρ̄UL ψ̃0 is defined. The system reads then

∂2ψ̂0

∂t2
− ρ̂0ĉ

2
0∇ξ ·

(
ρ̂−1

0 ∇ξψ̂0

)
= 0 in Ω̂, (136)

with the boundary conditions{
∇ξψ̂0 · n̂b = ûb,1 on Γ̂b,

ψ̂0 = 0 on Γ̂s.

(137)

(138)

The system (136)-(138) is the classical wave equation for the potential ψ̂0, with
a propagation speed ĉ20 and a non-homogeneous density.

An energy equation can be obtained by multiplying Eq. (136) by ∂tψ/(ρ0ĉ
2
0)

and integrating over the domain. The result reads after an integration by parts

d

dt
Eacoustic = −

∫
Γ̂b

1

ρ̂0

∂ψ̂0

∂t
ûb,1 dσ, (139)

where the acoustic energy is

Eacoustic =
1

2

∫
Ω̂

1

ρ̂0ĉ20

(
∂ψ̂0

∂t

)2

dξ +
1

2

∫
Ω̂

1

ρ̂0
|∇ψ̂0|2 dξ. (140)

With the same analysis as in the previous cases, one can show that the first
term of (140) is the acoustic energy, and the second term is the kinetic energy.

Remark : In the sections 3.2.2 and 3.2.3, the equations (115) - (119) and
(136)-(138) use the Lagrangian description whereas the equations from the lit-
terature use the Eulerian description. In the general case, the use of different
coordinate systems would cause two problems. First, when doing the change
of coordinates, new terms should appear from the space or time differentiation.
Second, the description of the domain is different, and this implies that the
boundary conditions are not evaluated at the same location. In the next section
we will show that the first problem does not exist in our case, due to the lack of
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a background velocity. As for the second problem, the linear eulerian models are
obtained by evaluating the boundary conditions at a fixed water height. To this
regard they use the same boundary as if they were in a Lagrangian description
of the domain, so that the comparison remains valid.

The equations with their boundary conditions and the associated energy, for
the general model and its different simplifications, are summarized in Table 1.

4 The model in Eulerian coordinates

The equations we have been working on are defined on the reference domain
Ω̂. However, the linear equations for the acoustic-gravity waves are generally
written in Eulerian coordinates. In order to compare our model with those from
the litterature, the equations must be formulated on the moving domain Ω(t).
In this section we present a method to write the system in Eulerian coordinate.

4.1 General method

The aim is to write the equation on a moving domain Ω(t), hence a transfor-
mation φ : Ω̂ → Ω(t) is needed. We start by using a first order approximation
of the real transformation φ. The transformation φ is developed for small dis-
placements,

φ(ξ, t) = I + εφ1(ξ, t) +O(ε2). (141)

Let φε(ξ, t) = I+εφ1(ξ, t) be its first order approximation. φε is used to define
the equivalent domain and its boundary,

Ωε(t) = φε(Ω̂), Γs,eq = (φε(Γ̂s)), Γb,eq = (φε(Γ̂b)). (142)

The coordinates on the equivalent domain are written x = (x, y, z). For any
generic function X̂(ξ, t) defined in Ω̂, a function X(x, t) is defined in Ωε by the
following change of variables

X(x, t) = X̂(φ−1
ε (x, t), t), (143)

which is equivalent to
X̂(ξ, t) = X(φε(ξ, t), t), (144)

as long as φε is invertible. Then, if the function X̂ has a first-order approx-
imation X̂ = X̂0 + εX̂1 + O(ε2), then the function X also has a first-order
approximation X = X0 + εX1 +O(ε2) and it holds (see Appendix, Sec. 6)

∇ξX̂0 = ∇X0,

∂X̂0

∂t
=
∂X0

∂t
,

∇ξX̂1 = (∇ξd1)T∇X0 +∇X1,

∂X̂1

∂t
=
∂X1

∂t
+ U1 · ∇X0.

(145)

(146)

(147)

(148)
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In the following, when writing the equations satisfied by the free surface of Ωε,
we will also use

∂φε
∂t

= εÛ1. (149)

4.2 The model in Eulerian coordinates

Using the change of variable (144) in the system (48)-(50) and with the equalities
(145)-(148) we obtain the following system for U1, p1, ρ1 defined in Ωε,

ρ0
∂U1

∂t
+∇p1 = ρ1g,

∂ρ1

∂t
+∇ · (ρ0U1) = 0,

∂p1

∂t
+∇p0 ·U1 + ρ0c

2
0 ∇ ·U1 = 0.

(150)

(151)

(152)

And p0, ρ0 satisfy the limit equations
∂ρ0

∂t
= 0,

∇p0 = ρ0g.

(153)

(154)

In order to close the System (150)-(154), boundary conditions should be pre-
scribed. To get a linear problem one wants to prescribe this condition on the
fixed domain Ω̂. To do so we assume in the following that the equations (150)-
(154) are defined in Ω̂. It would be true if Ω̂ ⊂ Ωε, but the inclusion is in
general not verified. Because of this approximation, errors of order O(ε) may
be introduced. For this reason the system in Lagrangian coordinates should be
preferred, at least for future extension of this work.

Boundary conditions and free surface description

Following the approach of Nouguier et al. (2015), we show that a description
for the free surface can be obtained. In the following, the components of the
fluid velocity are denoted U1 = (U1

1 , U
2
1 , U

3
1 )T . The surface is defined by

Γs,eq = φε(Γ̂s), and we assume that at each time t it can be parametrized as
the graph ηε. The elevation ηε is a function of x, y, and t and can be decomposed
in the following way,

ηε(x, y, t) = H + εη1(x, y, t). (155)

From the correspondence between the free surface and the particle displacement,
it holds

φ3
ε(ξ

1, ξ2, H, t) = ηε
(
x(ξ1, ξ2, H, t), y(ξ1, ξ2, H, t), t

)
. (156)

Differentiating (156) in time and using the equation (149) yields

εÛ3
1 (ξ1, ξ2, H, t) =

∂ηε
∂t

+ εÛ1
1 (ξ1, ξ2, H, t)

∂ηε
∂x

+ εÛ2
1 (ξ1, ξ2, H, t)

∂ηε
∂y

. (157)
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We use the change of variables φε(ξ, t) = I + εφ1(ξ, t),

εU3
1 (φε(ξ

1, ξ2, H, t), t) =
∂ηε
∂t

+ εU1
1 (φε(ξ

1, ξ2, H, t), t)
∂ηε
∂x

+ εU2
1 (φε(ξ

1, ξ2, H, t), t)
∂ηε
∂y

. (158)

After a Taylor developement and keeping only the terms in ε, it holds

U3
1 (x, y,H, t) =

∂η1

∂t
, (159)

this is the linearized equation for the free surface. Then the dynamic boundary
conditions are linearized. With the change of variables, the boundary conditions
(24), (51) and (52) become

U1 · nb = ub,1 on Γb,eq,

p0 = pa on Γs,eq,

p1 = 0 on Γs,eq.

(160)

(161)

(162)

If we linearize (162) only we would miss the first-order term coming from (161).
From (161) and (162) we deduce the boundary condition for the pressure

p0 + εp1 = pa on Γs,eq. (163)

A Taylor developement of p0 and p1 around z = H on Γs,eq yields

p0(H) + ε(p1(x, y,H, t) + p′0(H)η1) +O(ε2) = pa. (164)

After an identification of the powers of ε it holds

p0(H) = pa, p1(x, y,H, t) = ρ0(x, y,H, t)g η1(x, y, t). (165)

In a similar way, the linearization of Eq. (160) reads

U3
1 (x, y, zb)− U1

1 (x, y, zb) ∂xzb − U2
1 (x, y, zb) ∂yzb = ub,1(x, y, t). (166)

Hence the equations for U1, ρ1, p1 can be fully defined on the domain Ω̂, with
an error in O(ε2). Finally, note that the system (150)-(152) with the boundary
conditions (165),(166) and the kinematic condition (159), is shown to be energy-
preserving, locally as well as over a whole water column (Lighthill, 1978; Lotto
& Dunham, 2015).

In this section we have derived the linear equation in Eulerian coordinates,
even though an approximation on the domain in which the equations are defined
was necessary. The computations of Sec. 4.1 also justify that in the absence of
mean flow and with the evaluation of the boundary conditions at a fixed height,
the linear system in Eulerian coordinates is similar to the one in Lagrangian
coordinate, up to terms in O(ε2). At the same time, the linearization in the La-
grangian coordinates is better defined. For this reason the system in Lagrangian
coordinates is preferred for the rest of this work. We conclude this paper by the
study of the dispersion relation obtained from Eq. (53).
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5 Dispersion relation

A key aspect of wave models is the related dispersion relation, that we derive
here from Eq. (53) and solve numerically. First note that if one defines the
equivalent pressure pε, the equivalent density ρε and the equivalent velocity Uε
by

pε = p0 + εp1, ρε = ρ0 + ερ1, Uε = εU1, (167)

then a combination of the equations (150)-(154) yields the following system for
pε, ρε and Uε, 

ρ0
∂Uε
∂t

+∇pε = ρεg +O(ε2),

∂ρε
∂t

+∇ · (ρ0Uε) = O(ε2),

∂pε
∂t

+∇p0 ·Uε + ρ0c
2
0 ∇ ·Uε = O(ε2).

(168)

(169)

(170)

This system is comparable – up to the terms in O(ε2) – to the system studied in
the paper from Auclair et al. (2021). In Auclair et al. (2021), the author thor-
oughly analyze the dispersion relation for the model of a stratified compressible
fluid with a constant sound speed.

In order to make the computations clearer, the problem is restricted to a 2-
dimensional configuration in ξ1 and ξ3. We also assume that the bottom is flat.
Following the approach of Auclair et al. (2021), the wave angular frequency ω
and the horizontal wave-number frequency kx are defined, and we seek a solution
of the form

ρ̂0Û1(ξ1, ξ3, t) =

(
Ũ1(ξ3)

Ũ3(ξ3)

)
ei(kxξ

1−ωt). (171)

First Eq. (53) is written differently to make the unknown ρ̂0Û1 appear.

∂2ρ̂0Û1

∂t2
−∇ξ(ĉ20∇ξ ·(ρ̂0Û1))−∇ξ

(
ĉ20N

2
0

g
ρ0Û1 · e3

)
−g∇ξ ·(ρ̂0Û1) e3 = 0 (172)

Injecting the ansatz (171) in Eq. (172) yields

ω2Ũ1 + ikx

(
ĉ20(ikxŨ

1 + (Ũ3)′) +
ĉ20N

2

g
Ũ3

)
= 0, (173)

ω2Ũ3 + ∂3

(
ĉ20(ikxŨ

1 + (Ũ3)′
)

+ ∂3

(
ĉ20N

2

g
Ũ3

)
+ g(ikxŨ

1 + (Ũ3)′) = 0.

(174)

Using the equation (173), the horizontal component Ũ1 is expressed as a function
of the vertical component,

Ũ1 = −ikx
ĉ20D(Ũ3)′ + (ĉ20 − gD)Ũ3

D(ω2 − ĉ20k2
x)

, (175)
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where D is a depth scale, defined by

1

D
=
N2

g
+

g

ĉ20
=
ρ̂′0
ρ̂0
. (176)

We also define the quantity

S = 2
ĉ′0
ĉ0
. (177)

Replacing Ũ1 in the equation (174) yields, after some computations,

(Ũ3)′′+

(
1

D
+ ω2S2

)
(Ũ3)′+

(
ω2

ĉ20
+ k2

x

N2 − ω2

ω2
− D′

D2
+ S

(
g

ĉ20
+
N2

g

ω2

ω2 − ĉ20k2
x

))
Ũ3 = 0.

(178)
In order to write an harmonic equation the following change of variable is made,

Ũ3(z) = Ũ3(H)F (z) exp

(∫ H

z

α

2
dz′

)
, α =

1

D
+ ω2S. (179)

Then F (0) = 0, F (H) = 1 and F satisfies the equation

F ′′ + k2
zF = 0 (180)

where the vertical wave-number kz is defined by

k2
z + k2

x

N2 − ω2

ω2
+
ω2

ĉ20
− 1 + 2D′

4D2
− 1

2
ω2S′

+ S

(
g

ĉ20
+
N2

g

ω2

ω2 − ĉ20k2
x

− ω2

2D
− 1

4
ω4S

)
= 0, (181)

The equation (181) is the dispersion relation for the two wave-numbers kx, kz
and the frequency ω. It is a generalization of the inner dispersion relation in
Auclair et al. (2021) to the case of a non-constant sound speed. Indeed, with a
constant sound speed one has S = 0 and (181) is exactly the inner dispersion
relation in Auclair et al. (2021).

Remark: In the most general case, the scalars N,D and S depend on the
depth z, hence kz also depends on z. It is then not clear whether the solution
to Eq. (180) and the profile Ũ3, can be written explicitely. When kz does not
depend on z, as in the study from Auclair et al. (2021), the expression of the

profile Ũ3 is used with the boundary conditions to obtain a boundary dispersion
relation. In our case kz is not a constant, and the boundary dispersion relation
is not easily deduced.

Numerical approximation of the dispersion relation

An evaluation of the equation (181) is possible once the limit state for the
pressure and the density is computed. The differential equation for the pressure
(22) is numerically solved for the temperature profile shown in figure 3a.
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(b) Density profile.
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(c) Sound speed profile.

Figure 3: Temperature, density and sound speed profiles used for the computa-
tion of the dispersion relation where ξ3 = 0 is the seafloor and ξ3 = 4000 m is
the ocean surface.
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Then the density and the speed of sound are computed from the tabulations
given in IAPWS-SR7 (2009). Figure 3b, 3c show the obtained density and speed
of sound. With these profiles the dispersion relation (181) is computed. Figure
4 shows the contours of the vertical wave-number as a function of the horizontal
wave-number and the angular frequency, at different depths. For the sake of
comparison, the plotted variables are the adimensionned variables δx = kxH,
δz = kzH and log10(δω), where δω = ω

√
H/g.

Although Fig 4 is close to the one in the paper from Auclair et al. (2021),
one can notice the influence of the ocean depth on the contours. This first
result suggests that the variation of the parameters ĉ0, N,D with depth plays a
non-negligible role in the waves dispersion.

6 Conclusion and future work

In this work we have presented a system describing the propagation of acoustic-
gravity waves in a free-surface fluid over an varying bed (bathymetry) and with
a variable sound speed, applicable to describe in particular hydro-acoustic and
tsunami waves generated by earthquakes or landslides in the ocean. Through
a rigorous linearization of the compressible Euler equation we have obtained a
model able to represent many physical phenomena, such as the SOFAR channel
or the propagation of internal waves. The variety of these phenomena is well
represented in the dispersion relation.

In the derivation only few assumptions are made and some common simplify-
ing hypotheses were avoided. In particular, the fluid is not necessarily assumed
barotropic and it is not assumed irrotational. Thanks to this approach, many
terms representing different physical phenomena are kept in the wave-like equa-
tion. With a numerical approximation one could then compute their respective
magnitude, and justify which terms can be neglected. Note also that in the
present work the source term is a displacement of the seabed, but this is not re-
strictive and other source terms could be used (a change in the surface pressure
for example).

With additional assumptions compatible with the derivation of the system,
such as considering a barotropic fluid, or restricting the model to the incom-
pressible regime or to the acoustic regime, we are able to recover simpler models
widely studied in the litterature. The mathematical study of the more complete
model can help gain insight on the other ones. For example, we could clearly
identify the assumptions made in the hydro-acoustic waves model used by Sti-
assnie (2010); Sammarco et al. (2013) and others. Namely, in those models the
fluid is assumed barotropic, and the effects of stratification and gravity are ne-
glected inside the domain. The study of the more complete model also helped to
write the conservation of energy in each simplified case. The linear model in La-
grangian coordinates can also be used to recover the linearized Euler equations
in Eulerian coordinates. This brings a clear understanding of the usual – never-
theless non satisfactory – assumption that is used to derive the aformentionned
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Figure 4: Contour of the vertical wave-number as a function of the horizon-
tal wave-number δx and the angular frequency δω, at different depths ξ3. 4a:
ξ3 = 2000 m, 4b: ξ3 = 3600 m, 4c: ξ3 = 4000 m.
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models in Eulerian coordinates.
The wave-like formulation of the model makes it a good candidate for a

numerical approximation by the finite elements method. The fact that it pre-
serves an energy suggests that the problem is well-posed, which motivates a
more thorough study of the mathematical problem. Numerical implementation
of this model will make it possible to simulate acoustic-gravity waves generated
by earthquakes and landslide sources accounting for the complex bathymetry,
thus contributing to improve early-warning systems. It will also help quantifying
the errors made in more simple models, such as the hypothesis of an irrotational
flow. These two aspects will be investigated in a future work.
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·Û

1
=

0,
Γ̂
s

E
=

1 2

∫ Ω̂

ρ̂
0

 ∣ ∣ ∣ ∣ ∣∂
Û
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Appendix A

In this section an energy equation for the system (53) is obtained. Recall that
the system (53) reads in Ω̂,

ρ̂0
∂2Û1

∂t2
−∇ξ

(
ρ̂0ĉ

2
0∇ξ · Û1

)
− (∇ξÛ1)T ρ̂0g + ρ̂0∇ξ · Û1 g = 0, (182)

with the boundary conditions{
Û1 · nb = ûb,1 on Γ̂b,

∇ξ · Û1 = 0 on Γ̂s.

(183)

(184)

By taking the scalar product of (53) with ∂tÛ1 and integrating over the domain
we have∫
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·
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ρ̂0
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∂t2

)
dξ −
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))
dξ

+

∫
Ω̂

∂Û1
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)
dξ = 0. (185)

For the first integral of (185) it holds

∫
Ω̂

∂Û1
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dξ. (186)

The second term of (185) is integrated by parts, using ∇ξ ·Û1 = 0 on the surface

and Û1 · n̂b = ûb,1 at the bottom (hence ∂t(Û1 · n̂b) = ∂tûb,1),

−
∫
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For the computation of the two last integral of (185), we define
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an we denote by n̂b be the vector normal to the boundary ∂Ω. (I) is integrated
by parts and reads

(I) =
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ρ̂0gÛ1 · e3
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· e3∇ξ · Û1 dξ. (189)

The boundary term is simplifed using ∂t(Û1 · n̂b) = ∂tûb,1 at the bottom. On

the boundary Γ̂s, the surface is horizontal hence the normal vector is the unit
vector e3, so it holds

(I) =

∫
Γ̂b
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Next we develop the gradient in the third integral of Eq. (190). Note that ρ̂0

depends only on the vertical coordinate, then we have
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(191)
hence we obtain
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The two last terms of (192) are put together,
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Summing the terms (186), (187) and (193) yields
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and by defining

Nb = −
(
g2

ĉ20
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gρ̂′0
ρ̂0

)
, (195)

we obtain the energy equation (56).

Appendix B

In this section we derive the relations between the zero- and first-order approx-
imation in Eulerian and in Lagrangian coordinates, when differentiating with
respect to time or space. First note that φ0 and φ1 can be expressed in terms
of the displacement d. From the assumption of small displacements it holds
d = εd1 +O(ε2), then identifying the powers of ε and summing yields

φε(ξ, t) = ξ + εd1(ξ, t). (196)

From the change of coordinate we have

∇ξX̂ = (∇ξφε)T∇X = (Id+ ε∇ξd1)T∇X, (197)

and using this identity for X̂ = X̂0 + εX̂1 yields
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+O(ε2). (198)

By identifying the powers of ε it holds

∇ξX̂0 = ∇X0, ∇ξX̂1 = (∇ξd1)T∇X0 +∇X1. (199)

The same method is used for the time derivative. Starting with
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we obtain after replacing X and X̂ by their first order approximation,
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38



With ∂td1(ξ, t) = Û1(ξ, t) = U1(x, t) it holds

∂X0
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+ ε

(
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+U1 · ∇X0

)
+O(ε2). (202)

We identify the powers of ε,
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