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Abstract: A quantum illumination radar uses quantum entanglement to enhance photodetection
sensitivity. The entanglement is quickly destroyed by the decoherence in an environment, although
the sensitivity enhancement could survive thanks to quantum correlations beyond the entanglement.
These quantum correlations are quantified by the quantum discord. Here, we use a toy model with
an amplitude damping channel and Lloyd’s binary decision strategy to highlight the possible role of
these correlations from the perspective of a quantum radar.

Keywords: quantum illumination; entanglement; quantum discord; binary decision strategy;
quantum information theory

1. Introduction

Since the late 20th Century, radar technology has been used in many applications,
especially for maritime and aeronautic purposes [1–3]. One of the most important subjects
in radar technology concerns the detection of stealth targets in the context of background
noise. In another way, the current development of quantum technologies provides new
possibilities for remote detection, leading to the concept of quantum radar. This paper
presents a “toy model” for quantum radar based on quantum entanglement between
pairs of photons. Such a simple model does not aim to be realistic but rather provides
pedagogical value concerning the potentiality created by the quantum radar.

The current development of quantum technologies for the transmission of information
introduced the idea of “quantum radar”, although this idea remained of little interest
until Lloyd’s article was published in 2008 [4]. In this article, Seth Lloyd showed that the
quantum entanglement with pairs of photons can significantly improve the remote detection
sensitivity in the optical frequency regime. This way of using entanglement for remote
detection is called “quantum illumination” (QI). Since this article, interest in the field of
quantum radar has grown. New theoretical and experimental research has been conducted
on this subject [5–12]. Research around the quantum radar has moved from focusing on
the individual photons to small bunches of photons [4,11]. In the same sense, research has
moved from the optical frequency regime [4] to the microwave frequency regime [11–13],
which is more suitable for radar applications but also more challenging. In this context,
new technologies are currently being developed to make quantum illumination possible
in the microwave regime. For instance, we can cite the Josephson junction, which enables
the direct production of microwave-entangled photons at low temperature. There is also
the coupling between an optical photon and a microwave photon [11]. Then, the Nitrogen-
Vacancy centers (called NV centers) also permit the production of microwave entangled
photons. Despite the great difficulties relating to the feasibility of such a quantum radar,
this research field is highly active.

The quantum radar has the same purpose as the conventional radar, but the function-
ing relies on the principles of quantum mechanics.
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We recall that a conventional radar works with the classical theory of electromagnetism
based on Maxwell equations. To briefly summarize it, a radar is a device that sends an elec-
tromagnetic wave to detect a reflecting object that reflects a fraction of the incident wave to
the radar. The radar scheme is characterized by the energy ratio called the “radar equation”
between the received and the emitted wave. The received wave provides information on
the detection and the position of an object (i.e., radar target) using signal processing.

In comparison, a quantum radar relies on quantum mechanics to work, but the
current definition is not as clear. A quantum radar could be defined as a conventional
radar that uses only a quantum electronic device to improve its sensitivity. Hence, if any
quantum electronic device is found in the radar system, we could refer to it as a quantum
radar. From another perspective, the use of a low number of photons instead of classical
electromagnetic waves also means that we can refer to a quantum radar. Using only one
of these aspects theoretically means that we can refer to a quantum radar. Given these
arguments, the current definition of a quantum radar is still somewhat ambiguous and
unclear, but the common thread between these definitions is the requirement of quantum
mechanics [11,14].

Among the known types of quantum radar, the quantum illumination radar proposed
by Lloyd [4] remains the most interesting because the enhancement of the sensitivity of
the radar from the use of quantum entanglement is significant. Below, the quantum radar
exclusively refers to the QI radar. Lloyd’s quantum illumination is based on the use of pairs
of entangled photons, whereby one photon is trapped in the radar system, while the second
photon is emitted into space to be reflected by a target. The emitted photon is reflected
by the target, and it comes back to the radar to be measured. In the radar, the detection
strategy relies on a joint measurement of the pair of photons. This is a striking point that is
nevertheless challenging in experimental terms, as specified in the current literature [11,12].

In Lloyd’s article [4], the sensitivity enhancement induced by the entanglement could
be maintained even if the entanglement is quickly lost during the propagation phase in the
optical regime. That means some quantum correlations, i.e., some quantum information,
could survive to the decoherence induced by the propagation environment which destroys
the initial entanglement. The entanglement phenomenon underlines the presence of strong
quantum correlations, but they are quickly lost due to the environment. The sensitivity
resilience could be explained by quantum correlations beyond the entanglement [10]. Such
correlations can be quantified by the quantum discord [15]. There is currently lack of
studies examining the environmental influence (such as the atmosphere) on the quantum
correlation evolution in the quantum illumination radar.

In this paper, we work with a toy model with Lloyd’s quantum illumination scheme,
introducing the damping effect of the propagation environment to follow the evolution of
quantum information. The objective consists in studying a simple QI radar from the point
of view of the quantum information theory introducing the quantum discord. Therefore,
we study the quantum illumination radar for a pair of qubits entangled on thermal energy
states since the detection process is photodetection. A generalized amplitude damping
quantum channel is used to model the environmental influence acting on the thermal energy
levels of one qubit alone. We use Lloyd’s decision strategy to introduce a low average
number nb of thermal photons by mode, representing the environmental thermal noise.
The decision strategy is linked to the quantum channel through a damping probability p
from the channel model [16]. For the sake of simplicity, we have limited ourselves to a low
number of thermal modes d = 2 corresponding to qubit states widely used in quantum
information theory [17,18]. The case d = 2 is a limiting case for small energy states, so our
toy model does not aim to represent a realistic case.

This paper is divided into four sections. Section 2 explains the basis of the quantum
illumination radar and the need to adopt a quantum formalism. The decision strategy is
adapted to account for the environmental influence using an amplitude-damping quantum
channel acting like a heat bath. In Section 3, we study the radar under the scope of quantum
information theory to follow the evolution of information. Next, in Section 4, we introduce
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Lloyd’s binary decision strategy according to the quantum channel used. We discuss the
information evolution in the quantum channel linked to the decision theory. Section 5
provides the conclusion.

2. Description of a Quantum Illumination Radar

In this section, we introduce Lloyd’s QI radar for pairs of entangled photons. We
use a conventional radar scheme to explain the differences between the QI radar and a
classical radar. The quantum formalism for the QI radar is introduced in Section 2.2. Then,
the formalism used to define the amplitude damping channel is given in Section 2.3.

2.1. Description of the Radar System

The principle of a QI radar relies on the entanglement and on a joint measurement on
the entangled system [4]. We start by considering a conventional radar scheme to highlight
the differences between a quantum radar and a classical radar.

The QI radar scheme is built like the conventional radar scheme in a monostatic
case. We have four main sections that permit us to define a quantum radar equation. In
conventional radar theory, the radar scheme is constituted by the emitter (an emitting
antenna), the propagation channel (the atmosphere), the target (a reflecting object), and
the receiver (a receiving antenna) [1]. Following the same scheme, the quantum radar
scheme is constituted by the emitter, which produces pairs of entangled photons in optical
or microwave frequencies [11]. Next, the propagation channel describes the perturbative
propagation medium, such as the atmosphere, acting on the emitted photon. The second
photon is trapped in the radar, which is a non-perturbative medium. The radar target is an
object that reflects the incident photon without absorbing it. Then, the receiver is a quantum
sensor taking a joint measurement of the photon received and the trapped photon.

Both radar schemes are used to define the classical radar equation in Equation (1) and
the quantum radar equation in Equation (2).

In classical radar theory, electromagnetic waves (EW) are used to detect distant objects.
The energy used to produce the EW has to be significant, as the atmosphere induces an
attenuation of the incident wave. This attenuation is due to scattering and absorption by
the atmospheric molecules (H2, O2 , etc.) [1]. Furthermore, an energy decay occurs because
the EW propagates in all directions. Only a fraction of the incident wave is reflected by the
target in all directions before it is received by the radar antenna. Therefore, the classical
radar equation written in Equation (1) is an energy ratio between the received wave and
the emitted wave.

Er =
PtτGt
4πR2 ×

1
L2 ×

σC
4πR2 ×Ae [energy] (1)

In Equation (1), Pt is the transmitted power over a time τ with the gain in the antenna
Gt. The factor 4πR2 shows that the incident wave is irradiated in all directions of the
space in a sphere of radius R. The factor 1/L2 represents the wave attenuation due to the
absorption and scattering over a round -trip. σC is the Radar Cross Section (RCS) that
indicates how an object reflects an incident wave. The RCS depends on the target geometry
and on its nature [1]. Ae = Grcλ

2/(4π) is the effective area of the receiving antenna with a
gain Grc, and it depends on the wavelength λ = c/f [3]. Here, the classical radar equation
has the form of a signal-to-noise ratio (SNR).

In quantum illumination radar theory, we emit single photons, not EW. In the at-
mosphere, the emitted photon can be absorbed or scattered, in turn implying the loss of
information, i.e., the loss of any useful signal. Hence, we add a probability factor Pp for
the photon not being absorbed or scattered by the propagation environment; the emitted
energy and the received energy are the same. In addition, this photon energy E = h̄ω is
far lower than the energy of classical EW. Therefore, the quantum radar equation is not
an energy ratio but a probability law to retrieve the emitted photon after its propagation
and its reflection on the target. This probability law is written in Equation (2) following the
form of Equation (1).
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Pr = Pp
2 ×

σQ
4πR2 × Pa [probability] (2)

where Pp is the probability of the photon not being absorbed and scattered by atmospheric
molecules along the propagation. This probability is squared since the photon makes a
round-trip between the radar and the target. σQ is the Quantum Radar Cross Section
(QRCS), which is the analog equivalent of the RCS, i.e., the way for an object to reflect
the incident photon. Some research has already been conducted on the QRCS between a
photon and reflecting targets with canonical geometries [19]. For photons with polarization
and a non-polarized target, the interaction does not significantly alter the quantum state
of the photon [20]. Pa is the probability of detection of the quantum sensor. It depends
on the effective area of the sensor and on its sensitivity threshold. For instance, detecting
microwave photons is more challenging than detecting optical photons because their energy
is much lower.

It should be noted that the QI radar equation is equal to the single-photon radar
equation described in Section 4 since, in both radars, only one photon is emitted. The fun-
damental difference lies in the entanglement for the QI radar between photon A (ancilla)
trapped in the radar and photon S (signal) that propagates. In the following, we describe in
Figure 1 how a QI radar works using entangled photonic qubits.

2 entangled
 photons

Ancilla photon trapped Joint Measurement

Propagation in Atmosphere (N2, O2, etc.) Reflecting
object

Radar Emitter

1

2.a

2.b

3

Figure 1. The quantum illumination radar process has three steps. In Step 1, the entangled pair
of photons is created inside the radar. In Step 2, we perform a separation. In 2a, the blue photon
is trapped inside the radar, while in step 2b, the red photon propagates through a medium before
being reflected by the target. The red photon returns to the receiver. In step 3, the pair of photons is
gathered, and a joint measurement of the quantum state blue–red is taken.

In Figure 1, the QI radar principle for a pair of photonic qubits is described in three
steps. These steps condition the quantum formalism used in Sections 2.2 and 2.3 and the
decision theory used in Section 4.

Step 1 consists in creating the pair of entangled photonic qubits. Photon A (ancilla)
is represented in blue and photon S (signal) is represented in red. Both are qubits, which
means that we describe them with a state vector |ϕ〉i = A, S as a superposition of any two
quantum states 0 and 1 : |ϕ〉i = 1/

√
2(|0〉i + |1〉i). The state vector represents a quantum

state ϕ of the quantum system i = A, S in a Hilbert space Hi of dimension 2. The state
vectors represent pure quantum states with a basis of vectors inHi. However, in practice,
we usually prefer the density matrix ρ̂ =

∑
j,k pj,k|j, k〉〈j, k| on the eigenvectors |j, k〉 with

the associated probability pj,k. The density matrix notation is suitable to mixed states, and
it is widely used in quantum information theory because a density operator ρ̂i represents
all the available information about a quantum state on the system “i” [17] (see calculations
in Section 3.1).
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In Step 2, the radar spatially separates the pair of photonic qubits. Photon A is kept in
the radar. Photon S is emitted into space towards a reflecting object.

In Step 2a, photon A is trapped in the radar using a mirror cavity without any loss.
This is an ideal case because ensuring a lossless cavity is very difficult in practice. Another
point is to prevent any perturbation in system A, particularly to prevent any measurement.

In Step 2b, photon S travels through a propagation environment, and the quantum
state of S is perturbed by the interaction with the environment. For instance, in the
atmosphere, the perturbations are mainly due to atmospheric molecules (N2, O2, etc.).
The perturbations undergone by photon S have an impact on the system AS since the
system is initially entangled. After the propagation, photon S interacts with the reflecting
object. We assume the photon is simply reflected by the object before it comes back to the
radar. This approach is idealistic since in practice photon S can be absorbed or scattered
during the propagation; furthermore, it could be also reflected anywhere by the object.
Finally, photon S is caught by the receiver of the radar.

Both photons are gathered in the radar system in Step 3. The QI radar takes a joint
measurement on system AS to identify its new quantum state. In reference to Lloyd’s
quantum illumination [4], the initial entanglement is lost due to the propagation in the
environment, and therefore the quantum state is modified.

Step 2b introduces two significant sources of perturbation independent from any
technological devices used in the radar. In this step, there is a perturbation due to the
propagation environment and a perturbation due to the interaction with a distant object.

The interaction between the photon and the object is calculated with the QRCS. Ac-
cording to the references [19,20], the interaction effect on the quantum state of the photon
is negligible because the interaction time is too fast. Therefore, considering the object as a
simple reflecting plate, we suppose this interaction effect is negligible.

The propagation environment has a strong effect on the photon state since it induces
the decoherence, which in turn destroys the initial entanglement. In Lloyd’s article [4],
the entanglement decay is immediate in the optical frequency regime.

In our toy model based on Lloyd’s quantum illumination, we have decided not to focus
on the object influence on the qubit state. Instead, we have focused our attention on the
propagation environment and its influence on the qubit state. This influence on the qubit
state S affects the state of the system AS due to the quantum correlations. A generalized
amplitude damping channel is used in Section 2.3 to model the environmental influence,
and the link with the decision theory (Section 4) is made with the damping parameter p used
in the quantum channel. The channel permits one to compute the quantum information
evolution as a function of p in Section 3.2.

Lloyd’s quantum illumination is based on the photodetection of a target of reflectivity
η with single-photon emissions in a bath of thermal photons. The thermal photons are
assumed to have an average occupation probability nb = (1 − e−β h̄ω)e−β h̄ω over the
thermal modes, where β = (kBT )

−1 with kB , the Boltzmann constant, and T is the
temperature. According to Lloyd’s article, the photodetector can distinguish d = W × td
modes during a detection event whereW is the frequency bandwidth and td is the temporal
window for the detection. According to the channel used in Section 2.3, we have limited
ourselves to the limiting case of d = 2 modes. The photodetector can detect at most one
photon in a detection event that corresponds to dnb � 1. This approximation is valid
for optical frequency regimes, but this is not the case when we move on to microwave
regimes. The binary decision strategy relies on photodetection, which is why we must
work on thermal energy modes in the quantum damping channel to model the situation.
The quantum channel depends on a damping parameter p, which is theoretically dependent
on the environment but p does not represent the absorption/scattering probability Pp of
Equation (2). The decision strategy uses this parameter p to compose the probabilities of
detection error and the signal-to-noise ratios in Section 4.
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Thus, we must work with pairs of entangled thermal qubits in the quantum channel.
The next section gives the formalism for the quantum states in the QI radar. Section 2.3
uses this formalism to define the amplitude-damping quantum channel.

2.2. Expression of the Quantum States in the QI Radar

Firstly, we discuss about the quantum entanglement and its consequences in the
equations. Then, we introduce the quantum formalism for the photonic qubits and for the
state of two entangled qubits.

The entanglement is a purely quantum phenomenon, and there is no classical counter-
part [21]. A quantum system “1,2” in a quantum state ρ̂1,2 constituted by two subsystems “1”
and “2” in quantum states ρ̂1 and ρ̂2 is entangled if we cannot describe it as a product state
of its two subsystems ρ̂1,2 6= ρ̂1 ⊗ ρ̂2, where ⊗ is the Kronecker product. A product state is
also called a ”separable state”, i.e., a state with no entanglement. Therefore, an entangled
state induces strong quantum correlations between subsystems “1” and “2”. This implies
that the state ρ̂1 of the subsystem “1” is conditioned by the state ρ̂2 of the subsystem “2”
and vice versa. The entanglement is the characteristic feature of quantum mechanics, and it
represents the key resource for several information processes in quantum information
theory [17,18]. Nevertheless, we have seen in Section 1 that some quantum correlations
exist beyond entanglement. These correlations can be quantified by the quantum discord,
which is different from the entanglement. The difference between the entanglement and
the quantum discord is pointed out in Section 3.1.

Now, we must define the formalism used for thermal qubits in Equation (3) on the ther-
mal energy states

∣∣εi=1,2
〉
, since Lloyd’s quantum illumination is based on the photodetection.

ρ̂S, thermal =
1
2 (|ε1〉〈ε1|+ |ε2〉〈ε2|) (3)

Equation (3) is the reduced density operator on the subsystem S involved in the entan-
gled state ρ̂AS, thermal in Equation (4) on the basis of the energy states {|ε1ε1〉, |ε1ε2〉, |ε2ε1〉, |ε2ε2〉}
of two qubits.

ρ̂AS, thermal =
∣∣Ψ+

〉〈
Ψ+
∣∣
AS, thermal =


0 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 0

 (4)

This entangled state is designed for d = 2 modes, and it corresponds to the shape
of entangled states used in Lloyd’s article [4] :

∣∣Ψ+
〉

AS, thermal = 1/
√
d
∑3
i,j=0|εi〉A

∣∣εj〉S.
In the atmosphere, photon S is submitted to a thermalization by the environment that
induces an evolution of its quantum state. An evolution of ρ̂S, thermal implies an evolution
of ρ̂AS, thermal.

To model such an evolution, we use the article [16], which presents an experiment to
study the photon thermalization. This evolution is described by a generalized amplitude-
damping channel presented in Section 2.3 that we use to model the evolution of ρ̂AS, thermal.
The evolution of ρ̂AS, thermal implies the evolution of its quantum information, as we will
see in Sections 3 and 4.

The following section uses Equation (4) as the input state of the amplitude-damping
channel. Note that for this QI radar, we do not consider the reflectivity of the target (η = 1),
since we work only on the information evolution along the quantum channel modeling
the environment.

2.3. The Amplitude Damping Channel for the QI Radar

The amplitude-damping quantum channel acts like a heat bath on the qubit S, which
propagates in the environment, as seen in step 2b in Figure 1. More precisely, the quantum
channel acts locally on the qubit S, but it does not act locally on the qubit A, which is kept
in a quantum memory. Therefore, photon A trapped in the radar remains unperturbed by
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the quantum channel. Moreover, in the QI radar, no local measurement is performed on
the subsystem A at any time, as mentioned in Section 2.1. The quantum channel makes the
quantum state of Equation (4) evolve as a function of the parameter p described below.

The quantum channel used is taken from the reference [16]. We adapt it to the en-
tangled state of Equation (4) acting only on the emitted photon S. We drop the subscript
"thermal" to simplify the equations; then, we write ρ̂AS, thermal ≡ ρ̂AS, in. The amplitude
damping channel is defined in Equation (5).

N (ρ̂AS, in) =
3∑
i=0

K̂iρ̂AS, inK̂
†
i = ρ̂AS, out (5)

where the Kraus operators K̂i acting locally on the subsystem S are defined in Equation (6) as
functions of the Kraus operators Γ̂i of the original quantum channel in [16] : K̂i = ÎA ⊗ Γ̂i,
where ÎA is the identity matrix on the subsystem A.

K̂0 = ÎA ⊗ Γ̂0 = ÎA ⊗
√

1− ξ
(

1 0
0
√

1− p

)
(6a)

K̂1 = ÎA ⊗ Γ̂1 = ÎA ⊗
√

1− ξ
(

0 √
p

0 0

)
(6b)

K̂2 = ÎA ⊗ Γ̂2 = ÎA ⊗
√
ξ

(
0 0√
p 0

)
(6c)

K̂3 = ÎA ⊗ Γ̂3 = ÎA ⊗
√
ξ

(√
1− p 0
0 1

)
(6d)

The Kraus operators verify the unitarity condition
∑

i=0..3 K̂
†
i K̂i = ÎAS.

In Equation (6), there are two parameters that control the evolution of ρ̂AS, in. The first
parameter ξ ∈ [0, 1/2] is the thermal population of the excited state |ε2〉. It controls the
balance of population on qubit states. For the sake of simplicity, we assume photon S is fully
mixed, so we take ξ = 1/2 for the computation in Section 3.2 corresponding to our qubit
state defined in Equation (3). However, we keep the general symbol ξ in the equations.

The second parameter p = 1− e−γt ∈ [0, 1] is the damping probability associated
with the excited state |ε2〉 as a function of the time t, where γ is the damping constant.
The parameter γ depends on the environment and the frequency photon S. An optical
photon is more impacted by the environment than a microwave photon, but setting a value
for γ is not within the scope of this paper. γ is only taken as dependent on the environment.
Therefore, the important parameter controlling the evolution of the state ρ̂AS, in is p ∈ [0, 1].

Using the quantum channel of Equation (5) on the density matrix in Equation (4) gives
the output density matrix ρ̂AS, out as a function of p and ξ written in Equation (7).

ρ̂AS, out =


1
2p(1− ξ) 0 0 0

0 1
2 (1− p+ pξ) 1

2
√

1− p 0
0 1

2
√

1− p 1
2 (1− pξ) 0

0 0 0 1
2pξ

 (7)

As explained in Section 1, the parameter p depends on the propagation environment.
It is the main parameter that evolves in our toy model to represent the intensity of the
action induced by the propagation environment on the quantum system AS. This density
matrix ρ̂AS, out is the starting point for the calculus of the quantum information evolution in
Section 3.2. Parameter p also permits this quantum information evolution to be linked to
the binary decision strategy developed in Section 4. To recap, the parameter has three roles
to play. First, it describes the action intensity of the environment on the state described by
ρ̂AS, out. Second, it binds the model to a practical laboratory case [16]. Third, it binds the
amplitude damping channel to Lloyd’s binary decision strategy.
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At this point, the amplitude damping channel action on the quantum state AS has
been defined in Equation (7). We will compute the quantum information evolution in the
QI radar in the next section.

3. Quantum Information in the QI Radar

The first section introduces quantum information theory using classical information
theory. Using a particular quantum state, we compare the entanglement and the quantum
discord to highlight its difference. In Section 3.2, we compute the quantum information
evolution in the quantum channel.

3.1. Tools of the Quantum Information Theory

Quantum information theory is an extension of classical information theory for quan-
tum mechanics [18]. The comparison between the mutual information definitions in both
theories leads us to the definition of quantum discord. Secondly, we underline the difference
between the discord and the entanglement by performing calculations for a Werner state.

In classical information theory, the information about a random variable X is defined
by Shannon entropy HX (x) = −

∑
x∈X px log(px). It quantifies the surprise, i.e., the

information available for all the realizations x of probability px for the random variable X .
Considering two random variables X and Y , we define the mutual information I(X : Y ) in
Equation (8) in two equivalent formulas, Equation (8a,b). The mutual information I(X : Y )
is the common information between these two variables X and Y .

I(X : Y ) = H(X) +H(Y )−H(X,Y ) (8a)

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (8b)

In Equation (8), H(X|Y ) = −
∑
x∈X pY (y)H(X|y) is the conditional Shannon entropy

of X , with knowledge of the realization y ∈ Y , so it represents the information on X

conditioned by the realizations y on Y . Then, we have the joint entropy H(X,Y ) =
−
∑
x∈X,y∈Y pX,Y (x, y) log pX,Y (x, y), where pX,Y (x, y) = pY |X (y|x) pX (x). H(X,Y ) is

the joint information of the random variables X and Y . Now, we move to the definition of
the mutual information in the quantum information theory.

In quantum information theory, the analog of the Shannon entropy H(X) is the
Von Neumann entropy S(ρ̂) = −Tr{ρ̂ log ρ̂} for a density matrix ρ̂. S(ρ̂) quantifies the
surprise, i.e., the information about a quantum state, since all information about this
quantum state is encapsulated in the density matrix ρ̂. The sum in classical information
theory is replaced by the trace operation Tr{·} in quantum information theory. Similarly,
the probability distributions are replaced by the density matrices that describe the quantum
states as statistical mixtures of the eigenstates in a Hilbert space. As shown in Equation (8),
the quantum mutual information can be defined in two ways in Equation (9); however,
neither formula, Equation (9a) nor Equation (9b), is equivalent.

I(ρ̂AS) = S(ρ̂A) + S(ρ̂S)−S(ρ̂AS) (9a)

J (ρ̂AS){M̂ (i)
S }

= S(ρ̂A)−S(ρ̂A|ρ̂S){M̂ (i)
S }

(9b)

Equation (9a) is the natural extension of the classical mutual information in Equation (8a),
while Equation (9b) looks like the conditional information of Equation (8b). Compared to
the classical case in Equation (8b), Equation (9b) introduces measurement theory, which is
fundamental in quantum mechanics. Consequently, the latter definition reports how much
information we can have on A if we measure S.

Equation (9a) is called the “quantum mutual information”, while Equation (9b) is
called the “classical information” available in the quantum state ρ̂A conditioned by the
measurement of the quantum state ρ̂S. To complete such measurements, we typically use
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Von Neumann projection operators {M̂ (i)
S } =

∑1
i=0 M̂

(i)
S . In Equation (9b), the quantum

conditional entropy S(ρ̂A|ρ̂S) defined in Equation (10) depends on the measurement operators.

S(ρ̂A|ρ̂S){M̂ (i)
S }

=
n∑
i=1

piS(ρ̂
(i)
A ) (10)

where the probability on the state ρ̂(i)A by a measurement on the state “i” is pi = Tr{(ÎA ⊗
M̂

(i)
S )ρ̂AS} and the quantum state ρ̂

(i)
A is defined by ρ̂

(i)
A = TrS{(ÎA ⊗ M̂

(i)
S )ρ̂AS(ÎA ⊗

M̂
(i)
S )}/pi.

The quantum discord is then defined in Equation (11) as the difference between
the quantum mutual information I(ρ̂AS) in Equation (9a) and the classical information
J (ρ̂AS) in Equation (9b) that is accessible in subsystem A by means of a Von Neumann
measurement taken of subsystem S.

d(ρ̂AS) = min
{M̂ (i)

S }

(
I(ρ̂AS)−J (ρ̂AS){M̂ (i)

S }

)
(11)

This information quantity depends on the measurement operators {M̂ (i)
S } as it depends

on J (ρ̂AS). Typically, the Von Neumann operators are chosen to verify the minimum
required for the quantum discord. Note as that the information J (ρ̂AS) is not necessarily
symmetrical, and the discord d(ρ̂AS) has the same property. The logarithm functions used
to calculate the discord on qubit states are in base 2.

After the quantum discord, we have to define the entanglement rate.
Quantum mechanics only refers to the entanglement of a system, but quantum

information theory enables us to quantify the degree of entanglement [17,21]. There are
several ways to compute the entanglement rate that depend, for example, on the dimension
of the quantum state. As we consider a pair of entangled qubits, we use the concurrence of
Wootters to compute the entanglement rate using the entanglement of formation [22].

The entanglement rate E(ρ̂AS) using the concurrence is calculated using a binary
entropy E(ρ̂AS) ≡ h(x) = −x log x− (1− x) log(1− x), where x = (1 +

√
1−C2)/2 with

C = C(ρ̂AS), the concurrence of Wootters [23]. C(ρ̂AS) is itself an entanglement measure
such as C ∈ [0, 1]. If C = 1, the state is fully entangled and the entanglement vanishes for
C = 0. We compute the concurrence C(ρ̂AS) = max(0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4) with the

{
√
λi}, which are the square-root eigenvalues in decreasing order of the spin-flip matrix

R = ρ̂AS(σ̂y ⊗ σ̂y)ρ̂∗AS(σ̂y ⊗ σ̂y), where σ̂y is a Pauli matrix. The symbol ∗ denotes the
complex conjugate.

At this point, we define the quantum discord and the entanglement rate. In the
following, we highlight the difference between these two quantities using a Werner state
(see [15] for details).

To show that both rates C(ρ̂AS) and d(ρ̂AS) are different, we take a Werner state
ρ̂w = z

∣∣Ψ−〉〈Ψ−∣∣AS +(1−z)/4ÎAS, which is a mixture of a fully entangled state
∣∣Ψ−〉〈Ψ−∣∣AS

and a separable state ÎAS/4 (= product state) [15]. The parameter z ∈ [0, 1] controls the
combination of the two extreme states, so the Werner state is a partially entangled quantum
state. In Figure 2, we plot the concurrence, the entanglement rate and the quantum discord
as functions of parameter z. The three quantities decrease as z tends toward zero.

We focus our attention on the rate E(ρ̂AS) and d(ρ̂AS). In Figure 2, the entanglement
rate and the quantum discord are maximal for z = 1, which corresponds to a fully entangled
state

∣∣Ψ−〉〈Ψ−∣∣AS. E(ρ̂AS) = 1 means the quantum state is fully entangled, and d(ρ̂AS) = 1
means we have reached the maximum number of possible quantum correlations.

The entanglement rate and the discord are zero when z = 0, corresponding to the fully
mixed state ÎAS/4. E(ρ̂AS) = 0 means that the state is no longer entangled, and we also
have d(ρ̂AS) = 0, so all quantum correlations have vanished.
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Now, looking at the intermediate z ∈]0, 1[, we can see that both rates take different
values. The entanglement rate decay is faster than the discord rate as z tends towards zero.
For zd = 1/3, we observe the entanglement rate E(ρ̂w) = 0, the concurrence C(ρ̂w) = 0
contrary to the quantum discord d(ρ̂w) > 0. This means the state ρ̂w for zd = 1/3 is no
longer entangled, but it still has quantum correlations. These correlations are not due to
the entanglement as the state is separable; i.e., the state is not entangled. Figure 2 shows
that entanglement and discord translate to two different kinds of quantum correlations, so
there are quantum correlations beyond the entanglement.

It ought to be noted that we can have a quantum state that is not entangled with a
non-zero discord, but the contrary is not possible. We cannot have an entangled state with a
null discord. It is recalled that an entangled state cannot be written as a product state, called
a separable state. Looking at Figure 2, when zd = 1/3, we can see that the state becomes
separable, but it has a non-zero discord for z ∈ [0, 1/3]. Then, the entanglement is a
quantum phenomenon, while the quantum discord is a quantum correlation measurement.
The entanglement rate E(ρ̂w) does not depend on projective measurements such as the
discord d(ρ̂w). For the latter, we have to be particularly attentive when selecting the
measurement operators to verify Equation (11).
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Figure 2. The entanglement rate and of the quantum discord as functions of the parameter z ∈ [0, 1]
for a Werner state ρ̂w = z

∣∣Ψ−〉〈Ψ−
∣∣
AS + (1− z)/4ÎAS. The entanglement rate E(ρ̂w) is in brown,

and the concurrence C(ρ̂w) is red. The quantum discord d(ρ̂w) in blue represents the number of
quantum correlations.

We have now defined the difference between the entanglement rate and the quantum
discord. The next section uses the tools of information theory described here to compute
the evolution of the quantum information along the amplitude damping quantum channel
defined in Section 2.3.

3.2. Evolution of the Quantum Information in the QI Radar

In this section, we compute the entanglement rate and the quantum discord in the
amplitude-damping quantum channel of Equation (5) as functions of the damping parame-
ter p. We begin by calculating the entanglement rate before calculating the quantum discord.

The entanglement rate is calculated using the concurrence of Wootters C(ρ̂AS,out),
defined in Section 3.1. We compute the matrix R = ρ̂AS,out(σ̂y ⊗ σ̂y)ρ̂∗AS,out(σ̂y ⊗ σ̂y), and
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we extract its eigenvalues. In Equation (12), we write the square-roots of the eigenvalues√
λi of the matrix R.√

λ1 =
1
2p
√
ξ(1− ξ) (12a)

√
λ2 =

√
1
2

[
1
2 (1− p+ (1− p+ pξ)(1− pξ)) +

√
∆(R)

]
(12b)

√
λ3 =

√
1
2

[
1
2 (1− p+ (1− p+ pξ)(1− pξ))−

√
∆(R)

]
(12c)

∆(R) = (1− p)(1− pξ)(1− p+ pξ) (12d)

The eigenvalue
√
λ1 has a multiplicity of two, while

√
λ2 and

√
λ3 have a multiplicity

of one. For each value of p, these eigenvalues are sorted in decreasing order to compute the
concurrence C(ρ̂AS,out) and next to evaluate the entanglement rate E(ρ̂AS,out). Both rates are
displayed in Figure 3, where we observe that the entanglement is lost before the parameter
p reaches its limiting value 1. Indeed, we find C(ρ̂AS,out) = 0 for p ≈ 0.83, so for p > 0.83,
the system AS is no longer entangled. Therefore, the fully entangled state of Equation (7)
becomes a separable state before the limiting value p = 1.
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Figure 3. The concurrence of Wootters C(ρ̂AS,out) in green and the entanglement rate E(ρ̂AS,out) in
red as functions of the parameter p ∈ [0, 1] for ξ = 1/2.

Now, we will evaluate the quantum discord d(ρ̂AS,out) by calculating, in this order,
the Von Neumann entropies S(ρ̂A,out), S(ρ̂S,out), S(ρ̂AS,out), and S(ρ̂A,out|ρ̂S,out) as func-
tions of p. With these entropies, we compute the quantum mutual information I(ρ̂AS,out)
and the classical information J (ρ̂AS,out) from Equation (9) to estimate the quantum discord
using Equation (11).

Using Equation (7), we calculate the density matrices of both subsystems A and S
using a partial trace operation : ρ̂A,out = TrS{ρ̂AS,out} and ρ̂S,out = TrA{ρ̂AS,out}. Next, we
calculate the Von Neumann entropies of both subsystems in Equation (13).

S(ρ̂A,out) = 1 ∀p ∈ [0, 1] (13a)

S(ρ̂S,out) =
1 + p− 2pξ

2 log
(

2
1 + p− 2pξ

)
+

1− p+ 2pξ
2 log

(
2

1− p+ 2pξ

)
(13b)
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Note that as we set ξ = 1/2 in Section 2.3, we have S(ρ̂A,out) = S(ρ̂S,out) = 1
∀p ∈ [0, 1].

According to Equation (13a,b), the information in subsystems A and S is not affected
by the action of the quantum channel. We have exactly the same amount of information for
all values of parameter p ∈ [0, 1] for photon A and for photon S.

Now, we apply the same calculation for the entropy S(ρ̂AS,out) = −Tr{ρ̂AS,out log ρ̂AS,out}
on the entangled system AS. It should be noted that the logarithm used is in base 4,
log(x) = ln(x)/ ln(4) as dim(ρ̂AS,out) = 4.

The matrix logarithm log(ρ̂AS) can be calculated analytically by diagonalizing the
density matrix ρ̂AS,out to obtain log(ρ̂AS,out) = P log(D) P−1, where P is the modal matrix
and P−1 is its inverse. D is the diagonal matrix formed by the eigenvalues of ρ̂AS,out.
The calculation is detailed in Appendix A within which we wrote out the Von Neumann
entropy S(ρ̂AS,out) = −H1 −H2 −H5 −H6 with coefficients {Hi=1...6}, also defined as
functions of p in Appendix A. The evolution of S(ρ̂AS,out) is plotted in Figure 4. We observe
that the Von Neumann increases as p tends towards one as we lose the quantum correlations
because of the quantum channel action. For p = 0, S(ρ̂AS,out) = 0 corresponding to the
fully entangled pure state and next the entropy increases because the uncertainty on the
state ρ̂AS,out increases. Indeed, as p tends towards one, we progress to a fully mixed
separable state.

Here, we compute the conditional entropy S(ρ̂A,out|ρ̂S,out){M̂ (i)
S }

using the projection

operators {M̂ (i=1,2)
S } with M̂ (1)

S = ÎA ⊗ |ε1〉〈ε1|S and M̂ (2)
S = ÎA ⊗ |ε2〉〈ε2|S. We obtain the

conditional entropy in Equation (14) that is plotted in Figure 4.

S(ρ̂A,out|ρ̂S,out){M̂ (i)
S }

=
p(1− ξ)

2 log
(

1 + p− 2pξ
p(1− ξ)

)
+

1− pξ
2 log

(
1 + p− 2pξ

1− pξ

)
+

1− p+ pξ

2 log
(

1− p+ 2pξ
1− p+ pξ

)
+
pξ

2 log
(

1− p+ 2pξ
pξ

) (14)

The conditional entropy increases as p tends towards one, and we observe its increase
as the quantum state ρ̂AS,out loses its entanglement in Figure 3. The entanglement loss
means we progressively lose the quantum correlations between the quantum state ρ̂A,out
and the quantum state ρ̂S,out. Consequently, we increase the uncertainty between both
states A and S when a projective measurement is completed for ρ̂S,out.

Using the calculations of the entropies, we can now compute the quantum mutual
information I(ρ̂AS,out) and the classical information J (ρ̂AS,out) as functions of the param-
eter p using Equation (9) to plot them in Figure 5. The quantum mutual information is
maximal for the fully entangled state when p = 0, and it decreases to zero until p = 1. We
observe the same evolution for the classical information J (ρ̂AS,out). The quantum mutual
information I(ρ̂AS,out) represents the total information shared by both subsystems A and
S. Its decreasing evolution in Figure 5 is in line with the entanglement decay observed in
Figure 3. The entanglement decay means the destruction of the initial quantum information
shared by both subsystems because the quantum correlations are vanishing. The classical
information decay J (ρ̂AS,out) shows that we lose the ability to extract information from
state ρ̂A,out when projective measurements are taken in state ρ̂S,out. A comparison between
Figures 3 and 5 shows that when the entanglement vanishes at p ≈ 0.83, the classical
information J (ρ̂AS,out) is close to zero but not the quantum mutual information I(ρ̂AS,out).

Finally, we compute the quantum discord d(ρ̂AS,out) as a function of parameter p in
Figure 6, including the entanglement rates C(ρ̂AS,out) and E(ρ̂AS,out). We clearly see that the
entanglement rate of decay is faster than the quantum discord decay as p tends towards one.

When p > 0.83, the entanglement rate vanishes but not the quantum discord. This
means that some quantum correlations survived to the amplitude damping quantum
channel in Equation (5) despite the state ρ̂AS,out|p>0.83 no longer being entangled, i.e., it is a
separable state. When p tends towards one, the quantum discord vanishes as well, so all
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quantum correlations are lost and we obtain a maximally mixed separable state that is a
product state ρ̂A,out ⊗ ρ̂S,out =

1
4 ÎA ⊗ ÎS.
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Figure 4. The Von Neumann entropy S(ρ̂AS, out) of the system AS in red and the conditional entropy
S(ρ̂A,out|ρ̂S,out){M̂ (i)

S }
in green as functions of parameter p ∈ [0, 1] for ξ = 1/2.
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Figure 5. The quantum mutual information I(ρ̂AS,out) in blue and the classical informationJ (ρ̂AS,out)

in red as functions of the parameter p ∈ [0, 1] for ξ = 1/2.

Through calculations of the entanglement rate and the quantum discord in this section,
we observed the presence of quantum correlations surviving slightly after the entanglement
loss. In Lloyd’s article [4], we keep the quantum advantage in terms of sensitivity even
when the entanglement is lost. Reasoning with a quantum information approach allows us
to understand that it is the existence of quantum information, i.e., quantum correlations,
that produce the sensitivity enhancement. However, keep in mind that quantum correla-
tions will certainly vanish in atmosphere after a finite propagation time, which leads to
the question of the quantum radar ranging. Indeed, if entanglement is lost but not the
quantum advantage, it is when the quantum correlations are totally lost that our sensitivity
enhancement would collapse. Hence, even if the model presented is not realistic, it is worth
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linking the quantum channel action with the decision strategy presented in Section 4, since
the entanglement rate and the quantum discord do not evolve at the same speed as function
of the damping parameter p. This comparison between the amplitude damping channel
and the binary decision strategy permit us to combine the propagation phase with the
detection phase including thermal noise.
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Figure 6. The entanglement rate E(ρ̂AS,out) (red), the concurrence of Wooters C(ρ̂AS,out) (green), and
the quantum discord d(ρ̂AS,out) (blue) as functions of the parameter p for ξ = 1/2.

The next section presents Lloyd’s decision strategy, accounting for the quantum
channel defined in Section 2.3. Section 4 shows the link between the quantum information
evolution in the amplitude-damping quantum channel and Lloyd’s binary decision strategy
for the QI radar [4].

4. The Binary Decision Strategy for the QI Radar

In this section, we introduce Lloyd’s binary decision strategy for the QI radar, estab-
lishing the link with the amplitude damping quantum channel of Section 2.3.

We start by explaining Lloyd’s original decision strategy, and we then adapt this
strategy according to the quantum channel action to calculate the signal-to-noise ratios
(SNR) depending on the damping probability p.

In Lloyd’s article [4], the binary decision strategy used relies on the discrimination of
quantum states [24]. This discrimination of quantum states is enhanced by the entanglement
in a QI radar compared to a single-photon radar. The binary decision can only provide
the information on the absence or the presence of an object with a reflectivity 0 6 η 6 1
surrounded by a thermal noise. These hypotheses are, respectively, called hypothesis H0
and hypothesis H1. Figure 7 provides an illustration of the situation depicted by both
hypotheses. At the top of Figure 7, we have hypothesis H1, where a target can be detected.
On the bottom, we have hypothesis H0, where only thermal noise photons are present.
The construction of the approximations for the thermal quantum states associated with
each hypothesis is possible for two reasons. The first reason is that the average number of
thermal photons nb = (1− e−β h̄ω)e−β h̄ω per thermal energy mode is very low : nb � 1.
This average number nb is calculated from Planck’s law n(ω,T ) = (eβ h̄ω − 1)−1. This
approximation is suitable for the optical frequency regime but not for the microwave
frequency regime. The second reason is that the photodetector can distinguish d = W × td
modes per detection event, as asserted in Section 2.1. Moreover, the photodetector can
detect one photon at most per detection event, corresponding to a number of thermal
photons detected dnb � 1.
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For Lloyd’s QI radar, the detection works on a reflecting target with a reflectivity η,
and the assumption was that the environment destroys the entanglement instantly, but the
sensitivity enhancement is maintained.

Propagation in Atmosphere (N2, O2, etc.) Reflecting
object

Radar Emitter

Propagation in Atmosphere (N2, O2, etc.) No objectRadar Emitter

Thermal photons

Figure 7. Detection strategies for the hypotheses H0 and H1 in Lloyd’s binary decision strategy
for both single-photon and QI radars. When an object can be detected, we are in hypothesis H1.
In hypothesis H0, only thermal photons can be detected, since no object is present.

In this paper, our toy model considers Lloyd’s QI radar, but we only consider the
influence of the propagation environment as we do not account for the target. Therefore,
we consider the target as a perfectly reflecting object (η = 1) that reflects the incident
photon S towards our quantum radar with certainty. Such a simplification is obviously
unrealistic since the photon can be reflected anywhere in practice. We do assume that
the photon comes back to the radar in the toy model. Thus, strictly speaking, we do not
perform a true QI radar detection under such simplifications. Our objective is to study the
evolution of quantum information in the damping channel with the signal-to-noise ratios
(SNR) calculated with the binary decision strategy.

The assumptions for calculations are the same as those in the previous paragraph, but
we limit ourselves to the case d = 2 modes, and hence the number of thermal photons seen
by the photodetector is 2nb � 1, which is obviously not realistic. Nevertheless, it permits
us to work with thermal qubits in the decision theory and to use the amplitude damping
channel acting as a heat bath on a qubit state as stated in [16]. The link with the channel is
defined by the damping probability p = 1− e−γt described in Section 2.3. This parameter
p ∈ [0, 1] shows that the quantum channel action increases as p tends towards one. Next,
we will take Lloyd’s binary decision strategy and adapt it to our model.

In light of the reference article [4], we consider a single-photon radar and a quantum
illumination radar. We begin by defining the thermal states on the single-photon radar
for hypotheses H0 and H1. Next, we use these thermal states to define the states on the
pair of entangled qubits following the QI radar depicted in Figure 1 for both hypotheses
H0 and H1. In both radar scenarios, we compute the probability of detection error for
single-shot measurements.

For the single-photon radar, according to Lloyd [4], the approximation of the thermal
state found for hypothesis H0 is given by Equation (15)

ρ̂0 = (1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|+O((2nb)2) (15)

where |vac〉 is the vacuum state on the thermal energy modes and |εi〉 are the thermal
modes populated by one photon. The photodetector cannot have a useful signal, since
there is no object to reflect the photon. The photodetector can only see the vacuum or a
thermal photon over the d = 2 modes.
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In hypothesis H1, the object is present, and it can reflect the emitted photon. We
obtain Equation (16), whereby we have a probability p of having only the thermal state of
Equation (15) given the quantum channel influence, or we can retrieve photon S thermal-
ized by the propagation environment.

ρ̂1 = pρ̂0 + (1− p)ρ̂S

= p
[
(1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|

]
+ (1− p)|ϕ〉〈ϕ|S +O((2nb)

2)
(16)

where |ϕ〉S = 1/
√

2(|ε1〉+ |ε2〉) is the qubit state of photon S.
From this point, we have to define the probability of detection error for single-shot

measurements. We use the reference [24] and Lloyd’s article [4]. It consists in completing
projective measurements on the positive and the negative parts of the operator (ρ̂1 − ρ̂0) in
Equation (17).

(ρ̂1 − ρ̂0) = pρ̂0 + (1− p)ρ̂S − ρ̂0

= p
[
(1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|

]
+ (1− p)|ϕ〉〈ϕ|S

−
[
(1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|

] (17)

The negative part corresponds to hypothesis H0, and the positive part corresponds
to hypothesis H1. Therefore, the probability to detect one particular state is a conditional
probability to obtain a positive/negative result, knowing the starting hypothesis H1 or H0.
The probabilities of detection error are conditional probabilities and are written in Table 1.

Following the QI radar scheme depicted in Figure 1, we take into account emitted
photon S as well as ancilla photon A. We completed the same calculations for the pair
of entangled qubits starting with hypothesis H0, whereby we obtained only a separable
thermal state, since there is no object to detect. This quantum state is written in Equation (18)
according to the reference [4].

ρ̂
(H0)
AS =

ÎA

2 ⊗ ρ̂0 =
ÎA

2 ⊗ [(1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|] (18)

In Equation (18), we can detect a thermal noise photon over the thermal energy modes
|εi〉 corresponding to a product state such as ÎA ⊗ ÎS, while the alternative possibility is to
detect only the vacuum |vac〉.

For hypothesis H1, we obtain Equation (19), whereby we have the probability p to
obtain the thermal state of Equation (18) because of the quantum channel influence, or we
can retrieve the entangled state |Ψ〉〈Ψ|AS.

ρ̂
(H1)
AS = p

ÎA

2 ⊗ ρ̂0 + (1− p)|Ψ〉〈Ψ|AS

= p
ÎA

2 ⊗
[
(1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|

]
+ (1− p)|Ψ〉〈Ψ|AS

(19)

In Equation (19), we have a decreasing probability (1− p) to retrieve a useful signal
as p tends towards one. The probabilities of detection error for single-shot measurements
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are calculated in Equation (20) with the operator (ρ̂
(H1)
AS − ρ̂(H0)

AS ) similarly to the single-
photon radar.

(ρ̂
(H1)
AS − ρ̂(H0)

AS ) = p
ÎA

2 ⊗ ρ̂0 + (1− p)|Ψ〉〈Ψ|AS −
ÎA

2 ⊗ ρ̂0

= p
ÎA

2 ⊗ [(1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|] + (1− p)|Ψ〉〈Ψ|AS

− ÎA

2 ⊗ [(1− 2nb)|vac〉〈vac|+ nb

2∑
i=1
|εi〉〈εi|]

(20)

The positive part represents hypothesisH1 and the negative part represents hypothesis
H0. The probabilities of detection error are represented by the conditional probabilities to
obtain a negative or a positive result given the starting hypothesis in Table 1.

Table 1. Probabilities of error for single-shot measurements for the single-photon radar and the
quantum illumination radar.

Radar Scheme Single-Photon Entangled Photons
Outcomes no = (−) yes = (+) no = (−) yes = (+)

H0 1− nb nb 1− nb
2

nb
2

H1 p(1− nb) (1− p) + pnb p(1− nb
2 ) (1− p) + pnb

2

In Table 1, logically and in line with the observations of Lloyd, we observe that the
probabilities of detection error are enhanced by the number d of modes involved in the pair
of entangled qubits. Of course, our toy model gives only an enhancement by 1/2, which is
the limiting case. Below, we calculate the SNR for the single-photon radar and for the QI
radar in each hypothesis starting with the single-photon radar.

For the single-photon radar, the signal-to-noise ratios (SNRs) for hypothesesH0 andH1
consist in calculating the ratio of Pe(+)/Pe(−) to obtain the SNR written in Equation (21).

SNRH0 =
Pe(+|H0)

Pe(−|H0)
=

nb
1− nb

(21a)

SNRH1 =
Pe(+|H1)

Pe(−|H1)
=

1− p+ pnb
nb

(21b)

SNR+ =
Pe(+|H1)

Pe(+|H0)
=

1− p+ pnb
p(1− nb)

(21c)

In Equation (21), all the SNR depend on the damping parameter p except for the
SNRH0 . Note when p = 1− e−γt ,with a constant γ, tends towards one it corresponds to an
infinite propagation, so we are sure to lose the emitted qubit or the quantum correlations
in the QI radar. Looking at Equation (21) and recalling that nb � 1, we see that the
SNRH0 depends exclusively on the thermal noise nb. We can associate the SNRH0 with
the probability of a false alarm to detect a signal when there is no object. As nb � 1, we
have SNRH0 < 1, so the probability of false alarm is low. For SNRH1 , we have pnb � 1,
since p ∈ [0, 1] and nb � 1, so for a low value of p, we obtain SNRH1 > 1. However,
when p → 1, the SNRH1 tends towards zero, so the quantum channel action makes the
SNR collapse. For the SNR+, we compare the useful signal of hypothesis H1 to the noise
signal of hypothesis H0. As nb � 1 and p→ 1, we obtain a SNR+ ≈ (1− p)/p, so the SNR
decreases quickly to zero because of the factor (1− p). However, for small values of p,
the SNR+ is greater than one, because the quantum channel action is not strong enough.

To compare the detection efficiency between both radars, we look at the SNR+, since
it takes into account both hypotheses. The quantum channel interacts with the emitted
photon, producing the SNR decay until it vanishes for p = 1.
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In the QI radar, the signal-to-noise ratios in Equation (22) are computed for hypotheses
H0 and H1 by calculating the ratio of Pe(+)/Pe(−) as in the single-photon radar.

SNRH0 =
Pe(+|H0)

Pe(−|H0)
=

nb/2
1− nb/2 (22a)

SNRH1 =
Pe(+|H1)

Pe(−|H1)
=

1− p+ pnb/2
p(1− nb/2) (22b)

SNR+ =
Pe(+|H1)

Pe(+|H0)
=

1− p+ pnb/2
p(1− nb/2) (22c)

As shown by Seth Lloyd in their article [4], the SNR calculated from Table 1 benefits
from the number of entangled modes. For instance, the SNRH0 interpreted as the probability
of false alarm is lower than in the SNRH0 of the single-photon radar thanks to the factor
of 1/2 originating from the entangled modes. For the SNRH1 , as we have nb/2 � 1,
SNRH1 ≈ (1− p)/p so the SNRH1 is greater than one for small values of p. However, it
vanishes as p tends towards one because of the thermalization induced by the quantum
channel. For the SNR+, as nb/2 � 1, we also obtain SNR+ ≈ (1− p)/p, so the SNR is
greater than one for low values of p but vanishes as p tends towards one. The SNR+ shows
the comparison between hypotheses H0 and H1, and as for the single-photon radar, we
lose the SNR+ for p = 1. We plotted the SNR+ of QI radar in Figure 8, which is linear with
the damping probability p.

0.0 0.2 0.4 0.6 0.8 1.0
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0.0

0.2
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SN
R Q

I

SNRQI(+)

Figure 8. The SNR+ in the QI radar as a function of the parameter p ∈ [0, 1] with nb calculated
for f = 5× 1014 Hz. The SNR has been normalized by its maximum because as the noise nb � 1,
the SNR is huge for small values of p.

The SNRH1 and the SNR+ in the single-photon radar and in the QI radar have the
same behavior. The SNR is greater than one when p is low, but it finally vanishes when
p tends toward one. The link between both radar situations is the amplitude damping
channel acting on the emitted qubit, i.e., the qubit S in Figure 1. The quantum channel
thermalizes the qubit S, which propagates, and the longer the propagation is, the greater
the perturbation on the qubit state is. More precisely, the closer to one the parameter p is,
the longer the propagation is. In both radars, the quantum channel perturbs the emitted
photon, but, the most interesting observation is of the effect on the QI radar, as for p close to
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one, we have a greater probability to obtain a separable thermal state ÎA/2⊗ ρ̂0, as written
in Equation (19).

We recall the different results in the damping channel model and in the binary decision
strategy to clarify the link between both models.

The generalized amplitude-damping channel used from the article [16] permits us
to describe the evolution of the entangled quantum state ρ̂AS,out. This channel models
the decoherence of the maximally entangled quantum state as a function of the damping
parameter p = 1 − e−γt, where γ depends on the atmosphere. Although the value γ
is qualitative, we can safely say that the decoherence is greater in the optical domain
compared to the microwave domain. In this paper, we stay in the optical domain to verify
the assumptions in the binary decision strategy made in Section 4. At the input of the
channel, we use the fully entangled state

∣∣Ψ+
〉〈

Ψ+
∣∣
AS, and we obtain at the output a fully

mixed separable state ÎA/2⊗ ÎS/2. With the channel, we have the environmental action.
In Lloyd’s binary decision strategy, we consider only the amount of noise for the

photodetection to obtain the SNR according to the hypotheses H0 and H1. In Equation (22),
we have the SNR+, which compares hypothesis H1 with hypothesis H0. This comparison
between the hypotheses gives us the ratio between the useful signal and the noise from
the environment. Looking at Figure 8 shows that the evolution of SNR+ is linear. We
have the maximum SNR+ = 1 for p = 0, while the SNR+ vanishes for p = 1. Please note
that the calculated SNR+ has been normalized because the thermal noise in the optical
domain is very low. Furthermore, in Equation (20), the maximum of SNR+ corresponds
to the fully entangled state |Ψ〉〈Ψ|AS, while SNR = 0 corresponds to the fully mixed state
ÎA/2 ⊗ nb

∑2
i=1|εi〉〈εi|. Lloyd’s binary decision strategy has been elaborated with the

damping probability p used in the channel (Equation (5)). Therefore, both models are
linked by this quantity, which allows us to compare the states described by ρ̂AS,out and
|Ψ〉〈Ψ|AS.

Recall that an open quantum system is a system traveling into a perturbative environ-
ment that produces its evolution towards a fully mixed state [25]. Looking at Figure 6, we
see that the state ρ̂AS,out is no longer entangled in the interval p ∈ [0.83, 1], but the quantum
discord is different from zero. Hence, on this interval, the quantum state ρ̂AS,out is separable,
but it still has quantum correlations. Now, as shown in Figure 8, the signal-to-noise ratio
does not vanish: we have the 0 < SNR+ < 1 on the interval p ∈ [0.83, 1]. The SNR+ is not
zero when the state is no longer entangled, but it still has some quantum correlations. This
shows the role of quantum discord in the binary decision strategy for the QI radar.

The damping channel and the decision strategy are coupled by the parameter p, so
the extremum states coincide. However, we do not have a perfect correspondence for
the separable state, since in the damping channel (Equation (5)), we obtain a fully mixed
state ÎAS/4, and we obtain the fully mixed state ÎA/2⊗ nb

∑2
i=1|εi〉〈εi| for the decision

strategy. The only difference comes from the noise nb introduced in the binary decision
strategy, which does not appear explicitly in the amplitude-damping channel. In spite of
this difference, the separable states obtained are similar.

Finally, when the discord becomes zero, this means that the quantum correlations
vanish. We have the maximally mixed separable state in both models. The SNR+ = 0 for
this state because we cannot make a proper discrimination between the thermal qubit sent
in the atmosphere and one thermal qubit from the thermal noise. We can see the vanishing
discord as the operational limit scale of the QI radar.

Specifically, the parallel between the damping channel of Section 3 and the decision
theory in Section 4 allows us to point out the role of discord in the noise resilience in
the QI radar. This follows from the statement of the article [10]. Moreover, we used a
link between both models that depends on the environment. This allows us to describe
the environmental action on one hand and the signal-to-noise ratios depending on the
thermal noise on another hand. In our toy model, we found that the discord is linked to
the SNR calculated from the binary decision strategy. Consequently, it may be possible
that the quantum discord is responsible of the quantum radar range from a quantum
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information point of view. Nevertheless, the presented toy model is unrealistic due to a lot
of approximations, so we must discuss the limitations of such a model.

Firstly, we used a damping amplitude channel to model the propagation phase where
we could use a master Equation [25]. However, the latter requires a lot of calculation based
on an interaction Hamiltonian between the photon and the environment. This implies
a good understanding of all interaction processes to define a suitable Hamiltonian for
the entangled state. The damping amplitude channel is a sufficient tool of the quantum
information theory to model the propagation phase because we consider the decoherence
in an average process without detailing each phenomenon. The quantum channel approach
gives an idea of the global evolution of the entangled state ρ̂AS,out in the atmosphere.
A phenomenological approach would be better, but it is not in the scope of this paper.

Secondly, Lloyd’s binary decision strategy relies on approximations on thermal states
in the small thermal noise nb, so we are limited to the optical frequency regime for the QI
radar. In addition, the link symbolized by p = 1− e−γt between the amplitude damping
quantum channel and the decision strategy is very simple. Moreover, it would be difficult to
set a realistic value to γ to improve the toy model. We do not have an exact correspondence
between the separable product states obtained with the amplitude damping channel and
with the binary decision strategy. However, the common thread between these models is
that both states are product states over two maximally mixed qubit systems; hence, there
are no quantum correlations remaining. The correspondence is not as good as expected
because of the approximations on thermal states and because the quantum channel used is
quite simple. It acts like a heat bath on the emitted qubit without introducing an average
thermal noise while the thermal noise is introduced by Lloyd’s theory.

Thirdly, the model is realized for qubit states on the thermal energy levels, so for a
photodetector that can see d = 2 modes for an average thermal noise, nb � 1. This allows
us to link the model to the article [16], but this is an extremely limited case as the energy is
very low due to the low number of thermal modes. Consequently, the model presented
is not realistic, and in order to have a better approach, we should take a larger number of
modes d. However, such a change also requires the modification of the amplitude damping
channel used in Section 2.3. This is not as simple because the initial entangled state is more
complex to define as for the quantum channel action on this state.

5. Conclusions

In this paper, we presented a toy model for a quantum illumination radar, focusing
on the propagation channel that has a significant impact on radar detection. The QI radar
uses pairs of entangled photons to perform a detection. We detailed the technical tools for
a QI radar detection, and we introduced the quantum information theory to follow the
evolution of quantum information. To highlight the environmental effect, we made a link
between Lloyd’s binary decision theory and an amplitude damping channel modeling a
propagation phase through a perturbative environment such as the atmosphere. Binary
decision theory relies on the discrimination of quantum states corresponding to detection
hypotheses H0 and H1. This decision theory has been adapted to the quantum channel
used to perturb the quantum state of emitted photonic qubit S. The link between both
models is performed using the damping parameter p acting on the thermal energy modes
of the qubit propagating through the environment. The signal-to-noise ratios are calculated
with the binary decision theory as functions of this damping probability p.

The calculations completed for the toy model suggest a link between the discord and
sensitivity enhancement resilience in QI radar, as stated in [10]. In the amplitude damping
channel based on the full thermalization of a photonic qubit, discord survived longer than
entanglement. In the decision theory, the SNR+ vanishes only when p = 1 corresponds to
a vanishing discord. The disappearance of discord means the disappearance of quantum
correlations inside the quantum system used for remote detection. The striking point in
Lloyd’s theory was the sensitivity enhancement resilience despite entanglement lost. This
resilience can be explained by discord because in both models, the limiting quantum state
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is a product state of the form ÎAS/d, where d is the dimension of the quantum state. A
product state is not entangled but, it could have quantum correlations in certain cases.
Then, discord should partially explain the sensitivity resilience to decoherence produced
by the propagation environment.

The toy model used is not a realistic model since it relies on many approximations,
but it illustrates the role of quantum discord. In the quantum channel, we assumed the
thermalization is fast and the only parameter is the damping probability p. In decision
theory, we assumed a low thermal noise to make approximations for quantum states. Such
an approximation on thermal noise is suitable for an optical frequency regime, but it does
not work for a microwave frequency regime. In addition, we restricted ourselves to the
limiting case of thermal qubits, which means we work with very low energy. To improve
this model, we should work with photonic qudits, but that implies modifying the quantum
channel used. Then, we have only considered single-photon emissions, which not very
well adapted for radar detection in practice.

The results suggest further developing discord understanding for a QI radar. The cur-
rent work takes part of a broader approach to the QI radar. It would be interesting to
consider partially entangled states instead of fully entangled states. Moreover, a proper
quantum radar would work with more modes and more photons to probe an object. To per-
form such a study, it becomes necessary to adopt the continuous variable formalism. Then,
a quantum radar would work with microwave frequencies instead of optical frequencies,
but it is theoretically and experimentally challenging because of the amount of noise in
microwave frequencies. A possible way to overcome this difficulty is to increase the num-
ber of modes or the number of photons. At this stage of research, we have several ideas
to explore.

This paper showed that the quantum discord explains the noise resilience of quantum
radar, but we can think about a way to use it as for entanglement. The number of studies
on quantum discord in quantum information process increased several years ago, as has
the number of experiments on quantum illumination. We are at the very beginning of the
development of quantum radar theory. This paper also provides way to spread the idea of
the quantum radar potentiality among the radar community. However, please note that we
cannot prove with certainty that the QI radar will surpass conventional radar. We can at
least think of using both to improve radar detection in particular situations.
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Appendix A. Calculation of the Von Neumann Entropy S(ρ̂AS,out)

Here, we provide details on calculations of the Von Neumann entropy S(ρ̂AS, out) in
Equation (A1). This entropy is calculated by the diagonalization of the density matrix
ρ̂AS,out in Equation (7).

S(ρ̂AS, out) = −Tr{ρ̂AS,out log(ρ̂AS,out)} (A1)
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The eigenvalues found as functions of ξ ∈ [0, 1/2] and p ∈ [0, 1] are written out in
Equation (A2)

λ1 =
1
2p(1− ξ) λ2 =

1
2pξ

λ3 =
1
2

(
1− 1

2p+
√

∆(ρ̂AS,out)

)
λ4 =

1
2

(
1− 1

2p−
√

∆(ρ̂AS,out)

) (A2)

where ∆(ρ̂AS,out) is defined in Equation (A3).

∆(ρ̂AS,out) =

(
1− 1

2p
)2
− p2ξ + p2ξ2 (A3)

∆(ρ̂AS,out) > 0 for all p ∈ [0, 1] and ξ ∈ [0, 1/2]. Next, the calculations using the modal ma-
trices P in Equation (A4) and P−1 in (A5) are used to compute log(ρ̂AS, out) = P log(D)P−1

where D = diag(λ3,λ4,λ1,λ2).

P =


0 0 1 0

−p(
1
2−ξ)−

√
∆(ρ̂AS,out)

d3
−p(

1
2−ξ)+

√
∆(ρ̂AS,out)

d4
0 0

√
1−p
d3

√
1−p
d4

0 0
0 0 0 1

 (A4)

P−1 =


0 d3

2
√

∆(ρ̂AS,out)

d3
2
p( 1

2−ξ)+
√

∆(ρ̂AS,out)√
∆(ρ̂AS,out)(1−p)

0

0 − d4
2
√

∆(ρ̂AS,out)
−d4

2
p( 1

2−ξ)−
√

∆(ρ̂AS,out)√
∆(ρ̂AS,out)(1−p)

0

1 0 0 0
0 0 0 1

 (A5)

where the coefficients di are written in Equation (A7).

d3 =

√
1− p+

[
p(

1
2 − ξ)−

√
∆(ρ̂AS, out)

]2
(A6)

d4 =

√
1− p+

[
p(

1
2 − ξ) +

√
∆(ρ̂AS, out)

]2
(A7)

We obtain Equation (A8).

log(ρ̂AS, out) =


L1 0 0 0
0 L2 L3 0
0 L4 L5 0
0 0 0 L6

 (A8)
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The elements of Li are written in Equation (A9).

L1 = log(λ1) (A9a)

L2 =
1

2
√

∆(ρ̂AS, out)

[(
p(

1
2 − ξ) +

√
∆(ρ̂AS, out)

)
log(λ4)

−
(
p(

1
2 − ξ)−

√
∆(ρ̂AS, out)

)
log(λ3)

] (A9b)

L3 =

(
p( 1

2 − ξ) +
√

∆(ρ̂AS, out)
)(
p( 1

2 − ξ)−
√

∆(ρ̂AS, out)
)

2
√

∆(ρ̂AS, out)(1− p)
[log(λ4)− log(λ3)] (A9c)

L4 =

√
1− p

2
√

∆(ρ̂AS, out)
[log(λ3)− log(λ4)] (A9d)

L5 =
1

2
√

∆(ρ̂AS, out)

[(
p(

1
2 − ξ) +

√
∆(ρ̂AS, out)

)
log(λ3)

−
(
p(

1
2 − ξ)−

√
∆(ρ̂AS, out)

)
log(λ4)

] (A9e)

L6 = log(λ2) (A9f)

With this equation, we obtain operator ρ̂AS, out log(ρ̂AS, out) in Equation (A10).

ρ̂AS, out log(ρ̂AS, out) =


H1 0 0 0
0 H2 H3 0
0 H4 H5 0
0 0 0 H6

 (A10)

where the elements of Hi are written according to the elements of Li in Equation (A11).

H1 =
1
2p(1− ξ)L1 (A11a)

H2 =
1
2 (1− p+ pξ)L2 +

1
2
√

1− pL4 (A11b)

H3 =
1
2 (1− p+ pξ)L3 +

1
2
√

1− pL5 (A11c)

H4 =
1
2
√

1− pL2 +
1
2 (1− pξ)L4 (A11d)

H5 =
1
2
√

1− pL3 +
1
2 (1− pξ)L5 (A11e)

H6 =
1
2pξL6 (A11f)

Thus, the Von Neumann entropy is S(ρ̂AS, out) = −H1 −H2 −H5 −H6.
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