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Volcano slope stability analysis is a critical component of volcanic hazard assessments and monitoring. 
However, traditional methods for assessing rock strength require physical samples of rock which may be 
difficult to obtain or characterize in bulk. Here, visible to shortwave infrared (350–2500 nm; VNIR–SWIR) 
reflected light spectroscopy on laboratory-tested rock samples from Ruapehu, Ohakuri, Whakaari, and 
Banks Peninsula (New Zealand), Merapi (Indonesia), Chaos Crags (USA), Styrian Basin (Austria) and La 
Soufrière de Guadeloupe (Eastern Caribbean) volcanoes was used to design a novel rapid chemometric-
based method to estimate uniaxial compressive strength (UCS) and porosity. Our Partial Least Squares 
Regression models return moderate accuracies for both UCS and porosity, with R2 of 0.43–0.49 and 
Mean Absolute Percentage Error (MAPE) of 0.2–0.4. When laboratory-measured porosity is included 
with spectral data, UCS prediction reaches an R2 of 0.82 and MAPE of 0.11. Our models highlight that 
the observed changes in the UCS are coupled with subtle mineralogical changes due to hydrothermal 
alteration at wavelengths of 360–438, 532–597, 1405–1455, 2179–2272, 2332–2386, and 2460–2490 
nm. These mineralogical changes include mineral replacement, precipitation hydrothermal alteration 
processes which impact the strength of volcanic rocks, such as mineral replacement, precipitation, and/or 
silicification. Our approach highlights that spectroscopy can provide a first order assessment of rock 
strength and/or porosity or be used to complement laboratory porosity-based predictive models. VNIR-
SWIR spectroscopy therefore provides an accurate non-destructive way of assessing rock strength and 
alteration mineralogy, even from remote sensing platforms.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The physical and mechanical properties of rocks at volcanoes 
are extremely diverse (e.g., Heap and Violay, 2021), resulting from 
their variable micro- and macrostructures. At the scale of a vol-
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cano, rocks with disparate physical and mechanical properties and 
heterogeneous structures are often found adjacent to each other 
(Manconi et al., 2007; Geshi et al., 2012; Mordensky et al., 2018a). 
This variation of structural characteristics is the result of original 
magma composition/primary mineralogy and eruptive activity, and 
can be further modified by mechanical stressing (Kendrick et al., 
2013; Schaefer et al., 2015), shearing (Reid et al., 2010), thermal 
cracking (Vinciguerra et al., 2005; Fortin et al., 2011; Vasseur and 
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Wadsworth, 2019), and alteration from magma migration and/or 
the circulation of hydrothermal fluids (Pola et al., 2012; Heap et 
al., 2019; Mordensky et al., 2019). As a result, a volcanic edifice is, 
mechanically, extremely heterogeneous on a variety of spatial and 
temporal scales.

Mechanical heterogeneities, over-steepened slopes, and topo-
graphic factors (Harnett and Heap, 2021), locally high pore fluid 
pressures (Reid, 2004; Heap et al., 2021a), hydrothermal veining 
(Mordensky et al., 2022), and alteration-induced weakening (van 
Wyk de Vries et al., 2000; Reid et al., 2001; Ball et al., 2018; 
Heap et al., 2021b; Darmawan et al., 2022) render volcanic edi-
fices unstable and prone to potentially devastating collapse. These 
collapses may be triggered by magma intrusion, gas/fluid pressure, 
seismic activity, or even heavy rainfall. As volcano instability is 
thought to be closely associated with the occurrence and archi-
tecture of magma and hydrothermal pathways (Darmawan et al., 
2018; Giampiccolo et al., 2020; Mordensky et al., 2022), under-
standing mechanical complexity forms an essential part of volcano 
monitoring. Modelling designed to assess the stability of a volcanic 
slope requires the knowledge of physical and mechanical proper-
ties of the edifice-forming rocks (Apuani et al., 2005; Schaefer et 
al., 2013; Harnett et al., 2018; Heap et al., 2021b; Kereszturi et al., 
2021; Wallace et al., 2022). One such property, uniaxial compres-
sive strength (UCS)—the maximum compressive stress a sample 
can support before failure when unidirectional stress is applied—
is a commonly used metric to assess intact rock strength (Hoek 
and Brown, 1997; Heap and Violay, 2021). Although porosity ex-
erts a first-order control on UCS, the strength of volcanic rocks 
at a given porosity can vary significantly due to microstructural 
diversity (e.g., pore, shape and distribution) (Bubeck et al., 2017; 
Griffiths et al., 2017) and variations in alteration intensity and/or 
crystal content and size (Fig. 1A-B) (Heap and Violay, 2021; Dar-
mawan et al., 2022).

Transformative change in the study of volcano slope stability 
assessments is possible if an independent variable—one that is 
quick and/or easy to measure—can be used to estimate the UCS 
and porosity of volcanic rocks. UCS experiments require specialised 
and expensive laboratory equipment. Additionally, blocks (poten-
tially subjected to sampling ethics) must be transported to the 
laboratory and samples then need to be prepared with precise 
geometries, which is a time-consuming process. In contrast, field-
based or remote sensing measurements that do not require sample 
collection, laboratory preparation, or laboratory testing could more 
rapidly estimate surficial rock physical and mechanical properties 
and their distribution. This could be used as input parameters 
in stability models in near-real-time and could therefore provide 
volcano observatories with more timely first-order stability as-
sessments. Measuring rocks in-situ additionally bypasses complex 
sample retrieval issues when assessing the mechanical heterogene-
ity of a volcano, such as highly altered or fractured material which 
by their nature are often delicate, friable, and difficult to prepare 
for laboratory analysis. Recent efforts in this direction have shown 
that rock physical and mechanical properties can be estimated us-
ing the percentage by weight (wt.%) of secondary alteration min-
erals (Heap et al., 2021b), rapid, non-invasive reflectance spec-
troscopy (Schaefer et al., 2021), and whole-rock oxygen isotopes 
(Darmawan et al., 2022; Heap et al., 2022) and cation exchange 
capacity (Revil et al., 2022).

Reflectance spectroscopy has become increasingly used to ex-
plore soil and rock types by spectral band analysis, such as in the 
visible and near-infrared (350–1000 nm; VNIR), shortwave infrared 
(1000–2500 nm; SWIR) and thermal infrared (7000–13000 nm; 
TIR) bands relevant for hydrothermal alteration mapping (Rowan 
et al., 2003; Darmawan et al., 2018; Kereszturi et al., 2018; Müller 
et al., 2021). In particular, those alteration zones including iron 
oxide, as well as argillic, phyllic, and propylitic alterations min-
2

erals, can be identified using both multispectral (Loughlin, 1991; 
Rowan et al., 2003) and hyperspectral data (Clark et al., 2003; 
Neal et al., 2018; Kereszturi et al., 2020; Thiele et al., 2022). Air-
borne, drone-based or carry-on devices can also effectively map 
physico-chemical changes of volcanic rocks and, when combined 
with effective processing algorithms (e.g., Partial Least Squares Re-
gression) that can handle collinearity and high dimensionality (e.g., 
Wold et al., 2001), they can become effective platforms for charac-
terising the mineralogy and alteration of volcanic rocks.

Here, we present the results of a study designed to estimate 
UCS and porosity of hand-samples using a VNIR–SWIR reflectance 
spectroradiometer. One of the advantages of VNIR–SWIR spec-
troscopy is that it is sensitive to both the physical (e.g., crystal 
or particle size, scattering due to surface roughness) and chemical 
(e.g., mineral composition and abundance) properties of rocks. Our 
aim is to provide a new, fast, and inexpensive method to estimate 
important physical and mechanical properties of fresh to variably 
hydrothermally altered volcanic rocks, assisting with robust vol-
canic hazard assessments.

2. Study design and method

We analysed laboratory-tested samples from a variety of vol-
canic settings, comprising Ruapehu, Ohakuri, Whakaari, and Banks 
Peninsula (New Zealand), Merapi (Indonesia), Chaos Crags (USA), 
Styrian Basin (Austria), and La Soufrière de Guadeloupe (Eastern 
Caribbean), which together represent the full spectrum of compo-
sitions from basaltic to rhyolitic (Table S1). In the database, each 
sample represents either a single core or the arithmetic means of 
multiple cores where available (Table S1). These samples have been 
previously characterised in terms of field relationships, their total 
porosity (henceforth referred to as “porosity”), and destructive UCS 
testing (Heap et al., 2015, 2017; Mordensky et al., 2018a, 2018b, 
Heap et al., 2019; Mordensky et al., 2019; Heap et al., 2020, 2021a, 
2021b; Darmawan et al., 2022; Schaefer et al., 2022). The porosity 
was measured by using a helium pycnometer (Micromeritics Accu-
Pyc II 1340; Heap et al., 2020), while the UCS was measured using 
a uniaxial load frame (Heap et al., 2020). Our samples show little 
to no isolated porosity; thus the predictions may not work well if 
the rocks contain a lot of isolated porosity.

We performed reflectance spectroscopy measurements on pow-
dered rock (n=117) and rock chip samples (n=93) using a Field-
Spec 4 Hi-Res NG spectroradiometer. While measurements were 
made on pre-collected rocks and thus were measured in the lab-
oratory, the FieldSpec 4 is fully portable and capable of making 
the same measurements in a field setting. A Hi-Brightness contact 
probe with 10 mm footprint was used. Samples were powdered 
with a tungsten carbide benchtop ring mill to reduce the alteration 
rim-effects on the spectroscopy measurements, and to homogenise 
the samples (typically grain size of ≤500 μm). The rock chip sam-
ples were broken into smaller pieces to expose internal parts using 
a hammer. Both the internal and external portions of the rock 
chips were measured to produce spectral measurements that are 
representative of the whole-rock composition. The spectral mea-
surements were collected between 350–2500 nm at 2151 spectral 
bands, with 1 nm spectral sampling and bandwidth of 1.4 nm at 
350–1000 nm, and 1.1 nm at 1001–2500 nm. The spectral read-
ings were calibrated against a white Spectralon Diffuse Reflectance 
Standard. In total, 3–5 spot measurements of each sample were 
taken to ensure a good representation of the overall mineralogy. 
The spectral measurements were splice-corrected to remove sensor 
shift artefacts, and averaged, following previous studies (Schaefer 
et al., 2021).

The reflectance spectra (Fig. S1) were continuum removed, 
which eliminates the background intensity and normalises the data 
for absorption features by fitting a convex hull to the spectral re-
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Fig. 1. (A) Uniaxial compressive strength (UCS) as a function of porosity for different volcanic rock types. Dacite, Basalt, Trachyandesite and Andesite refer to lava, while the 
rest refer to pyroclastic rocks (after Heap and Violay (2021)). (B) UCS as a function of porosity for the dataset presented in this study, coloured by the degree of alteration, 
with insets showing photographs of select sample cores. The photographs provided showcase porosity- and alteration-driven changes in UCS. The examples included in the 
alteration trend have roughly the same porosity between 0.07 and 0.14. (C) Plot of measured and empirically predicted UCS using Eq. 14 in Villeneuve and Heap (2021). 
Note the strong deviation for most data points from the 1:1 line. Equation denotes best fit of the empirical vs. measured UCS data. (D) Error histogram showing the strong 
underestimation of UCS.
flectance curve (Clark et al., 1990). The continuum removed spectra 
were further smoothed using Savitzky-Golay filtering (Savitzky and 
Golay, 1964) with a first-order polynomial on a 5 band-wide win-
dow with no derivatives. Further pre-processing included (1) elim-
ination of the first and last 10 bands to reduce instrumental and 
environmental noise; (2) log-transformation to reduce skewness 
for both X and Y data; and (3) data standardisation by center-
ing and scaling to unit variance for predictor variables X only (e.g., 
spectral reflectance data).

In this work, we applied the Non-linear Iterative Partial Least 
Squares (PLSR) algorithm, implemented in sklearn package (Pe-
dregosa et al., 2011), for predicting porosity and UCS indepen-
dently (Fig. S2A). PLSR is an effective method to maximise the 
covariance structures between two matrices, X and Y , through 
orthogonal matrix decomposition (Wold et al., 2001). PLSR is an 
appropriate method since moderate to strong correlations can be 
inferred between the individual spectral bands (e.g., sensitive to 
3

primary and secondary mineralogy) and rock mechanical proper-
ties, because hydrothermal alteration manifest as secondary min-
eral precipitation and dissolution affects rock strength and stiff-
ness (Schaefer et al., 2021). Furthermore, PLSR can handle strongly 
collinear and noisy data where the predictor-variables often out-
number the number of samples, a common case for spectroscopy 
data with thousands of bands. PLSR transforms the X matrix to 
a user-defined lower dimensional space but maintains the data 
structure while maximizing the correlation between the X and Y
matrices. The models were validated using repeated K-fold cross-
validation (CV), a procedure used to assess how the results of 
a statistical analysis will generalize to an independent data set, 
where k=5 with 100 repeats (Fig. S2). The k=5 ensures adequate 
number of validation samples at each split (ca. 20–25 samples). 
The number of PLS components for each model was selected by 
fitting models with up to 20 components iteratively and measuring 
the Mean Absolute Percentage Error (MAPE). The models with the 
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lowest MAPE were selected for predicting rock mechanical proper-
ties.

Nested prediction models were also trialled to predict UCS 
only using a combination of spectral and either PLSR-predicted 
or laboratory-measured porosity data as X (Fig. S2B). The spec-
tral data were transformed using Principal Component Analysis 
(PCA); PCA was preferred to avoid data leaking and overfitting 
(Kaufman et al., 2011) since it is an unsupervised method (i.e., re-
quires no Y variables). The first 6–9 principal components were 
used, corresponding to 94–96% of the variance in the spectral data 
(Fig. S2), selected on a trial-and-error basis. The final UCS pre-
dictions were made with a Support Vector Regression (SVR). The 
Radial Basis Function kernel was used with a constant epsilon of 
0.1. The gamma (controls model complexity) and C (regularization 
term to fight over-fitting) parameters were estimated using a regu-
lar grid-search (C: 1, 10, 20, 50, 75, 100 and gamma: 0.0001, 0.001, 
0.01, 0.1, 1) with repeated K-fold cross-validation (k=5, repeat =
100). The C and gamma parameters with the lowest MAPE were 
used (Fig. S2).

All models were validated using R2 and MAPE. R2 is a unitless 
error metric, with values spanning from 0 to 1, where 1 means 
a perfect 1:1 match between predicted and measured values. R2

can have negative values, indicating when the predictions do not 
follow any trend of the measured data. MAPE has been chosen to 
quantify the average error in percentages, since prediction errors 
are expected to change by magnitude of the input data. The values 
closer to zero are better.

For each PLSR model, the locations of the important spectral 
bands were calculated using the Variable Influence on Projection 
(VIP) method (Wold et al., 2001), with values ranging from 0 to 
infinite. The average squared values of VIP scores for each band 
equals 1, thus values above this threshold are considered to con-
tribute more to the prediction (Chong and Jun, 2005). However, 
the actual threshold depends on the number of important and 
unimportant predictor variables, magnitude of correlation between 
predictors, signal to noise ratio and the structure of the regression 
coefficients (Chong and Jun, 2005). Thus, we estimated this level 
to be at 1.2 in our case. Spectral bands with VIP score >1.2 are 
therefore of particular interest to understand the causality of the 
PLSR model prediction and to link the prediction with underlying 
physical and chemical processes.

3. Porosity and UCS predictions for volcanic rocks

PLSR models for porosity and UCS were developed with PLS 
components between 5–8, with fewer components for predictions 
based on the powdered samples. Conceptually, the powder-based 
predictions should perform better than the rock-based models, due 
to a more homogeneous mixing of primary and alteration mineral-
ogy and grain size. However, our rock-based PLSR models for both 
UCS and porosity perform, within the same range as models devel-
oped on powdered samples (R2 ∼0.43–0.49 and MAPE ∼0.20–0.40; 
Table 1), although with more complex underlying prediction mod-
els (e.g., more PLS components; Table 1).

The PLSR models show a heteroskedasticity behaviours, with 
large scatter towards larger UCS and porosity values (Figs. 2 and 
3). The PLSR predictions for UCS (R2 = 0.43, MAPE=0.20; Table 1) 
yield at least similar accuracy metrics as the empirically predicted 
UCS using laboratory measured porosity (R2 = 0.38, MAPE=0.53; 
Table 1 and Fig. 1C); however, with a significant reduction in 
MAPE. Interestingly, the spectroscopy-based PLSR predictions for 
both porosity (Fig. 2) and UCS (Fig. 3) can further ‘correct’ for 
the underestimation observed in empirically calibrated models 
(Figs. 1D and 3D). Thus, our results confirm that VNIR–SWIR re-
flectance can be a valuable addition to physical and rock mechani-
cal testing.
4

The complex ‘nested’ models for UCS using both spectroscopy 
and porosity performed better than single PLSR models using spec-
troscopy only, regardless of whether porosity was predicted via 
spectroscopy (‘low accuracy’) or measured in the laboratory (‘high 
accuracy’) (Fig. 4 and Table 1). This further reinforces the impor-
tant role that porosity plays in governing the UCS of volcanic rocks 
(e.g., Heap and Violay, 2021; Darmawan et al., 2022). The best 
performing UCS model is predicted via PCA-SVR with measured 
porosity data, which increased the predictions as high as R2 = 0.82
(Table 1). This also vastly improves MAPE from 0.20 to 0.11, how-
ever, it also increases the model complexity (e.g., number of input 
variables).

4. Discussion

4.1. Underlying geological processes influencing UCS and porosity

To fingerprint geological processes impacting our UCS and 
porosity predictions, VIP scores have been calculated for all PLSR 
models developed on the full dataset. The VIP scores plotted as 
a function of wavelength can highlight spectral regions that con-
tribute more than the average to the prediction (Fig. 5). UCS and 
porosity are well correlated (e.g., Fig. 1B), and both UCS and poros-
ity models have very similar VIP curves, while differences only ex-
ist between the rock chip and rock powder-based models (Figs. 5A 
and B). The position of VIP >1.2 corresponds broadly to the ab-
sorption features of primary and secondary minerals (Fig. 5C).

The largest difference in VIP score between rock and powered 
rock models appears at 360–438 and 532–597 nm as well as at 
2333–2387 nm (Figs. 5A and B). The former region, corresponding 
to electronic transition in Fe-rich minerals (e.g., Hunt, 1977), shows 
importance only for rock-based models, while the latter region be-
comes important for powder-based predictions. The absorption at 
360–438 and 532–597 nm with a broad minor peak (VIP < 1.2) 
at ca. 1000 nm can be linked to goethite/hematite/ferrihydrite, and 
some primary minerals, such as olivine and pyroxenes, due to Fe 
in their crystal lattice (Bishop et al., 2017). Based on X-ray powder 
diffraction, Scanning Electron Microscopy with Energy Dispersive 
X-ray spectroscopy, and reflected light spectroscopy, goethite and 
hematite occur abundantly in the analysed samples as alteration 
rims and as oxidation products from Fe-bearing minerals (e.g., 
pyrite) (Heap et al., 2017; Mordensky et al., 2019; Kereszturi et 
al., 2020; Heap et al., 2021a; Schaefer et al., 2022). Therefore, we 
interpret these minerals as the main mineral phases that drive the 
UCS and porosity predictions within the VNIR region. Furthermore, 
the lack of VIP >1.2 in the powder models also suggest that alter-
ation rims and rock texture carry diagnostic spectral information 
that better reflect rock strength and porosity, which is lost when 
testing powdered samples.

In contrast, absorption features at 2332–2386 nm and a mi-
nor peak at 2296–2316 nm in volcanic rock are important for 
powder-based predictions only. This region is characteristic of pri-
mary mineralogy (e.g., plagioclase series at 2332–2386 nm and 
pyroxenes at 2296–2316 nm), and alteration minerals, arising from 
propylitic alteration (e.g., epidote, chlorite, K-feldspar or white 
mica) (Neal et al., 2018) and kaolinite with Fe- and/or Mg impuri-
ties (Madejová et al., 2017). None of the samples contain propylitic 
alteration minerals, although, some samples from Ohakuri (n=5) 
and Chaos Crags (n=5) have been subject to silicification and K-
feldspar alteration and contain kaolinite and smectites (typically 
≤6 wt.%; (Heap et al., 2020, 2021a). Thus, mostly primary mineral-
ogy should be responsible for this zone of VIP >1.2 in this dataset, 
which has been enhanced by reducing the vol.% of rim alteration 
and increasing exposure of primary minerals through powdering.

The remainder of the high VIP scores occur in the SWIR at 
1405–1455, 1889–2014, 2179–2272, and 2460–2490 nm (Fig. 5), 
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Table 1
Model performance metrics for uniaxial compressive strength (UCS) and porosity predictions. Abbreviations: comp. – components in 
the models, PLS – Partial Least Squares or latent variables, PCA – Principal Component Analysis, SVR – Support Vector Regression, 
R2 – R2 coefficient of determination, MAPE – Mean Absolute Percentage Error, K-Fold CV – K-fold Cross Validation.

input parameters model samples comp. R2 MAPE (fraction)

rock spectra porosity (fraction) PLSR 88 8 PLS 0.44 0.29
UCS (MPa) Empirical model 85 - 0.38 0.53

PLSR 90 8 PLS 0.43 0.20
PCA-SVR - porPred 85 9 PLS and 7 PCA 0.47 0.20
PCA-SVR - porMeas 6 PCA 0.82 0.11

powder spectra porosity (fraction) PLSR Kfold 112 5 PLS 0.43 0.40
UCS (MPa) PLSR Kfold 113 5 PLS 0.49 0.31

Fig. 2. Porosity predictions with Partial Least Squares Regression (PLSR) using rock powder (A-B) and rock chips (C-D). A and C show the measured versus predicted values, 
while B and D display the difference between the predicted and measured porosity. The plots shown here are from the K-fold cross validation (K-fold CV). Both B and D 
show a moderate underestimation of porosity using spectroscopy. The error bars show 1 standard deviation from the repeated (n=100) K-fold CV.
5
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Fig. 3. Uniaxial compressive strength (UCS) prediction with Partial Least Squares Regression (PLSR) using rock powder (A-B) and rock chips (C-D). A and C show the measured 
versus predicted values, while B and D display the difference between the predicted and measured porosity. The plots shown here are from the K-fold cross validation (K-fold 
CV). Note D shows an improved prediction with less underestimation of UCS. The error bars show 1 standard deviation from the repeated (n=100) K-fold CV.
which is consistent with the stretching and bending of molecu-
lar OH, H2O, SO4, and M-OH, where M is a metal cation, such as 
Al, Mg, Fe2+, and Fe3+ (Madejová et al., 2017). Our samples have 
typically intermediate to advanced argillic mineral associations of 
varying amounts of kaolinite, smectite, alunite, quartz polymorphs, 
gypsum/anhydrite, sulphur, barite, pyrite, and Fe-oxides (Heap et 
al., 2017; Mordensky et al., 2019; Kereszturi et al., 2020; Heap 
et al., 2021b; Darmawan et al., 2022), which can produce the 
observed absorption features at those VIP >1.2 regions (Fig. 5). 
Advanced argillic alteration can exert a strong control on both 
porosity and UCS (Pola et al., 2012; Frolova et al., 2014; Heap et 
al., 2021b) through the dissolution and precipitation of secondary 
minerals (Heap et al., 2015; Kanakiya et al., 2021). The presented 
UCS and porosity prediction model, therefore, adaptively corre-
sponds to this complex physical and chemical evolution of volcanic 
rocks subject to hydrothermal alteration, through the sensitivity of 
6

the VNIR-SWIR data. Lastly, the PLSR predictions using VNIR-SWIR 
spectral data can better explain the UCS changes than porosity-
based empirical models with MAPE of 0.20 and 0.53, respectively.

Besides the most prominent absorption feature around
1889–2014 nm due to molecular water (e.g., interlayer crystalline 
water), all other VIPs >1.2 are located on the margin of ab-
sorption features (e.g., 360–438, 532–597, 1405–1455, 2179–2272, 
2332–2386, and 2460–2490 nm) of alteration minerals typical of 
advanced argillic alteration (black arrows in Fig. 5C). The exact po-
sition of an absorption feature (i.e., wavelength of the deepest fea-
ture) can be diagnostic to the sample mineralogy. However, the po-
sition is also sensitive to any grain size, occurrence (e.g., intimate 
and granularly mixed minerals), crystal lattice orientation, and 
metal cation substitution (Bishop et al., 2002; Clark et al., 2003), 
resulting in spectral shifts. Hence, the association of VIPs with 
absorption features highlights the importance of alteration min-
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Fig. 4. Nested models for uniaxial compressive strength (UCS) prediction using Partial Least Squares Regression-predicted porosity (A-B) and laboratory-measured porosity 
(C-D). The error bars show 1 standard deviation from the repeated (n=100) K-fold cross validation.
eralogy and their interlayer molecular water and metal cation 
substitutions. The shape of the reflectance curve (e.g., steepness 
and secondary absorption features) is thus more informative about 
the mechanical behaviour of volcanic rocks than the presence or 
absence of a specific alteration mineral phase alone (e.g., kaolin-
ite, alunite). The proposed PLSR prediction models can successfully 
generalise based on this systematic behaviour to estimate UCS and 
porosity.

4.2. Model complexity, variability, and bias of UCS

Prediction models for UCS using machine learning and deep 
learning approaches have widely been developed for travertines 
(Barzegar et al., 2016), sandstones (Jahed Armaghani et al., 2016a), 
and granite (Jahed Armaghani et al., 2016b). These models often 
reach R2 of 0.65–0.95 and a mean absolute error of 1–5 MPa, out-
performing our models. However, previous models consider either 
7

monomineralic rocks, rocks with a low mineralogical diversity, or 
rocks with a narrower range of porosity. Furthermore, the sam-
ples in these earlier studies are unaltered and are predicted using 
‘expensive’ and highly correlated predictor variables (e.g., crystal 
content, point load index, Schmidt rebound hardness, Shore hard-
ness, elastic wave velocity, density, permeability). In contrast, our 
database of volcanic rocks is characterised by heterogeneous pri-
mary textures and mineral assemblages with variable crystallini-
ties, complex eruption/alteration histories, and variable and com-
plex pore structure and microfractures. Despite these interacting 
properties, which increase model complexity for predicting UCS, 
our models show the potential to capture complex UCS changes 
(R2 = 0.43 and MAPE=0.20). Additionally, our models can cap-
ture these complex UCS relationships independently of whether 
the change is controlled by porosity or (hydrothermal) alteration.

Each spectral band can only be moderately correlated with the 
mechanical and physical properties of volcanic rocks (Schaefer et 
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Fig. 5. Variable Influence on Projection (VIP) plots with important spectral regions (grey areas) with VIP >1.2 (black horizontal line on A and B) for uniaxial compressive 
strength (UCS) and porosity models (A and B). The blue line indicates rock samples, and the red line indicates powder samples. Continuum-removed VNIR–SWIR reflectance 
spectra are shown for typical alteration minerals for advanced argillic alteration (C). The grey areas correspond to various vibrational features due to stretching and/or bending 
(abbreviations: cation sub. – cation substitution; plag. - plagioclase; px. - pyroxene). Black arrows show when VIP >1.2 occurs at the shoulder of the light absorption feature. 
Data in (C) is from USGS spectral Library (Kokaly et al., 2017), where colours correspond to different minerals: brown –‘AluniteHS295.4B’, purple –‘GypsumSU2202’, green 
–‘KaoliniteCM9’, pink –‘MontmorilloniteCM26’, black –‘GoethiteWS222CoarseGr’. (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)
al., 2021). However, multivariate statistical models can maximise 
the predictive power of VNIR–SWIR reflectance. These models can 
adequately capture the variations in physical and chemical proper-
ties between samples. Since the underlying model complexity can 
be generalised to predict rock mechanical properties on samples 
that have not been used in the model training (i.e., “unseen” sam-
ples), the resultant UCS prediction models can effectively decouple 
the UCS prediction error from porosity and hydrothermal alter-
ation processes. This feature can help to resolve the complexity 
and intimate relationship between these common rock mechanical 
attributes in volcanic systems.

The UCS predictions are subject to uncertainty due to the sam-
pling bias of the database presented here, which is somewhat 
imbalanced (e.g., most samples are from andesitic composite volca-
noes, which, tend to host argillic alteration). Consequently, we pre-
fer repeated K-fold CV to validate the prediction models which can 
return sample UCS, and porosity estimates within each fold and 
each repetition. Any large deviations can then highlight how ‘easy’ 
it is to predict UCS and porosity using VNIR–SWIR reflectance data 
with reference to the training data. To visualise the variability of 
our predictions we selected two samples from the Ohakuri ign-
imbrite (Fig. 6) and compared them with individual UCS experi-
ments (Heap et al., 2020).

One example, o_OI2B, has been predicted with a small bias by 
PLSR using only spectral data but, when porosity was included, the 
PCA-SVR models accurately predicted both the mean and the range 
(n=6) of the individual UCS experiment results (Fig. 6A–C). Sam-
ple o_OI2B can therefore show the importance of (initial) porosity 
on UCS, given that this sample is only a moderately altered ig-
nimbrite with only 6 wt.% of phyllosilicates and zeolites (Heap 
8

et al., 2020). It is also worth noting that most UCS predictions 
are within the range of the laboratory measurements. Hence, our 
prediction models can be used to estimate the natural variability 
of UCS within volcanic rocks without extra sampling efforts (e.g., 
field-based surveys), if the unseen rock sample matches spectrally 
and mineralogically with the database presented in this study.

An extreme case, o_OI2A, shows the narrower variability of UCS 
when porosity is included, but at the expense of bias (Fig. 6D–F). 
Sample o_OI2A is a highly altered ignimbrite, which contains 53 
and 47 wt.% of K-feldspar (e.g., adularia) and quartz, respectively 
(Heap et al., 2020). Furthermore, its hydrothermal alteration has 
demonstrably increased its UCS by replacing primary mineralogy 
with stronger quartz polymorphs (Heap et al., 2020). In this case, 
UCS estimates from each cross-validation folds and repeats match 
reasonably well with the laboratory UCS experiments (n=13) for 
the PLSR model (Fig. 6D). However, including porosity has led to 
an underestimation of the UCS and increasingly biased estimates 
(Fig. 6E and F). This can be explained by the lack of characteris-
tic absorption features for quartz and adularia in the VNIR-SWIR. 
Lithologies with silicification should therefore be treated carefully 
when estimating their UCS using VNIR-SWIR reflectance spec-
troscopy.

4.3. Implications for (volcano) slope stability analysis

The combination of deposit emplacement and alteration history 
in volcanic environments can create a heterogeneous rock mass in 
terms of the distribution of rock physical and mechanical proper-
ties and fractures. In any slope stability assessment, sampling can 
often be subjected to bias and problems associated with field ac-
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Fig. 6. Distribution of uniaxial compressive strength (UCS) estimates from each fold and repeats of cross-validation showing matching variability with laboratory UCS experi-
ments. Two samples from the Ohakuri ignimbrite are shown: o_OI2B (upper row) and o_OI2A (lower row) and photographs of the samples are provided on panels A and D, 
respectively. The laboratory data for UCS and porosity are from Heap et al. (2020). Acronyms: PLSR – Partial Least Squares Regression; PCA – Principal Component Analysis, 
SVR – Support Vector Regression.
cessibility. As a result, laboratory studies often fail to resolve the 
immense natural heterogeneity that characterises volcanic edifices. 
Our prediction models using spectroscopic techniques can poten-
tially overcome such a challenge since the models can also be 
applied to mechanically untested samples that share similar spec-
tral and mineralogical characteristics to the dataset used in the 
training process.

Applying our PLSR prediction models using the full dataset with 
seven volcanoes reveals the spatial variability of UCS and porosity. 
As a demonstration, we have applied PLSR-based models to a nat-
ural outcrop within the 166–80 ky-old Wahianoa Formation (Gam-
ble et al., 2003) on Mt Ruapehu, New Zealand (Fig. 7A). Only one 
sample, r_rh38, corresponding to this lithological unit has been 
sampled for mechanical testing, returning a UCS of 81 MPa and 
a porosity of 0.2 (Schaefer et al., 2022), while other samples have 
been collected for spectral analysis. Our model predictions of both 
UCS and porosity scatter around the UCS and porosity of the me-
chanically tested sample r_rh38 (Fig. 7A). Even though our models 
on these untested samples are only validated semi-quantitatively, 
the untested samples originate from a spectrally similar population 
to the training data (Fig. 7B). Therefore, the models can provide a 
new and powerful tool, providing strength estimates of locations 
on volcanoes for which laboratory testing is not available or feasi-
ble. Furthermore, the spectroscopy approach can be used to derive 
the distribution of UCS and porosity between sampling sites, to 
upscale sample measurements to the rock mass scale (e.g., comple-
menting mi and Geological Strength Index - GSI), to resolve their 
spatial distribution, and, ultimately, to estimate critical rock fail-
ure parameters on a stratigraphical basis (e.g., Fig. 7A). Thus, in 
addition to being quick and non-destructive, we emphasize that 
9

our VNIR–SWIR spectroscopy approach can also provide a solution 
for gathering information on the heterogeneity of volcanic systems 
regardless of terrain or compositional, lithological, and alteration 
diversity.

Our UCS predictions on rock chips outperform predictions on 
rock powders, with only a moderate increase in model complexity 
(e.g., number of PLS components; Table 1). This highlights that hy-
drothermal and weathering-related alteration and its spatial vari-
ability within a sample, captured by VNIR–SWIR reflectance, can 
contribute positively to UCS predictions. This realisation presents 
a great opportunity for VNIR–SWIR spectroscopy to be used on 
in-situ rock surfaces without the need for extensive sample pre-
processing and contributes to new applications to map physi-
cal and mechanical inhomogeneities from macroscopic to edifice 
length scales. The models produced herein use spectral measure-
ments that represent whole-rock composition (internal and exter-
nal portions). Because remotely sensed spectral imaging via aerial 
or satellite data can only capture the external portions of rocks or 
rock masses, model calibration may be required for upscaling ef-
forts. However, the increasing availability of hyperspectral remote 
sensing data, from satellites (e.g., PRISMA), airborne (e.g., AVIRIS), 
or ground-based platforms (Kereszturi et al., 2018; Cogliati et al., 
2021; Thiele et al., 2022), is opening new avenues for the mapping 
and analysis of alteration and volcano stability at volcanoes world-
wide. Furthermore, remote sensing methods are important as par-
tially lithified pyroclastic rocks (e.g., breccia-horizons and tephra) 
are often complicated and difficult to measure accurately in the 
laboratory (Schaefer et al., 2018) and are also subject to eruption-
related porosity changes and thermal cracking (Vinciguerra et al., 
2005; Heap and Violay, 2021; Kanakiya et al., 2021). Bridging 



G. Kereszturi, M. Heap, L.N. Schaefer et al. Earth and Planetary Science Letters 602 (2023) 117929

Fig. 7. Application of uniaxial compressive strength (UCS) and porosity models to a natural outcrop within the Wahianoa formation on Mt Ruapehu (top left inset shows a 
map of New Zealand with the location of Mt Ruapehu indicated). (A) Locations of samples collected for deriving spectroscopy-derived UCS and porosity (por) estimates (in 
black) around an intrusion surrounded by variably altered brecciated and coherent lava rocks. The sample locations are approximated. UCS and porosity of sample, r_rh38 (in 
red) were tested in the laboratory. (B) Plot showing the Principal Component 1 and 2 (PC1 and PC2, respectively) for the training data and the “unseen” samples that were 
predicted using the full dataset, including all volcanoes. Samples shown in (A) are labelled.
physio/mechanical predictions using remote sensing can be further 
developed in the future to improve model input parameters for 
slope stability assessments of volcanoes.

5. Conclusions

Hydrothermal alteration can both precipitate secondary min-
erals which occupy pore space and reduce porosity and increase 
overall porosity by dissolution (del Potro and Hürlimann, 2009; 
Heap et al., 2021b; Kanakiya et al., 2021), complicating UCS pre-
dictions using only porosity. Our results and models offer an im-
proved prediction by combining porosity and spectroscopy data. 
Additionally, our models can distinguish between changes in UCS 
that result from porosity versus changes that result from hy-
drothermal alteration. This is due to the underlying sensitivity of 
the VNIR–SWIR spectroscopy via absorption features specific to al-
teration minerals.

Rock testing is critical to understanding the mechanical and 
physio-chemical characteristics of rocks (i.e., how a rock reacts 
when stressed). Their behaviour controls volcanic processes rang-
ing from outgassing via hydrothermal fluid circulation to volcano 
deformation (Heap and Violay, 2021). However, laboratory rock 
testing is expensive, time-consuming, destructive and cannot be 
carried out in the field. Our new spectroscopy-only method can 
overcome these limitations by providing rapid remote sensing in-
sights into the heterogeneity of mechanical behaviour of volcanic 
rocks. The presented approach can be used as a ‘pre-screening’ tool 
to optimize sampling campaigns and be potentially repurposed to 
upscale mechanical testing results (e.g., from samples/cores to rock 
mass) using spectral information from ground, airborne and satel-
lite sensors.

The spectral-geotechnical database compiled here is limited, 
even though it contains samples representing a wide range of com-
positions and hydrothermal alteration styles. Although our results 
are consistent, the prediction models can be improved by bench-
10
marking a range of prediction models, including adaptive boost-
ing (e.g., Feng et al., 2020), or complementing VNIR-SWIR spec-
troscopy with portable X-Ray Fluorescence or Mid to Longwave 
Infrared spectroscopy (e.g., Shrestha et al., 2022). Furthermore, the 
database should be continually improved as and when new data 
become available, which will improve UCS and porosity predictions 
across rock types and compositional ranges. Developing a similar 
method to predict the Hoek-Brown parameter mi would provide 
full failure criteria for intact rocks, which can be combined with 
remotely-obtained GSI values to numerically model the stability 
of rock masses. By resolving the heterogeneity of volcanic rocks, 
the statistically sound UCS and porosity predictions offered by the 
VNIR–SWIR spectroscopy approach, can resolve the heterogeneity 
of volcanic rock masses, improving near-surface slope failure as-
sessments in volcanic environments.
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