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 28 

Highlights: 29 

1. Five-year BC measurements were conducted in a suburban area in central 30 

France. 31 

2. Strong seasonal variations and weekend effects were observed. 32 

3. Biomass burning contributed to more than half of winter BC. 33 

4. Lockdown in cold season and warm season had reverse effect on BC 34 

concentration. 35 

 36 

Abstract: 37 

Atmospheric black carbon (BC) concentration over a nearly 5 year period 38 

(mid-2017 - 2021) was continuously monitored over a suburban area of Orléans city 39 

(France). Annual mean atmospheric BC concentration were 0.75 ± 0.65, 0.58 ± 0.44 , 40 

0.54 ± 0.64, 0.48± 0.46 and 0.50 ± 0.72 μg m
-3

, respectively, for the year of 2017, 41 

2018, 2019, 2020 and 2021. Seasonal pattern was also observed with maximum 42 

concentration (0.70 ± 0.18 μg m
-3

) in winter and minimum concentration (0.38 ± 0.04 43 

μg m
-3

) in summer. We found a different diurnal pattern between cold (winter and fall) 44 

and warm (spring and summer) seasons. Further, fossil fuel burning contributed more 45 
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than 90% of atmospheric BC in the summer and biomass burning had a contribution 46 

equivalent to that of the fossil fuel in the winter. Significant week days effect on BC 47 

concentrations was observed, indicating the important role of local emissions such as 48 

car exhaust in BC level at this site. The behavior of atmospheric BC level with 49 

COVID-19 lockdown was also analyzed. We found that during the lockdown in warm 50 

season (first lockdown: 27 March - 10 May 2020 and third lockdown 17 March - 3 51 

May 2021) BC concentration were lower than in cold season (second lockdown: 29 52 

October–15 December 2020), which could be mainly related to the BC emission from 53 

biomass burning for heating. This study provides a long-term BC measurement 54 

database input for air quality and climate models. The analysis of especially weekend 55 

and lockdown effect showed implications on future policymaking toward improving 56 

local and regional air quality as well.  57 

 58 

Keyword: 59 

Black carbon, measurements, long-term, seasonal pattern, weekend effect, 60 

lockdown. 61 

 62 

  63 
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1. Introduction 64 

Black carbon (BC) is a primary aerosol emitted directly from incomplete 65 

combustion processes such as vehicle exhausts (especially unfiltered diesel type), 66 

domestic and industrial coal, heavy oil and wood burning, as well as forest and 67 

vegetation fires (WHO, 2012). As a component of atmospheric particulate matter (PM), 68 

BC plays an important role in the aerosol-planetary boundary layer (PBL) interactions 69 

that can for example enhance the haze pollution (Ding et al., 2016; Zhang et al., 70 

2020).  71 

BC is recognized as an efficient proxy of negative impacts on human health by 72 

causing morbidity and premature mortality (Silva et al., 2013). Because of their small 73 

diameter (≤2.5 µm, PM2.5), BC particles can enter deep into the lungs and the 74 

bloodstream to cause cardiovascular and respiratory diseases which may lead to 75 

premature death (Anenberg et al., 2011; Gong et al., 2019; Li et al., 2016; Y. Wang et 76 

al., 2021). In addition, BC affects visibility and harms ecosystems. BC aerosols play an 77 

important role in the climate system, they strongly absorb solar radiation and warm the 78 

atmosphere. BC is the second climate forcing agent after CO2 with a positive radiative 79 

forcing of 1.1 W m
-2

 (Pörtner et al., 2022). Because of its short atmospheric lifetime, 80 

estimated to be of a few days to a few weeks, it has been suggested that mitigation of its 81 

emissions is one of the most effective strategies for slowing climate change. The 82 

climate will respond quickly to reductions of black carbon, especially in remote regions 83 

like the arctic where the warming and melting of snow and ice could be slowed (AMAP, 84 

2015; Sand et al., 2016; WMO, 2016) .  85 

Because of its impact on global warming, human health and ecosystems, a large 86 

body of research and monitoring activities have been dedicated to the understanding of 87 

the atmospheric behavior of BC (Cui et al., 2021; Garrido et al., 2014; Kutzner et al., 88 

2018; Singh et al., 2018) and to take actions to reduce its emissions since it could be 89 

considered as a key pollutant to abate from anthropogenic sources.  90 
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In the present paper, we report hourly, monthly, and yearly average concentrations 91 

and near five years trend of BC levels from September 2017 to December 2021 at the 92 

Voltaire supersite at the CNRS Campus (Orléans, France) to trace the major outflow 93 

pathways and transport mechanisms for the area of the interest in the present work.  94 

2. Methodology 95 

2.1. Measurement Site 96 

Real-time continuous measurements of BC were made at the Super-Site Voltaire 97 

located in the campus of the National Scientific Research Centre (CNRS) in Orléans, 98 

France, as shown in Figure 1, about 8 km south of the Orléans city center 99 

(47°50′16.80″N, 1°56′39.34″E). The site is mostly surrounded by grass and trees with 100 

no obstructing buildings around it within 50 m. In addition to BC, the site is also 101 

equipped with instruments to measure O3 and NOx.  102 

 103 

Figure 1. Screenshot of the Voltaire sampling site at the CNRS campus 104 

(Orléans-France, 47°50′16.80″N, 1°56′39.34″E). 105 

 106 

2.2. Instrumentation 107 

An aethalometer model AE33-7 (Magee Scientific Inc.) with a PM2.5 inlet was 108 

used to measure aerosol BC in real time from September 2017 to December 2021. The 109 

AE33 collects particles continuously by flowing air stream through a filter tape. Air is 110 

pumped through an inlet at the desired flow rate of 5.0 L/min. The aerosol analysis, 111 
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done at seven optical wavelengths (370, 470, 520, 590, 660, 880, 950 nm), is made by 112 

measuring the transmission of light through one portion of the filter tape containing the 113 

sample, versus the transmission through an unloaded portion of the filter tape which 114 

acts as reference. The instrument calculates the instantaneous concentration of 115 

optically-absorbing particles from the change of the attenuation of light transmitted 116 

through the particle-laden filter. Two measurements are made simultaneously from two 117 

sample spots with different rates of accumulation of the sample and the results are 118 

combined mathematically to eliminate nonlinearities and provide the compensated 119 

particle light absorption and BC mass concentration. 120 

The AE33 calculates BC concentrations with high temporal resolution by 121 

analyzing the attenuation of light transmission over time. The BC measurement is 122 

extracted from the absorption coefficient measurement at 880 nm. The other 123 

wavelengths can be used to estimate the contributions of different combustion sources. 124 

The optical attenuation (ATN) is calculated from the measurement of the light intensity 125 

measured through the “clean” filter band (I0) and measured through the particle-laden 126 

band (I) using the following mathematical law: 127 

ATN = -100 ln(I/I0) 128 

The particle attenuation coefficient (batn) is calculated by taking into account the 129 

area of the measurement (S), the flow rate (Fin) and the sampling time (Δt) between two 130 

ATN measurements. Thus the attenuation coefficient, batn, induced by the particles 131 

deposited, expressed in m
-1

, is given by: 132 

batn = S × (ΔATN/100)/(Fin × Δt) 133 

The flow rate Fin is corrected by a leakage factor, ξ, which represents the loss of 134 

flow in the optical chamber. It constitutes the difference between the flow measured at 135 

the input of the instrument and the actual flow rate passing through the filter: 136 

Fin = Fout × (1 - ξ) 137 

Fout being the measured flow rate and Fin the actual flow through the band. 138 

 139 
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On the other hand, the attenuation coefficient batn is corrected for the amount of 140 

light scattered by the filter strip. Thus, the absorption coefficient of the particles, babs, 141 

represents the amount of light absorbed by the particles: 142 

babs = batn/C 143 

C is the diffusion coefficient of the filter strip. Hence BC concentration will be 144 

obtained from : 145 

BC = babs/σair 146 

σair is the mass aborption cross-section, within loading effect compensation, 147 

BC = BCmeasured/(1 - k*ATN) 148 

k is the compensation parameter, and the final equation: 149 

BC = 
              

                                   
 150 

BC emissions could be apportioned to the source of biomass burning (BCbb) and 151 

fossil fuel (BCff) based on the Sandradewi et al. (2008) model. This model is based on 152 

the difference in absorption coefficient wavelength dependencies, with optical 153 

absorption coefficient being a sum of biomass burning and fossil fuel burning 154 

fractions. Hence BCbb and BCff are calculated as: 155 

BCbb=BB*BC 156 

BCff= BC*(1-BB)  157 

With BB (%) is the portion of biomass burning related to total BC, and calculated 158 

using a series of equations: 159 

babs(470 nm)ff / babs(470 nm)ff = (470/950)
-aff

 160 

babs(470 nm)bb / babs(470 nm)bb = (470/950)
-abb

 161 

babs(470 nm) = babs(470 nm)ff + babs(470 nm)bb 162 

babs(950 nm) = babs(950 nm)ff + babs(950 nm)bb 163 

BB(%) = 
              

            
 164 



8 

 

where babs(λ) is absorption coefficient, λ is wavelength, babs(λ)ff a fossil fuel fraction 165 

and babs(λ)bb a biomass burning fraction of absorption coefficient. Ångström 166 

exponents: αff=1 for fossil fuel and αbb=2 for biomass. 167 

 168 

3. Results and Discussion 169 

3.1. Data Overview and Comparisons with Other Sites 170 

The measurements of BC were made from mid-September 2017 up to end 171 

December 2021. Technical issues and maintenance of the instruments led to the loss 172 

of some data for the period covering January 2018 – December 2021. For this specific 173 

period, more than 71% of data has been recorded (Figure S1). Figure 2 shows an 174 

overview of measured BC in the present work. In general, the measurement period 175 

was characterised by a fairly good air quality in the area of interest to our study, 176 

without heavy pollution days. BC was generally lower than 2 µg m
-3

 with few 177 

exceptions reaching 4 µg m
-3

. The annual mean atmospheric BC concentration was 178 

0.75 ± 0.65, 0.58 ± 0.44 , 0.54 ± 0.64, 0.48± 0.46 and 0.50 ± 0.72 μg m
-3

, respectively, 179 

for the years 2017, 2018, 2019, 2020 and 2021 as shown in Figure 3. The annual 180 

mean of BC concentrations measured in suburban Orléans city, were 3 to 30 times 181 

lower than reported in other larger European and non-European cities as displayed in 182 

Table 1. Note that Orléans is a medium size city, with not much industry and traffic 183 

and a population of about 120000 inhabitants.  184 
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 185 

Figure 2. BC measurements during 2017-2021 in Orléans city. 186 

187 
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Table 1. BC measurement in this work and compared with literatures. 188 

City Study year BC ± SD (μg m
-3

) Reference 

Barranquilla, Colombia 2018 16.1 ± 16.54 Blanco-Donado et al., (2022)  

São Paulo, Brazil 2017 
8.5 ± 8.4 Weekday  

5.2 ± 13.9 Weekday 
Krecl et al., (2018)  

Macau, China 2016 
4.0 ± 2.6 (morning) 

3.1 ± 1.9 (afternoon) 
B. Liu et al., (2019)  

Shanghai, China 2016 10.8 ± 3.5 M. Liu et al., (2019)  

Shanghai, China 2015 11.8 ± 9.8 Lei et al., (2017)  

Brisbane, Australia 2015 4.4 ± 7.3      Williams and Knibbs, (2016)  

Londrina, Brazil 2015 
6.35 ± 20.0 (morning) 

5.10 ± 14.7 (afternoon) 
Targino et al., (2016)  

Shanghai, China 2014 

7.28 ± 1.63  

9.43 ± 1.70  

8.62 ± 2.57 

Li et al., (2015)  

Bogota, Colombia 2013 25.6 ± 39.2 Franco et al., (2016)  

Minneapolis, USA 2012 

2.5 ± 1.4 (morning) 

0.7 ± 1.6 (afternoon) 

 

Hankey and Marshall, (2015) 

Stockholm, 

Sweden 
2011 2.4 ± 3.6   Krecl et al., (2014) 

Berkeley, USA 2011 
1.76 ± 2.58 low traffic  

2.06 ± 3.23 high traffic 
   Jarjour et al., (2013) 

Helsinki, Finland 2011 7.8 ± 4.3 

Okokon et al., (2017) 
Rotterdam, Finland 2011 6.4 ± 3.3 

Thessaloniki, 

Finland 
2011 10.9 ± 9.9 

Barcelona, Spain 2009 16.7    de Nazelle et al., (2012) 

Orléans, France 2017 0.75 ± 0.65 This work 

Orléans, France 2018 0.58 ± 0.44 This work 

Orléans, France 2019 0.54 ± 0.64 This work 
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City Study year BC ± SD (μg m
-3

) Reference 

Orléans, France 2020 0.48± 0.46 This work 

Orléans, France 2021 0.50 ± 0.72 This work 

 189 

 190 

Figure 1. Histograms of BC measurement data from 2017 to 2021. 191 

 192 

3.2. Nearly 5 years trend of BC in Orléans 193 

The continuous observations over a period of nearly 5 years (mid 2017 – end 194 

2021) in Orléans (central France) provides data to check to tendancy of the 195 

atmospheric BC concentration in the region for the last five years. Since only 25% of 196 

BC data was obtained in 2017 (Figure S1), we only used data from 2018 to 2021 to 197 

discuss the trend observed in this work. As shown in Figure 4, a decrease of 3.6% per 198 

year is observed in the studied area. It has to be noted that a general decrease in the 199 

atmospheric BC has been reported in many other areas over Europe resulting mainly 200 

from the mitigation policies of air pollution in Europe since 1990’s. For example, a 201 

decresae as high as 8±3 % per year has been reported by Singh et al. (2018) at 202 

Marylebone road in London. Sun et al. (2020) reported a decreasing trend of BC 203 

concentration between -13.1 and -1.7 % per year from 2009 to 2018 over Germany.  204 
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 205 

Figure 2. Four yeras trend of BC at the Voltaire supersite during the period 206 

2018-2021. 207 

 208 

3.2. Seasonal variations 209 

The diurnal profile of BC under different seasons at the site for the entire 210 

measurement period is depicted in Figure 5. This figure shows that the highest BC 211 

concentration occurred in winter, followed by autumn, spring and summer, with 212 

seasonal mean (±SD) values of 0.70 ± 0.18, 0.64 ± 0.11, 0.48 ± 0.11 and 0.38 ± 0.04 213 

μg m
-3

, respectively. Compared to spring and summer, the elevated BC concentrations 214 

in winter and autumn were likely related to the common occurrence of wood burning 215 

for household heating and relative lower boundary height due to cold weather, as 216 

reported by other studies (Fuller et al., 2014; Genberg et al., 2013).  217 

Figure 5 indicates also that the diurnal variations of BC in winter and autumn 218 

were similar, within one significant morning peak during the morning rush hours and 219 

second significant peak in the evening. In spring and summer, BC concentration also 220 

increased in the morning and peaked during the morning rushing hours. However, the 221 

morning peak shifted from 7:00 (Local time, LT) in spring, summer, and autumn to 222 

8:00 LT in winter. Due to the increasing of boundary layer height or wind speed 223 

during the day. The BC concentration starts to decrease after the peak time until 15:00 224 
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LT. Then, as shown in Figure 5, BC concentration increased rapidly from 16:00 LT to 225 

the peak at 19:00 LT in autumn and winter, which increased slowly from the 226 

minimum and did not present significant peak in the evening in spring and summer. 227 

This indicates that the wood burning was most probably the important BC emission 228 

source during cold period. Another possible reason could be the boundary layer height 229 

decreased more rapidly to capture BC close to the earth surface in autumn and winter 230 

than that in spring and summer. The reduced human activities during the night hours 231 

would be the main reason for the observed lower BC concentration from the midnight 232 

until the morning rush hour in all seasons. 233 

 234 

Figure 3. Average diurnal variations of BC during different seasons for the period 235 

2017-2021. 236 

 237 

3.3. Weekend effects 238 

Overall, the BC concentration had a weekly cycle with slightly lower 239 

concentrations on weekends than during weekdays (Figure 6a,b). The daily median 240 

BC concentration ranged between 0.4-0.7 µg m
-3

 and 0.3-0.5 µg m
-3

 for weekdays and 241 

weekends, respectively. The diurnal variations of BC were different between the 242 
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weekdays and weekends, as shown in Figure 6. The weekdays presented two peaks 243 

pattern related to the morning and evening rush hours, but the weekends only showed 244 

slight increase in BC concentration from late afternoon. However, both weekdays and 245 

weekends had similar diurnal variation with the BC emission from fossil fuel which 246 

reveals that vehicle emission was the main BC source during the weekdays and less 247 

use of vehicle on weekends can significantly cut down the local BC concentration. 248 

Lower BC concentration on weekends compared to weekdays was also observed at 249 

traffic sites in other European cities like Bern and London (Reche et al., 2011) and 250 

Zurich (Zotter et al., 2017). Kutzner et al. (2018) reported negligible 251 

weekdays-weekends differences at urban background and industrial sites in Germany. 252 

As shown in Figure 6, a non-traffic source such as domestic heating could be another 253 

important BC source in the suburban site of our study. 254 

 255 
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Figure 4. Average diurnal profiles of BC, BCwb and BCff during weekends and 256 

weekdays. 257 

3.4. COVID-19 Lockdown impact 258 

A number of studies have reported changes in the the observed concentration 259 

profiles of BC before, during and after the lockdown in some countries. For example, 260 

Jia et al. (2021) reported significant decline in the BC emission in eastern and northen 261 

China, respectively, 70% and 48%. Wei et al. (2022) observed a reduction of BC up 262 

to 0.06 mg/m
2
 per day in northern India in April-May 2020 during COVID lockdown. 263 

We have compiled in Figure 7 the time series of BC concentrations before, during and 264 

after the three French lockdowns (first: 27 March–10 May 2020, second: 29 265 

October–15 December 2020, third: 17 March–3 May 2021) measured in Orléans. The 266 

Figure shows that BC concentration increased in the first two days from 27 to 29 267 

March 2020 after the French government announced the first lockdown. This may be 268 

attributed to the increased traffic activities for residents to buy the necessary living 269 

supplies. Then the BC concentration kept at a low level during the first lockdown and 270 

after the lockdown. The second lockdown in France was less strict than the first one 271 

with about 30% of the population allowed to go to work. The high BC concentrations 272 

observed during the second lockdown was attributed, at least partly, to emission from 273 

household wood burning since the temperature was low during this period. Relatively 274 

high BC concentrations were also observed during Christmas Holidays period from 275 

25 December 2020 to 15 January 2021 which also may be due to household wood 276 

burning. During the third lockdown covering the period 17 March to 3 May 2021, low 277 

BC concentration was observed. The averaged BC, BCff and BCwb concentration for 278 

these three lockdowns is presented in Figure 7. Interestingly, as shown in Figure 8, we 279 

found that BC emission from fossil fuel were at similar levels before, during and after 280 

these three lockdown periods, and the BC concentration changes was mainly due to 281 

the BC emission from wood burning. The reason could be that the location of the 282 

sampling site in this work was not impacted by by heavy traffic and industries. This 283 
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observation is specific to the investigated site and the situation could be different in 284 

other areas such as Delhi (Goel et al., 2021) and Wuhan (Z. Wang et al., 2021). It is 285 

worth noting that in this study we just comparted the observed BC concentrations but 286 

did not consider the meteorological impacts (e.g., from atmospheric dilution, 287 

boundary layer, etc.), which may add uncertainties.288 
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 289 

Figure 7. Time series of BC, BCff and BCwb concentration for the three lockdowns in France, (a) First Lockdown: before lockdown (6 March–26 290 

March 2020), during lockdown (27 March–10 May 2020) and after lockdown (11 May–10 June 2020); (b) Second lockdown: before lockdown 291 

(29 September–28 October 2020), during lockdown (29 October–15 December 2020) and after lockdown (16 December 2020–16 January 2021); 292 

(c) Third lockdown: before lockdown (17 February–16 March 2021), during lockdown (17 March–3 May 2021) and after lockdown (4 May–3 293 

June 2021). 294 
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296 

 297 

Figure 8. Column plots of average BC, BCff and BCwb for the three lockdowns in 298 

France, (a) First Lockdown: before lockdown (6 March–26 March 2020), during 299 

lockdown (27 March–10 May 2020) and after lockdown (11 May–10 June 2020); (b) 300 

Second lockdown: before lockdown (29 September–28 October 2020), during 301 

lockdown (29 October–15 December 2020) and after lockdown (16 December 2020 302 

–16 January 2021); (c) Third lockdown: before lockdown (17 February–16 March 303 

2021), during lockdown (17 March–3 May 2021) and after lockdown (4 May–3 June 304 

2021). 305 

 306 

3.5. Wood Burning vs. Fossil Fuel 307 

To further discuss the BC sources in the suburban area of this work, a monthly 308 

average of BCwb and BCff concentration and their contribution to total BC was 309 

depicted in Figure 9. The BC concentration peaked in late fall (November) and winter 310 

with maxima around 0.86 µg m
-3

. As shown in Figure 9A, BC from the combustion of 311 

fossil fuel (BCff) showed a relatively flat seasonal cycle, roughly constant in the range 312 
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combustion of wood burning (BCwd) showed a more pronounced seasonal dependence, 314 

with negligible contribution (<0.05 µg m
-3

) from May to September and moderate 315 

contribution in other months (0.1-0.43 µg m
-3

). Consquently, BCff made dominate 316 

relative contribution to the observed BC throughout the whole year (>50%, Figure 317 

9B), particularly high contributions from May to September (>88%, Figure 9B). This 318 

result is in good agreement with other reports indicationg that in the majority of 319 

European cities, BC typically originates from traffic (Kutzner et al., 2018).  320 

As discussed in the literatures (Becerril-Valle et al., 2017; Kumar et al., 2020; 321 

Mousavi et al., 2018) the monthly variation of BCff concentration in the year is mainly 322 

related to the weather conditions while that of BCbb concentration is not only related 323 

to the weather conditions but also human activities, such as the straw burning in 324 

autumn, forest fire in summer and wood burning from domestic heating in winter. In 325 

this work (Figure 9), BC from the combustion of wood burning (BCwb) showed a 326 

more pronounced seasonal dependence, within negligible contribution to BC from 327 

May to September. The BCbb concentrations tend to be higher in the cold seasons to 328 

contribute 22-50% to the total BC, which was likely related to the household heating, 329 

especially in the evening of winter as shown in Figure S2.  330 

 331 
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 332 

Figure 9. Monthly averages of BCwb and BCff in Orléans city  333 

 334 

4. Conclusions and Implications 335 

To investigate the variation and the long-term trend of BC, a nearly five-year BC 336 

measurement was conducted in a suburban area in central France. The BC annual 337 

mean concentration was calculated as 0.75 ± 0.65, 0.58 ± 0.44, 0.54 ± 0.64, 0.48± 338 

0.46 and 0.50 ± 0.72 μg m
-3

, respectively, for the year of 2017, 2018, 2019, 2020 and 339 

2021, indicating a stability to a very slight decrease trend (-0.036 µg m
-3

 year
-1

) from 340 

2017 to 2021. These BC concentrations were lower than that reported in some other 341 

cities. Strong BC seasonal variations were observed, with the highest BC 342 

concentrations occurred in winter, followed by autumn, spring and summer. A 343 

weekend effect was also observed in the measured area of this work, within generally 344 

slight high BC concentration during the workdays. Lower BC concentration was 345 

always observed during the weekends which was attributed to less traffic. 346 

As for the COVID-19 measures impact, three successive lockdown periods have 347 

been followed in France, two in warm season (March to May) and one in cold season 348 
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(October to December). We found that the BC concentration decreased during the 349 

lockdown in the warm season, but unexpectedly increased during the lockdown in 350 

cold season, which was mainly caused by the variation of BC emission from biomass 351 

burning.  352 

Fossil fuel contributed more than 90% of BC emission in the summer, much 353 

higher than that from wood burning. However, wood burning contributed equivalent 354 

(50%) to fossil fuel burning to the BC emission in the cold seasons, revealling the 355 

significant impact of winter heating from wood burning on regional air quality. 356 

Moreover, the above findings indicate that local anthoropogenic emissions could 357 

strongly affect the BC concentration observed at the VOLTAIRE supersite as well as 358 

air quality in this region. Hence, the national level of strategies to improve air quality 359 

is always important, but also the local strategies toward reduceing local emission such 360 

as domestic wood burning and fossil fuel combustion emissions.  361 
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