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Red Blood Cells flowing in a microchannel undergo dispersion in the flow direction due to the non-
uniform velocity profile while transverse migration due to cell-wall interactions tends to focus them
along the center line. This results in a dispersion of RBC transit times through a capillary that is
directly related to their transverse migration properties. By analogy with the Taylor-Aris problem,
we present an experimental method to characterise this phenomenon by injecting pulses of red blood
cells and measuring the evolution of their length along the channel, and varying mechanical parame-
ters such as RBC deformability and fluid viscosity. A direct comparison of experimental results with
a model that incorporates longitudinal advection and transverse migration shows that this principle
provides through a simple dispersion measurement an evaluation of migration characteristics that
are directly connected to cell mechanical properties.

PACS numbers: 47.57.E-, 87.19.U-, 47.55.Kf, 87.85.gf

I. INTRODUCTION

Blood is a typical example of a suspension of de-
formable particles whose flow is intimately governed by
the mechanics of Red Blood Cells (RBCs), which make
up about 45% of blood volume. Their deformability is
responsible for specific dynamic behaviors in flow that
induce significant di↵erences in hydrodynamic proper-
ties compared to generic suspensions of rigid particles
and control the structure and rheology of the suspension
in confined channel flow. For instance, RBCs, vesicles
or elastic capsules experience migration forces that usu-
ally drive them away from walls towards the center of
the channel [1–7] while hydrodynamic interactions and
pair-collisions between particles lead to transverse shear-
induced di↵usion [8–10], a general phenomenon that
also exists for droplets [11–13]. Both phenomena lead
to transverse motions of particles in the non-uniform,
Poiseuille-like velocity field of the channel flow which,
at steady state leads to an inhomogeneous distribution
of particles or cells, with consequences on the e↵ective
rheology [14–17] but also on mixing and dispersion [18],
both in the transverse and axial directions.

Indeed, a well-known phenomenon in thin channel or
tube flow of solutions or suspensions is the axial disper-
sion of molecules or particles due to the non-uniform ve-
locity distribution. In the case of molecular solutions or
suspensions of Brownian particles for which thermal dif-
fusion is the major mechanism of exploration of stream-
lines by particles, this phenomenon is known as Taylor-
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§ Formerly at Université Grenoble Alpes, CNRS, LIPhy, F-38000
Grenoble, France

Aris dispersion [19, 20]. In this context, an e↵ective dif-
fusion coe�cient in the axial direction can be derived by
expressing the advection-di↵usion equation in terms of
small deviations from cross-sectionnaly averaged quanti-
ties. It depends on the Peclet number. Using a similar
approach, Gri�ths & Stone derived the axial di↵usion
properties for colloidal suspensions of particles that ex-
perience shear-induced di↵usion in addition to Brownian
di↵usion [21] and showed that the process becomes es-
sentially nonlinear and slower than pure Brownian-based
Taylor-Aris dispersion.

A direct consequence of the axial dispersion of particles
is a dispersion of their transit times through a channel
or channel network: particles entering the channel at the
same time, e.g. by injecting a pulse at the inlet, may
exit at very di↵erent times due to the spreading of the
pulse. This is a well known limitation to the resolution
of chromatographic techniques [22]. In blood microcir-
culation, the axial dispersion of RBCs leads to a disper-
sion of transit times through an organ, which may have
an influence on oxygen release. This phenomenon was
studied in a pioneering study in-vivo by Lipowsky [23]
who showed that both the average transit time of a pulse
of fluorescently labeled RBCs and the dispersion of this
pulse was strongly influenced by the mechanical prop-
erties of RBCs. More specifically, artificially rigidified
cells had significantly longer and more dispersed transit
times. While part of the dispersion in capillary networks
is inherent to the network’s complex structure in which
multiple paths are possible between the inlet and outlet,
its dependence on cell rigidity suggests that axial dis-
persion in each individual capillary influences the overall
behavior.

In contrast with the Taylor-Aris dispersion or the axial
dispersion of colloidal suspensions in which the sole trans-
verse motion mechanism is di↵usive, whether it is Brow-
nian or nonlinear, the transport of deformable particles
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FIG. 1. Schematic view of the mechanisms leading to longitudinal di↵usion for a pulse of non-Brownian particles in interactions
with wall and with neighbors. The top panel shows the observed elongation of the pulse at di↵erent positions xi in the no-shear
plane xy while the bottom panel illustrates the underlying mechanism in the plane of shear. Cells that are initially centered
are the fastest ones at the front of the pulse (moving at velocity u0) while those starting close to walls are the slowest ones and
will constitute the tail of the distribution. As they are displaced in the z direction due to transverse migration (yellow arrows)
and possibly cell-cell interactions (purple arrows), a complex evolution of the time-lag between the front and the back of the
pulse takes place along the channel until a stationary distribution of length X1 is reached in the asymptotic regime. Note that
in the case of polydisperse suspensions, segregation (both transverse and axial) may take place due to these dynamics.

in tube or channel flow is strongly influenced by migra-
tion towards the centerline, which tends to decrease the
cross-sectional dispersion of cells over time. This con-
vective e↵ect decreases the axial dispersion rate as the
centering of cells takes place (see Fig. 1). As lateral mi-
gration increases with parameters such as deformability
or size of the particles [4, 5, 7], it is expected that cells
having a faster lateral migration velocity in tube flow
will undergo less axial dispersion, in a manner similar to
changes in transit times in more complex networks [23].

In this work, we made an experimental study of the
axial dispersion of pulses of RBCs in a straight flat chan-
nel (2D Poiseuille flow) by varying mechanical param-
eters such as the deformability of these cells through
population selection by density gradient separation and
the viscosity of the suspending medium. The dispersion
rates are related to previously established lateral migra-
tion laws of individual cells and an asymptotic theoreti-
cal model is proposed in which the evolution of the pulse
length is explicitly related to RBC migration parameters
and channel thickness. We show that this simple, macro-
scopic measurement of the axial dispersion of a pulse can
be used to derive microscopic migration coe�cients and
is a marker of RBC deformability in a blood sample. Fi-
nally, we present results on the combined e↵ect of axial
dispersion in straight channels and the role of diverging
and converging bifurcations in a simple channel network
that provides insight on the mechanisms leading to the
dispersion of transit times in complex microvascular net-
works.

II. EXPERIMENTAL SET-UP: THE
MICROFLUIDIC COMMUTER

The experiment consists in generating pulses of a red
blood cell suspension at the entrance of a channel and
studying their evolution along the channel. In prac-
tice, this set-up is based on a standard microfluidics chip
whose function and control are detailed below, made of
a slab of PDMS moulded on a SU8 template using stan-
dard soft lithography techniques and bonded to a glass
slide after plasma treatment.

The initial dispersion of a pulse is rather fast and of or-
der the velocity di↵erence between fast RBCs at the cen-
ter of the channel and slow ones near walls. However the
long term evolution of the dispersion rate is governed by
the migration of RBCs across streamlines, from the walls
to the center line. As shown in [7], this migration is slow
compared to axial velocities and the distance required for
RBC centering (in the ideal case of dilute suspensions)
can be of order 1000 times the channel thickness. A long
channel is therefore needed to study the time evolution of
a pulse. As a consequence, tracking a single pulse along
the channel while keeping a good local resolution is an im-
possible task due to its rapid stretching and convection.
We instead chose to generate periodic pulses through a
stable and repeatable process in order to study their pro-
file at di↵erent axial positions along the channel.

Usually, inclusions of a fluid inside another one (e.g.
bubbles or drops) are produced by microfluidic flow-
focusing devices. The non-miscibility of the two fluids
and the existence of a surface tension are the key in-
gredients that allow the spontaneous generation of well
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FIG. 2. Working principle of the microfluidic commuter. At
the bottom inlet, red blood cell suspension is injected at a con-
stant flow rateQ, while the pressure at the top inlet connected
to a reservoir of suspending medium is varied periodically. In
(a), the pressure is high enough so that the suspending fluid
enters into the main channel. Lowering the pressure as in (b)
let the red blood cells enter into the commuter, and in par-
ticular in the main channel, this creating the forefront of the
pulse. In (c) increasing back the inlet pressure allows to end
this pulse.

separated and periodic inclusions. Here, the separation
process between the suspension and the particle-free fluid
requires to actively control the alternation of pure sus-
pending fluid and RBC suspension. In practice, a direct
control of pulse production through a flow focusing sys-
tem or T-junction (as is done for bubbles or drops) is not
possible through direct flow rate control, due to the lag
times of flow-controlled microfluidics, and our attempts
to control the experiment only through imposed pres-
sures at the inlets have revealed that stabilization is not
easily achieved.

In order to retain the fast response times of pressure
control, we opted for a mixed approach, where the total
flux of red blood cells in the microfluidic chip is fixed and
imposed by a syringe pump through a secondary channel
while part of it is periodically redirected to the entrance
of the main channel thanks to pressure pulses imposed
by a pressure controller. This solution as the advantage

FIG. 3. Sequence of temporal profiles of a series of pulses,
right after the commuter.

of being simple in its design and manufacturing process,
in contrast with more complex valve systems [24, 25].
More precisely, as sketched in Fig. 2, a fixed flux Q of

RBC suspension is imposed at one inlet of a H-shaped
commuter. The other inlet is connected to a reservoir
of suspending fluid whose pressure is controlled. For low
enough pressures, the RBC suspension is diverted into
the main channel. For larger pressures, it flows through
the secondary (parallel) channel leading to a waste outlet,
while the suspending fluid enters the main channel, thus
separating the previous pulse from the next one.
The pressures and flow rates are set such that the ini-

tial length of pulses is around 5 mm, with maximal cell
velocity of 1.5 mm.s�1. This results in pulses of initial
temporal length of a few seconds, separated by intervals
of around 30 s, as seen in Fig. 3 which illustrates the
repeatability of the pulse generation process.
The main channel is a long serpentine channel of rect-

angular cross section 2w⇥ 2h = 350⇥ 33 µm (except for
the data of Fig. 7 where 2h = 40µm). The x coordinate
corresponds to the flow direction while the cross-section
is defined by �w < y < w and �h < z < h. In prac-
tice, as w � h there is almost no shear in the y direction
and the flow is quasi 2D. We therefore assume there is
no significant cell motion nor velocity variation in the y

direction. The focal plane of the bright field microscope
is Oxy. The RBC velocities and concentrations are eval-
uated in the �w/2  y  w/2 area. At each x position
along the main channel, 8 to 10 pulses are considered in
order to average out the fluctuations of pulses; for each
of them successive pictures are taken at 30 fps thanks
to a monochrome camera mounted on a IX71 Olympus
inverted microscope with a motorized stage. A blue filter
in the illumination beam (434 nm ±17 nm) correspond-
ing approximately to the absorption peak of hemoglobin
at 410 nm [26] is used to enhance the contrast. For each
individual picture, taken at time t, the mean volume frac-
tion and the mean maximal velocity are computed on the
whole field of view (of length 470 µm in the x direction).
The local volume fraction of RBCs � is determined fol-

lowing the Beer-Lambert law of absorption, which is gen-
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erally considered to be relevant in micrometric channels
up to hematocrits (RBC volume fraction) of around 20 %
[8, 27, 28]. The absorption coe�cient was determined by
a calibration with images at low volume fraction, where
a direct measurement can be made by counting individ-
ual cells. The reference intensity, assumed to be that
with no cells, is taken by considering the minimal inten-
sity among all pixels in the channel, which we checked
to be accurate enough in the considered range of volume
fractions.

In addition, routines written in Python with the
OpenCV library [29] determines the centre of mass of
each cell. Thanks to an acquisition frequency of 54 fps,
the displacement between two frames of RBCs flowing at
maximum at 1.5 mm/s can be determined by a tracking
routine. We denote by u0 the maximal velocity of the
RBCs.

Blood samples are provided by the Établissement
Franais du Sang (EFS Rhne-Alpes) from healthy donors.
RBCs were separated by centrifugation after being
washed three times in a solution of phosphate-bu↵ered
saline (PBS tablet from Sigma). To prevent sedimenta-
tion of RBCs in channels, the RBCs were re-suspended
in a density matching PBS solution made of a 65/35 V/V
mixture of water and iodixanol solution (Optiprep from
Axis-Shield) [7, 30]. This suspending fluid has a density
of 1.112 ± 0.001 g/mL, which almost prevents the sedi-
mentation of the RBCs and a viscosity ⌘0 of 1.9 mPa.s at
20�C which is a little higher than plasma viscosity (1.54
mPa.s at 25�C [31]).

Density-fractionated RBCs were prepared by centrifu-
gation in discontinuous density gradients with Optiprep
and PBS mixtures as described in [7], the 4-layer gra-
dient leading to the separation of a top (light) fraction
of RBCs of density 1.103 ± 0.003 g/mL, and a bottom
(heavy) fraction of density 1.123± 0.005 g/mL. As these
two fractions represent only respectively 5% and 10% of
the total hematocrit, this separation confirms that the
average density in the sample is 1.112 g/mL.

III. MODEL

The evolution of a pulse length X(x) along the channel
(or equivalently its duration ⌧(x) at a given coordinate
x) is a consequence of the dispersion of RBC velocities in
the non-uniform channel flow profile: as depicted in Fig.
1 the first cells of a given pulse reaching position x are
those flowing at maximum velocity, i.e. cells that have
been at z = 0 in the middle plane of the channel from
the entrance. The tail of the pulse is made of the slow-
est cells, which are the ones responsible for the increase
of ⌧(x), that is those initially located close to the walls
where velocity is minimum and then slowly migrating to-
wards the center line until all cells eventually reach the
same terminal velocity and ⌧(x) ceases to increase. In
the absence of transverse migration of these cells, the in-
crease of pulse time duration �⌧(x) = ⌧(x)� ⌧(0) would

FIG. 4. Temporal profiles of pulses for di↵erent x positions
(from top to bottom, 0, 3, 7, 11, 15, 20 et 26 mm) and di↵erent
initial peak hematocrits (Left: 0.1 % ; middle 1.1 % ; right
5%). Shaded areas correspond to the first 80 % of cells.

be a linear function of x of slope 1/�V , where �V is the
velocity di↵erence between the fast and the slow cells.
If slow cells experience a lateral migration towards the
center, the growth of ⌧(x) (or X(x))will be sublinear.
We have shown in Ref. [7] that in the semi-dilute

case considered here, the velocity of the RBCs can be
well approximated by the unperturbed flow velocity av-
eraged over the cell extension. More precisely, we con-
sider R0 the e↵ective radius of a cell defined by R0 =
(3V/(4⇡))1/3, where V is the volume of a cell. For V = 90
µm [32], this leads to R0 = 2.8 µm. In our channel ge-
ometry the longitudinal cell velocity ux(z) is then

ux(z) =
1

2R0

Z z+R0

z�R0

v(Z)dZ, (1)

where v(Z) is the (unperturbed) fluid velocity at po-
sition Z. Assuming a parabolic profile for the quasi-2D
flow, one obtains

ux(z) = u0

✓
1� 3z2

3h2 �R2
0

◆
, (2)

which is a parabolic flow field in a channel of width
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2h with negative slip length
p

h2 �R2
0/3� h and where

u0 = v(0)(1 � R
2
0/3h

2) is the velocity of the centered
cells.

Let us consider a slow cell of coordinates (xs, zs), en-
tering the channel at (0, z0) with �h < z0 < 0. Its tra-
jectory is determined by the longitudinal velocity ux(zs)
(Eq. 2) and its transverse velocity uz(zs). In Ref. [7],
we showed that the transverse migration of a cell can be
described by the following scaling law:

uz = ⇠
R

�+1
0 �̇(zs)

(zs + h)�
. (3)

where ⇠ is a dimensionless migration amplitude, � a mi-
gration exponent (usually between 1 and 2) and �̇ =
dv/dz = �2v(0)z/h2 = �6u0z/(3h2 � R

2
0) is the local

shear rate in the particle free fluid.
Equations 2 and 3, combined with initial conditions,

contain in principle all the ingredients required to predict
the evolution of the pulse length and shape, at least in
the dilute limit where transverse migration is the sole
mechanism of RBC motion across streamlines. As there
is no general analytical solution for zs(xz) and X(x) to
these equations, we first derive the asymptotic limit of
pulse length as x ! 1 and the behavior of X(x) in this
limit.

A. Asymptotic pulse length

The time derivative of the pulse length X is dX/dt =
u0 � ux(zs) where ux(zs) is the velocity of the slowest
cell. We can then write:

dX

dzs
=

dX

dt

dt

dzs
=

u0 � ux(zs)

uz(zs)
= �zs(zs + h)�

2⇠R�+1
0

(4)

This yields the length of the pulse when the slowest
cell has migrated from z0 to zs:

X(zs) = X0 +A(z0) +
h
�+2

�
1 + zs

h

��+1 �
1� (� + 1) zsh

�

2⇠R�+1
0 (� + 1)(� + 2)

(5)
where X0 is the initial pulse length and A(z0) is a

constant that depends on the initial position z0 of cells
that are closest to the walls:

A(z0) = �
h
�+2

�
1 + z0

h

��+1 �
1� (� + 1) z0h

�

2⇠R�+1
0 (� + 1)(� + 2)

(6)

Note that A(z0) = 0 in the ideal case where z0 = �h

(which is not possible due to the finite size of cells).
The asymptotic pulse length is obtained when the slow-

est cells reach the center (zs = 0):

X1 = X0 +A(z0) +
h
�+2

2⇠R�+1
0 (� + 1)(� + 2)

(7)

And the corresponding pulse duration is simply ⌧1 =
X1/u0.
Interestingly, equation 7 shows that in a su�ciently

long channel and by a proper control of initial conditions
(z0, X0), it is in principle possible to relate the final pulse
length X1 to migration parameters ⇠ and � through a
simple scaling law. Simply measuring the macroscopic
parameter X1 in channels of di↵erent thicknesses h is
therefore su�cient to derive microscopic parameters ⇠

and � that are intrinsic characteristics of the cell me-
chanical properties in confined flow.

B. Asymptotic behavior

For a channel with a finite length, for which the asymp-
totic pulse length cannot be su�ciently approached be-
fore the exit, it is necessary to analyze the behavior of
X(x) along the channel. As no exact analytical solution
for zs(x) and X(x) can be derived from equations 2, 3
and 4, one can look for the asymptotic behavior as zs ! 0
i.e. for |z/h| ⌧ 1. In this limit, expanding the previous
equations at order 1 in z one gets:

dX

dzs
' � 1

2⇠(R0/h)�+1

zs

h
(8)

dzs

dx
=

uz

ux
' � 6⇠R�+1

0

h�(3h2 �R2
0)
zs (9)

Equation 9 yields the following form for zs(x):

zs(x) = z1 exp

 
� 6⇠R�+1

0

h�(3h2 �R2
0)
(x� x1)

!
(10)

where z1 is a transverse position of the slow cells in the
channel at which the first-order approximations of Eqs.
8 and 9 start to be acceptable and x1 the corresponding
axial coordinate.
When the tail of the pulse reaches position x, the pulse

length X(x) is then approximately described by:

dX

dx
=

dX

dzs

dzs

dx

=
3z21

(3h2 �R2
0)

exp

 
�12⇠R�+1

0 (x� x1)

h�(3h2 �R2
0)

!
(11)

or

X(x)�X1 = � z
2
1h

�

4⇠R�+1
0

exp

 
�12⇠R�+1

0 (x� x1)

h�(3h2 �R2
0)

!

(12)
Equations 11 and 12 show that the pulse length should

converge to its asymptotic value following an exponential
law with a characteristic length scale L that does not
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depend on the initial positions z0 or z1 but only on RBC
parameters and channel thickness:

L =
h
�(3h2 �R

2
0)

12⇠R�+1
0

(13)

Equation 13 yields a simple relation between the
macroscopic dispersion phenomenon and microscopic pa-
rameters � and ⇠, the latter one being directly depen-
dent on cell mechanical properties as seen in our previous
study on migration [7].

Note that in the dilute limit, which is always reached
in a su�ciently long channel where a directed force drives
particles towards the centerline, the behavior of a pulse is
not di↵usive, in contrast with the Taylor-Aris dispersion
where the underlying mechanism of lateral displacements
is Brownian di↵usion and yields a x

1/2 scaling for the
pulse length.

In cases where the initial condition z0 is such that the
condition |z/h| ⌧ 1 is not fully satisfied, it may be useful
to extend the asymptotic expansion to the next order. In
that case (keeping order 2 in zs/h) one gets:

dX

dzs
' � 1

2⇠(R0/h)�+1

zs

h

⇣
1 + �

zs

h

⌘
(14)

dzs

dx
=

uz

ux
' � 6⇠R�+1

0

h�(3h2 �R2
0)
zs

⇣
1� �

zs

h

⌘
(15)

Assuming that the approximation is valid from the en-
trance of the channel where zs(0) = z0, this yields:

zs(x) '
hz0

�z0 + (h� z0)ex/2L
(16)

And the pulse length is:

X(x) 'X0 +
6h2

L

(3h2 �R2
0)�

2

"
�z0

h

�
1� e

�x/2L
� �

�z0
h � 1

�

1� �z0
h (1� e�x/2L)

� ln

✓
1� �z0

h
(1� e

�x/2L)

◆#

(17)

C. Full form

More generally, for a given set of parameters (z0, ⇠, �),
Eqs. 2 and 3 can be solved numerically to recover the
exact solution, and for each position x, the time ts(x)
needed for the cell to reach position x, defined as xs(ts) =
x, can be determined. From it, the time lag �⌧ which
is the di↵erence between the time needed by the slowest
and fastest cells to reach x, respectively, can be derived:

�⌧(x) = ts(x)�
x

u0
. (18)

Note that for the sake of comparison with experiments,
�⌧ is indeed the di↵erence between the pulse durations at
position x and at the entrance: �⌧ = ⌧(x)� ⌧(0). These
quantities are directly measured in the experiment, and
can be converted to spatial length via X(x) = u0⌧(x)
and the corresponding pulse elongation is:

�X(x) = u0�⌧(x) = u0ts(x)� x. (19)

To analyse experimental data using this model, an op-
timization procedure as a function of the unknown pa-
rameters (z0, ⇠, �) was implemented. We showed in Ref.
[7] that within such a procedure the two parameters ⇠

and � are strongly correlated and a continuum of (⇠, �)
pairs can yield good agreement with a measured migra-
tion trajectory. However, an analysis run with channels
of varying height showed that a satisfactory universal mi-
gration law is obtained by choosing � = 1.3. We stick to
this choice in this study.
The optimization follows a di↵erential evolution

method [33] which is implemented using lmfit library in
Python [34]. The quality of the fit and the parameter
values obtained by this optimization method and by fit-
ting with the asymptotic forms of equations 12 and 17
are compared in the following, these asymptotic forms
having the advantage of allowing a simpler, direct fitting
procedure.

IV. RESULTS AND DISCUSSION

A. General behavior

The experimental data consists, for each position x

considered along the channel, in a measurement of the
temporal profile �(t, x) of the pulse flowing through po-
sition x. We take as a volume fraction reference the max-
imum value of the hematocrit �p within the pulse.
As shown in Fig. 4, temporal profiles are stretched as

the pulse travels along the channel and we characterize
the evolution of a pulse by measuring its temporal length
⌧(x). In practice, it is taken as the time after which 80%
of the cells have passed position x. This choice provides
more robust results, that are insensitive to outliers in the
tail of pulses (see Supplemental Material). To remove
the influence of the initial pulse length, we consider the
increase in temporal length �⌧(x) = ⌧(x) � ⌧(0), where
x = 0 corresponds the entrance of the main channel.

B. E↵ect of cell deformability

To establish a link between dispersion and individual
cell dynamics, we consider in this section a dilute limit
with an initial peak concentration of around 0.1%, for
which cell-cell interactions can be neglected.
Red blood cells have a timelife of around 4 months. As

they get older, cells become denser and less deformable
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FIG. 5. Evolution of pulse length for cells with di↵erent de-
formabilities, as assumed from their sorting by mean density
d (N: d = 1.103 ; •: d = 1.112 ; ⌅: d = 1.123), in a channel
of thickness 2h = 33 µm. Lines show fits of the models with
� = 1.3 (colored line: Eq. 19 (FF), dashed line: Eq. 12 (AF),
dotted line: Eq. 17 (AF2). Note that FF, AF and AF2 are
almost superimposed.).

[35], which eventually leads to their elimination in the
spleen [36]. Sorting the cells by density amounts then
to sort them by deformability, a generic notion that is
indeed physically related to several properties such as
cytosol viscosity, membrane shear or bending elasticity
[37, 38].

Fig. 5 shows the evolution of pulse length �X(x) =
X(x)�X0 as a function of travelled distance x, for three
mean densities d of RBCs. As in Ref. [7], mean den-
sity d = 1.103 g/mL corresponds to the lightest cells,
having densities in the range 1.099-1.106 g/mL, while
mean density d = 1.123 g/mL corresponds to the heav-
iest cells, with densities in the range 1.118-1.128 g/mL.
Results labeled as d = 1.112 g/mL correspond to the
whole, unsorted population of cells in the blood sample.

As illustrated in Fig. 4, the pulse length grows as it
travels along the channel. A faster growth indicates a
slower migration of the slowest cells, but the behavior of
the �X(x) also depends on the initial condition z0. A
fit of the experimental curves with the full form (FF) of
Eq. 19 and the asymptotic forms of Eqs. 12 (AF) and 17
(AF2) with fixed � = 1.3 yields the couples of parameters
(z0, ⇠) for FF and AF2 and (L, ⇠) for AF summarized in
Table I.

The fitted values of z0 show that in all cases cells are
already quite far from channel walls (here h = 16.5 µm)
at the entrance of the main channel, as a result of their
initial displacement in the inlet channels where the pulse
is created. Unsurprisingly, the more deformable (less
dense) ones that migrate faster are already the closest
to the centerline at x = 0. This is indeed confirmed by
the fact that the exponential asymptotic law (AF) and
the 2nd order asymptotic law (AF2) fit very well with the

experimental data and are almost superimposed with the
full form (FF) modeling.

The tendency observed for the migration amplitude ⇠

and the relaxation distance L show that lighter cells mi-
grate faster and the corresponding pulse length stabilizes
after a shorter distance (about 20 mm vs nearly 50 mm
for heavier cells). These di↵erences are a strong marker of
dispersion in mechanical properties within a given sam-
ple, as also described for cells under simple shear flow
[39, 40]. Note that, the values of ⇠ fitted with the full-
form model (FF) exhibit much more marked di↵erences
when varying RBC density than the asymptotic forms:
The optimization procedure of the FF model may be less
selective on the (z0, ⇠) couple (i.e. a range of couples may
give equivalently satisfactorily results) while the exper-
iment does not allow to check if the obtained z0 values
are correct. On the other hand, in the asymptotic forms,
the characteristic length L is a more explicit feature of
the experimental curve and may therefore be more robust
way of estimating ⇠ in addition to being computationally
easier to implement, as long as the asymptotic regime is
reached.

Remarkably, the values yielded by all models for d =
1.103 g/mL are actually very close to those obtained
previously by directly measuring migration velocities [7],
even though the blood sample was di↵erent. For higher
cell densities, two features emerge: (i) there are slightly
more marked di↵erences between the FF model and
asymptotic models, which is likely due to higher |z0| val-
ues, with the AF2 model obviously providing a better
approximation, and (ii) ⇠ values are lower than in direct
measurements [7]. This reflects the fact that the dynam-
ics of the back of the pulse is governed by the slowest
cells which, possibly after a short transient, are the ones
having the lowest transverse migration velocities. As the
d = 1.123 g/mL sample covers a relatively large range of
densities (1.118� 1.128 g/mL), some of the cells are sig-
nificantly slower that the average. Concerning the whole
sample d = 1.112 g/mL, in the direct measurement of [7]
the average migration amplitude of the whole population
has an intermediate value between light and heavy cells.
Here, we would expect the pulse dynamics to be gov-
erned by the slowest cells, which happen to be the same
as in the d = 1.123 g/mL sub-population, and yield the
same ⇠ value. While values are closer than what they
are in the direct measurements, there is still a significant
di↵erence. However, the way the pulse length is exper-
imentally defined (by considering the 80% of RBCs at
the front of the pulse) removes some of the slowest (and
densest) cells from the whole population and explains
why the pulse length does not behave exactly as for the
denser case d = 1.123 g/mL.

The deformation of cells under flow can also be moni-
tored externally through the viscosity ⌘0 of the suspend-
ing fluid. The dynamics of RBCs draws in reality a com-
plex diagram, even in unbounded shear flow, which de-
pends on the shear stress ⌘0�̇, where �̇ is the shear rate,
and on the viscosity contrast � between the inner and the
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TABLE I. Fitted values of parameters when varying RBC mean density, for the full form optimization (FF) and the 1st order
(AF) and 2nd order (AF2) asymptotic forms. For AF and AF2, ⇠ values (in italics) are derived from the fitting parameter L. For
the sake of comparison, X1 was also extrapolated from the FF and AF2 fits (italics). The results of the direct measurements
of Ref. [7] are recalled.

FF AF AF2 Ref. [7]
d z0 ⇠ X1 X1 A L ⇠ z0 L ⇠ X1 ⇠

(g/ml) (µm) (10�3) (mm) (mm) (mm) (mm) (10�3) (µm) (mm) (10�3) (mm) (10�3)
1.103 -4.5 15.3 0.92 0.89 0.89 11.7 20.7 -4.6 14.3 16.9 0.90 14
1.112 -6 5.2 4.37 3.81 3.79 25.9 9.3 -6.4 34.5 7.0 3.95 11
1.123 -7.6 1.7 18.7 12.4 12.4 45.8 5.3 -8.5 75.1 3.2 14.1 6.5

outer fluid [39–44]. A very rough view is that increas-
ing the viscosity of the external fluid increases both the
stress and the relative weight of dissipation mechanisms
outside and inside the cell, allowing a transition from
solid-like, flipping motion to droplet-like motion where
the cell adopts a fixed shape relatively to the flow; the
rotational component of the imposed stress is then ac-
commodated by inner fluid rotation instead of a rotation
of the whole cell. Because of this, an increase of the mi-
gration velocity with the viscosity of the external fluid is
expected, as demonstrated in Ref. [8] for RBCs in simple
shear flow near a wall.

Here, we considered suspending fluids of di↵erent vis-
cosities by adding dextran 100 kDa (Sigma) in the sus-
pension while varying the Optiprep volume fraction to
adjust buoyancy. Instead of a volume fraction of 35% in
Optiprep, a volume fraction of 33 % (resp. 31%) with
additional dextran in proportion 32.5 g/L (resp. 50 g/L)
lead to a viscosity at 20�C of 5.8 (resp. 8.1) mPa.s [17].

The evolution of pulse lengths are shown in Fig. 6
and parameter values fitted by FF, AF, and AF2 mod-
els are gathered in Table II. The FF fitted value of ⇠
for ⌘0 = 1.9 mPa.s is close to that obtained in the same
experimental conditions in Table I for the whole sample
(d = 1.112 g/ml), the small di↵erence being attributable
to di↵erences between di↵erent blood samples. Interest-
ingly, a quick look at the two curves for ⌘0 = 5.8 and
8.1 mPa.s in Fig. 6 does not allow to directly assess the
migration velocity of cells (and therefore their deforma-
bility) by simply comparing pulse lengths. Only a model-
based analysis taking into account the details of the rate
of change of pulse length allows to separate the intrin-
sic property (⇠) from the influence of initial conditions
(z0). These are in the present case responsible for the
⌘0 = 8.1 mPa.s curve being initially above the other one
due to cells closer to the walls at the entrance of the chan-
nel and leading to initially faster dispersion, while their
asymptotic behavior is in-line with the expected relative
values of the lift velocity: the slope of the ⌘0 = 8.1 mPa.s
curve becomes smaller than that of the ⌘0 = 5.8 mPa.s
curve as cells migrate much faster towards the centerline.

Note that in this series, the ratio |z0|/h is significantly
bigger than in the series of Table I, which leads to poorer
performance of the AF model and bigger di↵erences be-
tween the 1st order (AF) and 2nd order (AF2) asymp-
totic forms.
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FIG. 6. Evolution of pulse length for cells in fluids of di↵erent
viscosities ⌘0 = 1.9 mPa.s (•), ⌘0 = 5.8 mPa.s (N) and ⌘0 =
8.1 mPa.s (⌅), in a channel of thickness 2h = 40 µm. Lines
show fits of the models with � = 1.3 (colored line: Eq. 19
(FF), dashed line: Eq. 12 (AF), dotted line: Eq. 17 (AF2)).

TABLE II. Fitted values of parameters when varying the vis-
cosity of the suspending fluid, for the full form optimization
(FF) and the 1st order (AF) and 2nd order (AF2) asymptotic
forms (only the main parameters of interest are shown).

FF AF AF2
⌘0 z0 ⇠ L ⇠ z0 ⇠

(mPa.s) (µm) (10�3) (mm) (10�3) (µm) (10�3)
1.9 -9.1 5.9 28.0 16.3 -10.2 10.1
5.8 -7.0 11.0 22.8 20.1 -7.4 14.5
8.1 -9.9 25.4 12.0 38.2 -10.5 34.6

C. E↵ect of cell-cell interactions

Hydrodynamic collisions between cells lead to trans-
verse shear-induced di↵usion that could be expected to
slow-down the migration of cells towards the center. Fig.
7 shows the evolution of the dispersion for pulses of vary-
ing initial peak concentrations, �p = 0.1 %, 1 % and 5%.
Fitting the experimental curves with the FF, AF and
AF2 models which assume no interactions between cells
can still be formally done in order to extract e↵ective
migration parameters, and yields the results of Table III.
Note that the dataset for �p = 0.1% is the same as the
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FIG. 7. Evolution of pulse length for cells with di↵erent initial
peak concentrations (corresponding to the three columns of
Fig. 4); •: �p = 0.1%, N: �p = 1%, ⌅: �p = 5%. Lines show
fits of the models with � = 1.3 (colored line: Eq. 19 (FF),
dashed line: Eq. 12 (AF), dotted line: Eq. 17 (AF2)).

TABLE III. Fitted values of parameters when varying the
peak hematocrit of the pulse, for the full form optimization
(FF) and the 1st order (AF) and 2nd order (AF2) asymptotic
forms (only the main parameters of interest are shown).

FF AF AF2
� z0 ⇠ L ⇠ z0 ⇠
(%) (µm) (10�3) (mm) (10�3) (µm) (10�3)
0.1 -6.0 5.2 25.9 9.3 -6.4 7
1 -7.2 2.2 59.0 4.1 -8.0 3.7
5 -8.6 2.0 46.4 5.2 -9.9 4.1

one labeled d = 1.112 g/mL in Fig. 5.

The dilute suspension has a larger ⇠ as expected, but
a quantitative interpretation of the smaller value of ⇠

found for large volume fractions is delicate: as the pulse
evolves and elongates, local concentration decreases and
one should eventually recover the dilute case regime.
However, the front of the pulse corresponds to cells that
are concentrated around the centerline of the channel
where the shear rate is lower, and the concentration peak
may therefore survive for some time before actual dilu-
tion occurs. This may explain why for �p = 1% and
5% the evolution of the pulse length is almost linear af-
ter x = 10 mm and does not show any sign of satura-
tion over the whole channel length. This suggests that
shear-induced di↵usion e↵ects are significant as soon as
�p � 1% and that migration parameters cannot reliably
be derived from such an experiment. A more elaborate
modelling would be needed in that case to include the
e↵ects of both transverse migration and shear-induced
di↵usion.

D. Outlook on dispersion in channel networks

While the mechanisms discussed in this paper lead to
a marked axial dispersion in a single straight channel,
the presence of bifurcations in a channel network is re-
sponsible for local structural reorganization of the flowing
suspension and new initial conditions after each bifur-
cations that should contribute to this dispersion at the
scale of the network. As a first step towards a better un-
derstanding of this complex question, we compared the
axial dispersion in two di↵erent configurations: a sin-
gle straight channel and a branched network consisting
in a succession of 3 diverging bifurcations followed by 3
converging bifurcations which can be viewed as a very
simplified model of microvascular network, as depicted
in Fig. 8. In both configurations, the individual channel
cross section is 2w ⇥ 2h = 30⇥ 25µm2 and the distance
between bifurcations of the network is 4 mm. As the
mean flow velocity evolves in the branched network when
going through bifurcations, the comparison between the
two configurations is based on pulse length �X = u0�⌧ ,
where u0 is measured at each considered position.
Fig. 8 shows the evolution of this length as a function

of the longitudinal position x along the straight channel
or the branched network. It clearly shows that while
diverging bifurcations have little e↵ect on the dispersion,
converging bifurcations induce a dramatic increase of the
dispersion in the branched network, compared to the sole
dispersion induced by velocity di↵erences in a straight
channel.
An interpretation of this result is complicated here by

the fact that shear is present in both transverse directions
y and z due to the nearly square cross section (resulting
in the presence of slow cells near all four lateral walls)
while bifurcations mainly redistribute cells in the y di-
rection. Nevertheless, a qualitative interpretation of the
asymmetric role played by both types of bifurcation can
be proposed through the scheme of Fig. 9 where the
deformation of an initially very thin pulse is sketched.
When going through a diverging bifurcation, front par-
ticles that are on the centerline upstream are close to
the inner wall downstream of the bifurcation. As a con-
sequences the fastest particles become the slowest ones
and this should lead, at least immediately at the entrance
of the downstream channels, to a reduction of the disper-
sion and a contraction of the pulse. Then dispersion as
discussed before takes place again, possibly enhanced by
the fact that cells have been pushed back to high-shear re-
gions near walls. Depending on channel length between
bifurcations, the contraction of the pulse taking place
immediately after each diverging bifurcation may signif-
icantly compensate the enhanced axial dispersion due to
the relocation of particles. In our case, this leads to a
dispersion that is very similar or only slightly bigger in
the diverging part of the network compared to a straight
channel.
After a converging bifurcation, as a first approximation

the particle distribution that spans over the whole chan-
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FIG. 8. Comparison of dispersion between a straight channel
and a branched network. The characteristic length L of a
pulse is plotted against longitudinal position x for both con-
figurations. In the branched channel (blue dots), a measuring
section was selected right before diverging or converging bi-
furcation.

nel width upstream is squeezed over half the width of the
downstream channel. As a result, half of the slow parti-
cles are still close to a wall downstream while the other
half are located close to the center, with a distance that
depends on their initial transverse position, and therefore
become fast particles. This redistribution of the particle
cloud in a region where the average shear rate is higher
and the average velocity is lower induces a stronger dis-
persion per unit displacement in the axial direction. This
simple picture explains the dramatic increase of the pulse
length after each converging bifurcation in Fig. 8.

While this qualitative description of the reorganization
of the suspension after both types of bifurcations helps
to understand the di↵erences observed in Fig. 8, more
data is obviously required to reach a full, quantitative
understanding of the involved mechanisms. The distance
between each bifurcation, therefore the configuration in
which the pulse reaches them, is of course a key param-
eter here. If RBC migration is fast compared to channel
length (narrow channels, very deformable cells with high
⇠), one can imagine a steady regime in which all cells are
centered before the next bifurcation. In such a situation,
pulse length should quickly reach an asymptotic value
even in a network with bifurcations. In realistic blood
micro-circulatory networks however, the high occurrence
of bifurcations makes it necessary to take into account
the transient distribution of cells [45].

(a)

(b)

FIG. 9. Schematic of the behaviour inside the pulse right after
(a) a diverging bifurcation and (b) a converging bifurcation.
The initial pulse is represented by its front (yellow), interme-
diate (orange) and rear (red) particles. Right after a diverging
bifurcation (a), half of these particles split into the daughter
branch ; notably, the front particle is now close to the inner
wall and is gradually overtaken by the queue particles. Right
after a converging bifurcation (b), particles occupy half the
downstream branch and the pulse experiences higher shear
rates on average.

V. CONCLUSION

This work reveals that the axial dispersion of Red
Blood Cells in channel flow is strongly related to their
mechanical properties that control their transverse dis-
placements. In dilute suspensions, our experiments and
theoretical modeling show that the axial dispersion dy-
namics can be directly derived from migration dynamics
towards the center of the channel, which is assumed to
follow a previously established scaling law. As a con-
sequence a higher cell deformability (or equivalently a
higher viscosity of the suspending fluid) decreases the
axial dispersion.
Conversely, this general principle and the techniques

presented here reveal that with controlled initial condi-
tions, a simple macroscopic measurement of pulse length
can be used to easily derive the microscopic migration ve-
locity parameter of a blood sample, which is a direct sig-
nature of RBC mechanical properties. Interestingly, this
axial dispersion measurement principle, which requires
relatively light equipment and much less image and data
processing than direct measurements opens up alterna-
tive ways to monitor the deformability of RBCs or other
cell populations in healthy and pathological situations,
e.g. for diagnostic purposes.
Our study of axial dispersion in straight channels rep-

resents a first step in the quantitative understanding of
hemodynamics in microvascular networks, where the dis-
persion of RBC transit times, a critical factor in oxygen
exchange for instance, is also obviously linked to network
topology and bifurcations. Our first study of the axial
dispersion in a simple network highlights the starkly dif-
ferent influence of diverging and converging bifurcation
and shows a dramatically enhanced dispersion after con-
verging bifurcations. While light is usually shed on the
role of diverging bifurcations as they are the locus of un-
even distribution in cells within downstream branches,
this emphasizes the central role that could be played by
the diverging ones regarding the dispersion of the transit
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time of cells and therefore of the oxygen release within
one organ. The contribution of both types of bifurca-
tions remains to be explored through a more systematic
study were transit times after cell reorganization would
be varied relatively to typical dispersion times.
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ROBUSTNESS OF RESULTS AGAINST THE
CHOICE OF POPULATION CUT-OFF IN PULSE

LENGTH DETERMINATION

In our experiments, the di↵use tail of the pulse made of
sparse cells is not representative of the general behavior
of the RBC population and may lead to uncertainty in
defining pulse length. This leads to set a threshold in
terms of the overall population of a given pulse to define
its rear end in a consistent manner. As explained in
the main body of the paper, we chose a cut-o↵ of 80%
of the whole cell population to define pulse length, which
e↵ectively removes a fraction of the slowest cells and may
have an impact on the measured values of the migration
parameter ⇠.

To evaluate the robustness of our method, we analyze
here the influence of the cut-o↵ value for the proportion
of the population determining the time lag ⌧ between the
passage of the front of the pulse at position x and the time
when a percentage & of the total population of the pulse
has reached x, on the evaluation of ⇠. Figure 1 shows the
fitted values of ⇠ using the FF model for the same original
dataset as Fig. 5 (full population d = 1.112) of the main
manuscript when varying & between 20% and 95% of the
total population of pulses. Within experimental errors,
it shows that ⇠ has a nearly constant value for & > 60%,
while below 50% the fitted ⇠ values tend to be higher as
a shorter length of the pulse is retained.

While increasing & leads to the incorporation of slower
cells, it may seem surprising to reach a plateau for
& > 60%. However, as in our experiments pulses are quite
far from reaching their asmptotic configuration, most of
the cells removed by the cuto↵ are those that were ini-
tially closer to the walls at the entrance of the channel
(See Fig. 1 of the main paper) and have the slowest ax-
ial velocity ux, regardless of their transverse migration

velocity uz, i.e. their ⇠ value. Therefore the cuto↵ does
not significantly modify the distribution of cell proper-
ties within the defined pulse length, yielding to a nearly
constant ⇠ value.

On the other hand, when cutting away a larger part
of the tail of the pulse (lower &), it is likely that an in-
creasing number of cells with a low ⇠ are removed from
the pulse, i.e. not only those that were closer to walls at
the entrance but also some that were closer to the cen-
ter and were overtaken in the x direction by cells that
migrated earlier and faster towards the centerline. As a
consequence, ⇠ tends to reflect the behavior of cells with
a faster transverse migration, revealing a partial segrega-
tion of cells by deformability along the axial direction.

In summary, this shows that the exact position at
which we cut the tail of the pulse has little impact on
the measured ⇠ values, as long as the definition of the
pulse length includes at least 60% of the whole popula-
tion.

FIG. 1. Fitted values of ⇠ (determined using the FF model)
as a function of the fraction & (in %) of cells that are included
in the definition of the pulse length (as shown in Fig. 4 of
the main paper), for the same original data as in Fig. 5
(d = 1.112).
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