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QUANTITATIVE WEAK PROPAGATION OF CHAOS FOR STABLE-DRIVEN
MCKEAN-VLASOV SDES

THOMAS CAVALLAZZI

ABSTRACT. We consider a general McKean-Vlasov stochastic differential equation driven by a rotationally in-
variant a-stable process on R? with o € (1,2). We assume that the diffusion coefficient is the identity matrix
and that the drift is bounded and Holder continuous in some precise sense with respect to both space and
measure variables. The main goal of this work is to prove new propagation of chaos estimates, at the level of
semigroup, for the associated mean-field interacting particle system. Our study relies on the regularizing prop-
erties and the dynamics of the semigroup associated with the McKean-Vlasov stochastic differential equation,
which acts on functions defined on Pg (]Rd)7 the space of probability measures on R? having a finite moment of
order 8 € (1, ). More precisely, the dynamics of the semigroup is described by a backward Kolmogorov partial
differential equation defined on the strip [0, 7] x Ps(R?).
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1. INTRODUCTION

In this work, we are interested in the following McKean-Vlasov Stochastic Differential Equation (SDE) driven
by Z = (Z); a rotationally invariant a-stable process on R? with a € (1,2)

dXt = b(t, Xt, [Xt]) dt + dZt, t e [O, T],

pe = [Xil, (1.1)
Xo=¢ [f]=nePRY,

where T > 0 is fixed, [¢] denotes the distribution of the random variable ¢ which is independent of Z, P(R?) is
the space of probability measures on R? and with drift coefficient b : [0, 7] x R? x P(R?) — R?. This kind of
SDEs are also called nonlinear SDEs since the associated Fokker-Planck equation solved by the flow of marginal
distributions (u); is nonlinear. We also focus on the associated mean-field interacting particle system defined,
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for all N > 1, by

dXp™ =b(t, Xp" mY) dt +dzi, te[0,T), ie{l,...,N},

E{V — %Z&ng’ (1.2)
T

Xt =¢,

where (Z°,£%);>1 are i.i.d. copies of (Z,&). The connection between (1.1) and (1.2) is that the McKean-Vlasov
SDE (1.1) describes the dynamics of one particle of the interacting particle system (1.2) when the number of
particles N tends to infinity. This property is called the mean-field limit. A stronger property that is also
expected to hold true in general is the so-called propagation of chaos. It states that for all £ > 1, the dynamics
of k particles, let say (X LN xRN ), is described when N tends to infinity by k independent copies of the
limiting McKean-Vlasov SDE (1.1). This was originally studied by McKean [24] and then investigated by
Sznitman [29] when Z is a Brownian motion. These mean-field systems have many applications for example
in physics (kinetic theory), in biology to study the motion of a cell population for example, in neuroscience to
model the interactions between neurons, in social sciences to describe self-organization behaviors and also in
the Mean-field games theory.

Propagation of chaos can be considered in the weak sense, i.e. in distribution through the convergence of the
empirical measure 7"V, or in the strong sense, i.e. at the level of paths by coupling. The terminology of weak
and strong propagation of chaos that we use is based of the corresponding properties for numerical schemes for
SDEs. It can be qualitative or quantitative when a rate of convergence is shown. By quantitative weak propa-
gation of chaos, we precisely mean to find a rate of convergence of E|¢(fi)¥) — ¢(u¢)| and [E(d (@) — é(ue))l,
for ¢ in a class of functions defined on the space of probability measures. The mean-field limit and propagation
of chaos phenomenon have of course been widely studied before, in particular in the Brownian case. We can
mention for example Gértner [14], Méléard [27], Malrieu [22|, Mischler et al. [26], Holding [15], Chaudru de
Raynal and Frikha [8, 7|, Jabin and Wang [16], Lacker [20, 21|, Tomasevi¢ [30], Jabir [17], Chassagneux et al.
[6], Delarue and Tse [9]. For a detailed review on the topics of propagation of chaos, we mention [4, 5.

It is natural to consider other types of noise such as Lévy processes, which are also largely used to model phys-
ical systems (Lévy flights and anomalous diffusion), see e.g. [23] for the physical point of view and [19] for the
mathematical point of view. The propagation of chaos phenomenon has also been studied for McKean-Vlasov
SDEs driven by Lévy processes. In [13], following the approach of Sznitman [29], Graham proves qualitative
weak propagation of chaos under Lipschitz assumptions for a mean-field system driven by a Poisson random
measure and its compensated measure. He works in the L! framework, i.e. the Poisson random measure is asso-
ciated with a Poisson process having a finite moment of order 1. In this work, the set of jumps is assumed to be
discrete, which is not the case for a-stable processes. When the driving noise is a Lévy process having a finite
moment of order 2, we refer to Jourdain et al. [18]. The authors prove quantitative rates of convergence for the
strong propagation of chaos in L? under standard Lipschitz assumptions on the drift and diffusion coefficients.
Still in the Lipschitz framework, we mention Neelima et al. [28] where quantitative strong propagation of chaos
is proved in L? relaxing the assumptions of [18]. We also mention [26] where Mischler, Mouhot and Wennberg
exhibit conditions leading to weak propagation of chaos estimates. As an application, they study an inelastic
Boltzmann collision jump process. In the one-dimensional case, Frikha and Li [12] study a McKean-Vlasov
SDE driven by a compensated Poisson random measure with positive jumps. They prove quantitative rates of
convergence for the strong propagation of chaos in L' under one-sided Lipschitz assumptions on the coefficients.

The aim of this work is to prove quantitative weak propagation of chaos for (1.1) assuming that the drift
b is bounded and Hoélder continuous in some precise sense with respect to both space and measure variables
(see Assumption (H2) for the precise assumptions). As we are not in a Lipschitz framework, the standard
method originally developed by Sznitman [29] in the Brownian case does not apply. We need to benefit from
a regularization by noise phenomenon, even only to prove the well-posedness of (1.1). The main difficulty is
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that the dependence of the drift b with respect to the measure is general, and we thus need differential calculus
on the space of measures. We use the notion of linear (functional) derivative (see Definition 4). The study in
the Brownian case has been made by Chaudru de Raynal and Frikha [8, 7] under similar assumptions, and our
work is inspired by this. However since Z has an infinite moment of order 2, another difficulty here is that
it is not possible to work in L? and benefit from all the theory developed in this framework, in particular for
Mean-field games.

In the first part of this work, the weak well-posedness of (1.1) is established through the related nonlinear
martingale problem by using the Banach fixed point theorem applied on a suitable complete metric space (see
Assumption (H1) and Theorem 1). The well-posedness of (1.1) was already shown in [11]| by using the same
fixed point argument. The fixed point theorem is only shown to hold in small time in [11], which is enough for
the well-posedness. However, in the following, we need to apply the Banach fixed point theorem on the whole
time interval [0, 7] in order to use Picard iterations to approximate the solution to (1.1). That is why we do
the proof a bit differently to obtain this result.

We then study the regularity of the transition density associated with (1.1), in particular the differentiability
with respect to the initial distribution p. Let us introduce, for z € R and s € [0,T), the following decoupled
stochastic flow associated to SDE (1.1)

(1.3)

{devmv“ = b(t, XIU [XSM)) dt + dZ,, t€ s, T,
Xss7xuu‘ — ':L',

where [X;""] denotes the distribution of the solution to (1.1) at time ¢, starting at time s by any random
variable ¢ with distribution p € Pg(R?), where 8 € (1,a) is fixed. The notation [X;*] is valid since by
weak well-posedness, the distribution of the solution to (1.1) depends on the initial condition only through its
distribution p. The distributions of X;"** and X;* admit densities respectively denoted by p(u, s,t,x,-) and
p(p, s,t,-). Moreover, they satisfy the following relation stemming from the well-posedness of the martingale
problem

pies.ten) = [ plositoa,n) du), (1.4

Let us fix t € (0,7] and y € R%. We study the regularity of the map (s,z,u) € [0,t) x R x Pg(RY) —
p(w, s,t,z,y). Estimates and Holder controls on the derivatives of p with respect to s, x and u are proved in
Theorem 2 under Assumption (H2) by using Picard iterations and the parametrix method. Moreover, we prove
that p is solution to the following backward Kolmogorov PDE

Osp(p, s,t,2,y) + Zep(- 8,8, y)(,2) = 0, V(p, s,2) € Pg(R?) x [0,1) x R,
: (1.5)
p(p, s, t,x,-) — 0z, in the weak sense,
s—t—
where % is defined, for smooth enough functions h on R? x Ps(R?), by
dz
,,%Sh(,u,a:) = b(saxau) : axh(:uﬂx) + /]Rd [h(/h»T + Z) - h(:uﬂx) -z 3xh(ﬂ7$)] W
)
b [ o) B0 () () () (16
Rd m

0 J g dz
" /Rd /Rd [%h(u,x)(v +2) = =—h(p, x)(v) = 2 - Oy =—h(p, x)(v) [2[d+e du(v),

om om

where % denotes the linear derivative (see Definition 4).

Once that the regularity of the transition density has been studied, we focus on the regularizing properties
of the semigroup acting on functions defined on Pg(R?) associated with (1.1). For a function ¢ : Pg(R?) — R,
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the action of the McKean-Vlasov semigroup on ¢ is given by the function U defined by
U: (1) € [0,T) x Pa(RY) = o([X7")), (1.7)

where [Xfp’“ | denotes the distribution of the solution to (1.1) at time 7" and starting at time ¢ with a random
variable ¢ with distribution p € Pg(Rd). More precisely, we prove that if ¢ : Pﬁ(Rd) — R has a linear derivative
that is uniformly Holder continuous, then the map U defined by (1.7) is more regular and estimates and Holder
controls on the derivative of U with respect to the measure variable are proved. Inspired by [2]| (see (5.128)),
[1] and [8], we describe the dynamics of the semigroup in Theorem 3 by showing that U is the unique classical
solution to the backward Kolmogorov PDE

OU(t,p) + LUt ) () =0, V(1) € [0,T) x Pg(RY),
U(Tv /L) = qb(lu)v V,u € Pﬁ (Rd)7

where .%; was defined in (1.6), and acts here only on functions defined on Pg(R%).

(1.8)

Finally, we prove in Theorem 4 new weak propagation of chaos estimates for (1.2). We refer the reader to
Remark 5 for a comparison with the existing literature. The method that we use relies on the solution to the
backward Kolmogorov PDE (1.8) U defined in (1.7). This strategy was originally described in Chapter 5 of
[2] (pages 506 — 508), inspired by [1] and [26], and was employed for example in [6, 9, 7|. Let us describe the
main ideas. We begin by computing the time derivative of the map ¢ € [0,T) ~ U(t, 7)) by applying the
standard Ito’s formula for the empirical projection (t,z1,...,zx) € [0,T] x (RN = U (T —t, % i\;l Oz,
and for the particle system. Noting that ¢ € [0,T] — U(t, u¢) is constant, we naturally expect that the time
derivative previously computed tends to 0 as N converges to infinity. This convergence has to be shown with
an explicit rate of convergence using the PDE satisfied by U and the estimates on U. Finally, we express
oY) — ¢(pr) = U(T, 7)) — U(T, pr) as the sum of U(0, ) — U(0, uo) plus a remainder term related to the
time derivative which was previously estimated. Since the initial data are i.i.d., the first term is controlled by
standard estimates, for example those in [10].

The paper is organized as follows. In Section 2, we present our results and we comment them. The proofs are
given in the next sections. Section 3 is dedicated to prove the weak well-posedness of the McKean-Vlasov SDE
(1.1) (Theorem 1). Then, we study the regularity of its transition density in Section 4 (Theorem 2). Section
5 is devoted to the proof of the regularizing properties of the semigroup and backward Kolmogorov PDE that
describes its dynamics (Theorem 3). In Section 6, we prove our propagation of chaos estimates (Theorem 4).
We prove in Section 7 the technical proposition leading to the regularity of the transition density and the
related estimates stated in Theorem 2. In Appendix A, we gather some definitions and propositions related to
differential calculus for functions defined on P(R%) or Pg(Rd) that are used in the article. Finally, Appendix
B aims at presenting the parametrix method and quite standard estimates on the density of the solution to a
linear stable-driven SDE which are the core of the proof of Theorem 2.

Let us finally introduce some notations used several times in the article.

Notations

- P(R?) denotes the set of probability measures on R?.

- dry is the total variation metric on P(R?).

- P3(R?) denotes the set of probability measures y on R? such that [p, 2|’ dp(z) < 400, for 8> 1. It is
equipped with the Wasserstein metric of order 8 denoted by W3, which makes it complete. Denoting by
II(y, v) the set of couplings between two probability measures i, v € Pg (]Rd), the metric Wp is defined
by

1

B
W = inf —ylPdr
sli,v) weIIII%uw) </Rd><Rd = =l (a:,y))
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- [£] denotes the distribution of the random variable &.

-y =% SN, 0, denotes the empirical measure, for = (z1,...,zy) € (RH)N.

- Z,:=(0,...,2,...,0) € (RHN for z € RY, where z appears in the k-th position.

- B, is the open ball in R? centered at 0 and of radius r for the euclidean norm.

- B¢ denotes the complementary of B,.

- a A\ b denotes the minimum between a and b.

- a V b denotes the maximum between a and b.

- C is a generic constant that may depend only on the fixed parameters of the problem and which may
change from line to line.

2. OVERVIEW ON THE MAIN RESULTS

Let us fix Z = (Z;); a rotationally invariant a-stable process on R? with o € (1,2). Its associated Poisson

random measure is denoted by N and the compensated Poisson random measure by A. Since a € (1,2), we

can write for all t > 0
t ~
Zy = / / 2N (ds,dz).
0o JRrd

The density of Z; is denoted by ¢(¢,-) and the Lévy measure v of Z is given by

dz
dV(Z) = W

The related stable operator £% is defined for all f € C;%/(Rd; R), with v > a — 1, i.e. f belongs to C;(Rd; R)
and V f is y-Holder and for all 2 € R? by

Lo (x) = /R (fla+2) = f(@) = V(@) ) dv(2) (2.1)

We are interested in the following stable-driven McKean-Vlasov SDE

dX} = b(t, X%, [X)%)) dt +dZy, te[s,T), 22)
Xt =¢ [=neP®RY, '
where [£] denotes the distribution of the random variable £ and s € [0, 7).
Let us define, for k > —a the function p* on (0, 4+00) x R? by
Vt >0,z € RY, pF(t,z) =t a (1 + ¢ az]) "4k, (2.3)

These functions are related to gradient estimates on the transition density ¢ of the stable process Z (see Lemma
11). Some useful properties of these functions are given in Lemma 10.

2.1. Well-posedness of the nonlinear martingale problem and Picard iterations. The first point is to
prove the existence and uniqueness, in the weak sense, of the solution to (2.7). Let us first recall the definition
of the nonlinear martingale problem associated with (2.7).

Definition 1. Let us fix (s,u) € [0,7) x P(R?). We say that a probability measure P on the Skorokhod
space D([s,T];R?), endowed with its canonical filtration (F;);, with time marginal distributions (P¢)iefs 7] €
CO([s, T]; P(R%)) solves the nonlinear martingale problem associated to the SDE (2.2) with initial distribution
1 at time s if the canonical process (yt)te[sﬂ satisfies the two following conditions.

(1) We have P; = p.

(2) For any ¢ € 0272([8,T] x R%), the process defined for t € [0, T)] by

ot = 605,0) — [ (00+ £2) olran) i
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is a (D([s, T); RY), (F;)s, P)-martingale starting from 0 at time ¢ = s and where

Lrf(tx) = b(r2,By) - Do f (t,2) + L2 (E, ) (). (24)
We assume that the drift b : [0,7] x R x P(R?) — R? satisfies the following properties.

Assumption (H1).
(1) The drift b is measurable and globally bounded on [0, 7] x R? x P(R%).
(2) For any (t,u) € [0,T] x P(R%), the map b(t, -, u) is n-Holder continuous on R? uniformly with respect
to (t, ) € [0,T] x P(R?), with n € (0,1], i.e. there exists C' > 0 such that for all t € [0,7], u € P(R?)
and x1,x9 € R4
|b(t, 1, 1) — b(t, z2, )| < Clay — xo".
(3) For any (t,z) € [0,T] x R%, the map b(t, z, ) is Lipschitz continuous with respect to the total variation

metric dyy uniformly with respect to (t,2) € [0,T] x R? i.e. there exists C' > 0 such that for all
t€[0,T], » € R? and g, po € P(RY)

’b(t7 z, ,U,l) - b(t7 z, MQ)‘ < CdTV(:u'lv IU'Q)
We can now state the weak well-posedness result.

Theorem 1 (Weak well-posedness). Under Assumption (H1), the martingale problem associated to the
McKean-Vlasov SDE (2.2) is well-posed for all initial distribution p € P(R%). In particular, the SDE (2.2) is

well-posed in the weak sense. Moreover, for any P € C%([s, T]; P(R?)) with Py = u € P(R?), we can define
)

recursively Y(m as the unique weak solution to

{dYt’”) =o(t, X} (X)) dt + dz, te s, T),

2.5
X _ ¢ (2.5)

with [{] = u and ([Ygo)])te[&ﬂ = P. Then, denoting by P* the unique solution to the martingale problem
associated with (2.2) with initial condition € P(RY) at time s, we have

sup dry (P, [XM]) — 0, (2.6)

te(s,T) m—+00
where dpy is the total variation metric.
We prove this result in Section 3.

Remark 1. The well-posedness of the nonlinear martingale problem was already proved in [11]. Therein, the
fixed point theorem is only shown to hold in small time since it is enough to prove the well-posedness. However,
we will need in the following the convergence of the sequence of Picard iterations on the whole interval [s, T
That is why we do the proof a bit differently.

2.2. Properties of the transition density. Now that the well-posedness has been established, we focus on
the regularity of the transition density associated with (2.7). In particular, our aim is to study its regularity
with respect to the initial distribution p. To do this, we fix s € [0,T), 8 € (1, ) and we consider the following
stable-driven McKean-Vlasov SDE

AX5S = b(t, X5, (X)) dt + dZy, t € [s,T),
X =¢ [ =pnePsR).
The associated martingale problem is well-posed using Theorem 1 and there is weak existence and uniqueness

for the SDE (2.7). Moreover the distribution of X} £ depends only on z and not on the choice of the random
variable £ such that [§] = p and we denote it by

(XM = (X4, (2.8)
We introduce, for 2 € RY, the following decoupled stochastic flow associated to SDE (2.7)

(2.7)
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(2.9)

dX;™ = bt X (X)) b+ dZe, b e [, T,
X3t =2 e R

The distribution of X;*** admits a density denoted by p(u, s,t, z,-) by using the parametrix expansion given
in Theorem 5. The distribution of X, has also a density denoted by p(u, s,t,-). Moreover, it satisfies the
following relation stemming from the well-posedness of the martingale problem

pons.t) = [ plncs,tap) duta), (210)
We introduce the following assumption, which is stronger than Assumption (H1).

Assumption (H2).

(1) The drift b is jointly continuous and globally bounded on [0, 7] x R% x P(R9).

(2) For any (t, ) € [0,T] x P(R?), the map b(t, -, i) is n-Hélder continuous on R?, for some fixed n € (0, 1],
uniformly with respect to (t,1) € [0,7] x P(RY), i.e. there exists C' > 0 such that for all ¢ € [0, 7],
p € P(RY) and z1, 75 € RY

|b(t7 L1, lu’) - b(t7 Z2, lu’)| < C|$1 - x2|n‘

(3) For any (t,2) € [0,T] x R? the map p € P(R?) + b(t,z,p) has a linear derivative such that
2=b(t, @, 1)(+) is n-Holder continuous on R? uniformly with respect to (t,z,u) € [0,7] x R? x P(R?)
and %b is bounded on [0, 7] x R? x P(RY) x R%.

(4) F(;r any (t,x,v) € [0,T] x (R?)2, the map p € P(RY) %b(t, x, 1)(v) has a linear derivative such that
fwb(t, z, 1)(v, -) is n-Hélder continuous uniformly with respect to (¢, x, 1, v) € [0, T] x R? x P(R?) x R?
and %b is bounded on [0, 7] x R% x P(RY) x (R9)2.

We state in the next theorem the regularity properties satisfied by the transition density p associated with
the McKean-Vlasov SDE (2.7). These estimates will be crucial to exhibit the regularizing properties of the
semigroup associated with (2.7).

Theorem 2 (Regularity of the transition density). Let us fix (¢,%) € (0,T] x R%. Under Assumption (H2),
the mapping (u, s,7) € Pg(R?) x [0,¢) x R? = p(u, s, ¢, 7,y) belongs to C1(Pg(R?) x [0,¢) x RY) (see Definition
(5)), and is solution to the following backward Kolmogorov PDE

8329(,&, s, t,x, y) + fsp('y Syt y)(:u’ l‘) =0, V(:uv S, l‘) € Pﬁ(Rd) X [07 t) X Rda
. (2.11)
p(p, s, t,x,-) — 0z, in the weak sense,
s—t—
where % is defined, for smooth enough function h on R¢ x Pg(R%), by
dz
,,%Sh(,u,a:) = b(saxau) : axh(:uﬂx) + /]Rd [h(/%x + Z) - h(:uﬂx) -z 3xh(ﬂ7$)] W
)
b [ o) B0 () () () (212)
Rd om
) ) ) dz
—h ——h — 2 Oy—h(pu, —d .
w [ [gmhte o+ 2) = goohna)(e) = 20, o-hln o) iy duto)
Moreover, it satisfies the following properties.
e There exists C' > 0 such that for all j € {0,1}, u € Ps(RY),0< s <t <T and z,y € R?
O2p(p.s,t,2,y)| < C(t— ) 4p)(t = 5,y — ). (2.13)

e For all j € {0,1} and v € (0,1] with v € (0, (2a —2) A (n + o — 1)) if j = 1, there exists C' > 0 such
that for all u € Pg(R?), 0 < s <t <T and x1,79,y € R?
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100D, 5,8, 01, ) — Ap(, ., 32, y)| < C(t— )" oy — wal [P (¢ — 5,y — 1) + 9/ (t — 5,y — 22)] . (2.14)
e There exists C' > 0 such that for all u € Pg(Rd), 0<s<t<T,uzywveR?

2 o5, )(0)| < Ol =) =5t — 5y~ ). (215)

e There exists C' > 0 such that for all u € Pg(Rd), 0<s<t<T,uzyveR?

0 sop(i 1, 2,)(0)| < Ot = 8)'F 50t — sy — ). (2.16)

e There exists a constant C' > 0 such that forall 0 < s <t <T, p € Pg(Rd), z,y € RY

‘85])(/14, S, ta X, y)’ < C(t - 8)_1p0(t —SY - ‘T) (217)

e For all v € (0,1] N (0, (2 — 2) A (n + o — 1)), there exists C > 0 such that for all u € Pz(R%),
0<s<t<T,uzy,v,vs €R?

<C(t— s)—7’7;w+1—§ lvg — w70 (t — s,y — ). (2.18)

) )
80%29(#7 S,t,$,y)(’01) - 80%29(#7 S,t,$,y)(’02)

e For all v € (0, 1], there exists C' > 0 such that for all , u € Pg(Rd), 0<s<t<T,uzvy,v,vy € R

SC(t—s)l_%\vl — | p°(t — s,y — ). (2.19)

6 )
‘%p(/% 87t7x7y)(vl) - %p(/’“ S,t,x,y)(’UQ)

e For all v € (0, 1], there exists C' > 0 such that for all u € PB(Rd), 0<s<t<T,zy,x9,y,vecR

<Ot — )% |21 — 2]

5 )
‘%p(m s, t,x1,y)(v) — %p(u, s,t,x2,y)(v)

[po(t —s,y—x1)+ Pt — s,y — z2)] . (2.20)

e For all v € (0,1] N (0,7 + o — 1), there exists C > 0 such that for all 4 € Ps(RY), 0 < s <t < T,
T1,%2,Y,V € Rd

<C(t—s) oy gL |x1 — xa|”

1) 1)
av%p(lu7 S, t) xy, y)(U) - av%p(lu7 S, t) z2, y)(’U)

[po(t—S,y—ﬂfl)—|—,00(t—8,y—332)] . (221)
e For all j € {0,1} and v € (0,1] with v € (0, — 1+ n) if j = 1, there exists C' > 0 such that for all
0<s<t<T, i, o GPB(Rd), z,y € RY

14y+j

|8gp(ﬂlvs7tv$7y) - 8%1)(,&2,8,75,33,3/)! < C(t - 8)1_ a W;/(/JIHuQ)p](t —SY—- $) (222)
e For all v € (0, 1], there exists C' > 0 such that for all 0 < s <t < T, puy,ug € Pg(]Rd), z,y,v € RY

_ X411
p Fo < C(t—s) ot oW (1, p2)p’(t — 5,y — ). (2.23)

1) 1)
‘_p(iulv S,t,$,y)('U) - _p(lLI’27 S,t,$,y)('U)

e For all v € (0,1], there exists C' > 0 such that for all 0 < s <t < T, puq, 9 € PB(Rd), z,y,v € R?

< C(t—s) "o W] (a, p2)p(t — s,y — x). (2.24)

) )
80%]9(“17 s,t,x,y)(v) - 80%1)(#27 S,t,x,y)(v)
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e Forall j € {0,1}, v € <0, 1-— %), there exists a constant C' > 0 such that for all ¢ € (0,77, s1, s2 € [0,1),
p € Ps(RY), z,y € R

’a;]cp(,uu S1, tu Z, y) - 8%])(“7 52, tu x, y)’

51— 827 51— 82|77
co| B2l gy a2 sy —a)| . (225)
(t—s1)""a (t —s2)7"a
e For all v € (0,1), there exists a constant C' > 0 such that for all ¢ € (0,77, s1,s2 € [0,t), u € Ps(R%),

:E,y,veRd

) 1)
‘%p(u7 S1, t7 x, y)(?)) - %p(:uu 52, tu Z, y)(U)

|51 — s2|7

(t A 82)7+é_

|s1 — sa|”

(t —s1V SQ)PH_%_

<C 1p0(t—81\/32,y—x)+

1p0(t—81/\32,y—x)] . (2.26)

e For all v € (0,1 + "T_l>, there exists a constant C' > 0 such that for all ¢ € (0,7, s1,s2 € [0,1),
e Pﬁ(Rd)7 r,Y,v € R4

) )
8@%29(#7 317t7x7y)(v) - av%p(/% Sg,t,lﬂ,y)(’U) (227)
51— s2|” 0 51— s2|” 0
< - - - —z).
<C [(t—sl\/sz)”’J’é‘H%p (t—s1Vs2,y—z)+ (t—sl/\52)’7+$‘1+%p (t—s1Ns2,y — )
e Forall p € Ps(RY),0<s<t<T,z,v€RY we have
) 1)
R %p(lu7 s,t,x,y)(v) dy = Rd av%(#) s,t,x,y)(v) dy =0. (228)

The proof of this theorem is postponed to Section 4.

Remark 2. Contrary to the Brownian case studied in [8, 7], we do not need to prove C? regularity with respect
to z € R? and p € Ps(R?). Such controls would impose stronger assumptions.

2.3. Backward Kolmogorov PDE on the space of measures. We can now focus on the study of the
semigroup associated with (2.7) acting on functions defined on Ps(R?). Let us recall that 8 € (1,a) is fixed.
For a fixed function ¢ : Pg (RY) — R, the action of the semigroup on ¢ is given by the map U defined by

U(t,n) = o(IX7")), V(t.p) € [0,T] x Pa(R?), (2.29)

where [X2/] is the flow of (2.7) where the terminal distribution is equal to u and was defined in (2.8). We
aim at studying the regularizing properties of the semigroup, i.e. the gain of regularity between ¢ and U with
respect to the measure variable.

We define the space of functions on which we make act the semigroup.

Definition 2. Let us fix § € (0,1]. The space C°(Pg(R?)) is defined as the set of continuous functions
¢ : Ps(R?) — R admitting a linear derivative such that there exists a positive constant C such that for all
JURS 'Pg(Rd), V1,V2 € R

0 0
—¢(u)(01) = () (v2)| < Clor — waf’.

om om
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We state in the next theorem the regularizing properties of the semigroup acting on C‘s(Pg(Rd)) and we
describe its dynamics through the backward Kolmogorov PDE that it satisfies.

Theorem 3 (Backward Kolmogorov PDE). Let us fix ¢ € C°(Pg(R%)). Then, under Assumption (H2), the
function U defined in (2.29) belongs to C°([0, 7] x Pg(R%))NCL([0,T) x P5(R?)) (see Definition 5) and satisfies
the following properties.

e There exists a positive constant C such that for all t € [0,7), u € Pg(RY), v € R?

< C(1+w]°). (2.30)

)
—U(t
U0
e There exists a positive constant C such that for all t € [0,7), u € Pg(RY), v € R?

8
v tu
o5 ~U(t, 1) (v)
e For all v € (0,1]N(0, (2a—2) A (n+a—1)), there exists a positive constant C' such that for all ¢ € [0,T),

n e ’Pﬁ(Rd), V1,02 € R4

<O -t) . (2.31)

1—v

<O — 1) o1 — o] (2.32)

0u 5o (1, 1) (1) = DUt ) (02)

Moreover, U is solution to the following backward Kolmogorov PDE

{atU(t,u) + LU, )(p) =0, V() €[0,T) x Pg(RY), (2.33)

U(T, p) = ¢(p), Vue Pa(RY),

where %, was defined in (2.12). It is the unique solution to (2.33) among all functions in C°([0,T] x Pz(R%)) N
CL([0,T) x Ps(R?)) satisfying (2.30), (2.31) and (2.32).

We prove this result in Section 5.

2.4. Quantitative weak propagation of chaos. We are now going to use the regularizing properties and the
dynamics of the semigroup given in Theorem 3 to prove quantitative propagation of chaos for the mean-field
interacting particle system associated with (2.7). Let us introduce (Z"),, an i.i.d. sequence of a-stable processes
having the same distribution as Z and (X{'), an i.i.d. sequence of random variables with common distribution
to € Pg (RY), where 8 € (1, ) is always fixed. For an integer N > 1, the system of N particles associated with
(2.7) is defined as the unique weak-solution to the following classical SDE on (R%)Y

dXp™ =b(t, Xp" EY) dt +dzf, te[0,T), ie{l,...,N},

N
A= D Sy, (2.34)
o
XN = X3

This linear SDE on (R%)Y is well-posed in the weak sense using [25]. The limiting McKean-Vlasov SDE
is (2.7) starting at time s = 0 from any random variable ¢ with distribution py € Pg(Rd). We denote by
(¢)ejo,m the flow of marginal distributions of its solution. Let us define the space of test functions that we
use to quantify the propagation of chaos of the particle system (2.34) towards the McKean-Vlasov SDE (2.7).

Definition 3. For § € (0,1] and L > 0, we define the space Cg’é(Pg(Rd)) as the set of continuous functions

¢ : Ps(R?) — R admitting two linear derivatives %qﬁ and ({iqﬁ such that for all u € Pg(RY), vy, vg, v}, vy € RY

m2

2 () n) — 5o 9()(v2)| < Lfor — wal’
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nd 52 / 52 ! 4 ! 116
52 P (W, v1) = =5 d(u)(v2,v3)| < L(for — w2 + Jvg — o).

Remark 3. Note that C%J(PB(RC[)) is a subspace of C°(Ps(R?)) defined in Definition 2.

We now state our quantitative propagation of chaos result.

Theorem 4 (Quantitative weak propagation of chaos).

Let us fix 6 € (0,1], L >0 and v € (0,1] N (0, (d + o — 1) A (20 — 2) A (n + o — 1)). Then, under Assumption
(H2), there exists a positive constant C = C(d, T, «, 8, (H2),~,0d, L), non-decreasing with respect to T', such
that for all ¢ € C2°(Ps(R%)), it holds

_ _ C
Blo ) ()] < CEWAGl o) + — (2.35)
and
_N _N C
[E(¢(rr) — élur))| < CEWA(Rg ', o) + 5 - (2.36)
Moreover, if g € Pys(R?), we have for all ¢ € C2°(Pg(R%))
N C
E(¢(7) — (ur))l < 77 (2.37)
The proof is given in Section 6.
Remark 4. e The initial data terms can be handled using Fournier-Guillin [10], in particular in the case
where o has more moments than . Indeed, one has if pg € Pq(Rd) with ¢ > 1
1
N_%—G—N_(l_E), if d=1 and ¢q# 2,
_ (1t
EW1 (T s o) < C N-2ln(1+N)+N (1 q>, if d=2 and q¢#2,
1
N_é—I—N_(l_E), if d>3 and q;éd;fl.

e Let us denote by [[¢||Lip := sup,, w for ¢ : R — R. The set

{(;5 : Pg(Rd) — R, Jp: R — R, with ||¢||Lip < 1, and ¢(p) = /d pdu, Yu € Pg(Rd)}
R

is contained in Cll ’1(775(Rd)). We can thus quantify the mean-field limit with respect to W; thanks to
Theorem 4. Indeed, we have by the Kantorovich-Rubinstein theorem if g € ng(Rd)

sup Wi([X;"),m) = sup  sup  |Bep(X;") - / @ dp
t€[07T] tG[O,T} ®s ”QO”LipSl

N
1
= sup sup |E (N Z¢(vaN)> _ /Rd o duy

t€[0,7] ¢, lellLip<1

= sup  sup E/ sodﬂiv—E/ o diy
€01 o, lplp<t | JRe R

= sup  sup [Eo(;) — Eo(u)]
te[0.T] ¢, [lllLip<1
_Cr
where v € (0,1] N (0,(0 + o — 1) A (2a —2) A (n + o — 1)) and since the constant C' in Theorem 4 is
non-decreasing with respect to T
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Let us compare our result with the existing literature.

Remark 5. e Let us formally take v = 2, which corresponds to the Brownian case treated in [7]. Then,
we can take v = 1 and S = 2 in Theorem 4. The rates of convergence proved in our theorem are
precisely those proved in [7] (see Theorem 3.6), i.e. N~2 for (2.35) and N~! for (2.36).

e In dimension d = 1, we recover with (2.35) the same rate of convergence obtained in [12], for the strong
propagation of chaos in L!, since EWy (7, j10) < oNG! by [10].

e In [3], the example of a nonlinear Ornstein-Uhlenbeck is treated using the same method. It corresponds
to take

b(t, 1) =z + /R yduly).

However, there is preliminary step in the proof which consists in removing the jumps larger than the
number of particles IV of all the noises. This is due to the unboundedness of b with respect to both
space and measures variables in this case. It is proved in [3| that there exists a positive constant C
such that for any ¢ € Cll’l(Pﬁ(Rd))

In(N)a

E oY) — d(ur)| < CEWL(@Y, 1o) + O T (2.38)

@

which is better than (2.35) in spite of our stronger assumption of boundedness on b. Indeed, by removing

the large jumps in a first step, we can take § = « in (2.35), up to the logarithmic factor present in

(2.38). This factor precisely comes from the fact that f1<|z|<N |z|* dv(z) N In(NV), which is the
==l= —+00

price to pay to take S = « in (2.35). The estimates (2.36) and (2.37) are better in our framework since
the rate of the corresponding estimates in [3] is N!= and we can take v > o — 1 in Theorem 4. This
is natural since the drift is unbounded in [3].

3. WELL-POSEDNESS OF THE NONLINEAR MARTINGALE PROBLEM AND PICARD ITERATIONS

The section if dedicated to the proof of Theorem 1. The proof is based on the Banach fixed point theorem
on a suitable complete metric space.

Introduction of the complete space and parametrix expansion. Let us consider the space C°([s, T]; P(R?))
which is complete under the uniform metric dsr associated to the total variation metric dry defined, for

P,Q € C°([s, T); P(RY)) by

ds,T(Pa Q) ‘= Ssup dTV(PraQr)'
re(s,T]

We introduce the space

Ay = {P e C°([s, T]; P(RY)), P, = M}.

Note that it is a closed subspace of (C°([s, T]; P(R?)),ds 1) and thus (Asr ,,ds7) is complete. For any P €
As. 1, we consdier the following linear time-inhomogeneous SDE

_s7§7P

dX0 = b, X0 P dt + dz,, te s, T,
X — e

Notice that this SDE is well-posed in the weak sense since it is the case for the related linear martingale
problem by [25]. Its flow of marginal distributions ([X; ’g’P])tE[S,T] belongs to As 7. We can thus define a map
T:Asryu — As1y such that for any P e Agr,, Z(P): = [th’s’P]. We remark that a probability measure P

on the Skorokhod space D([s, T]; R?) solves the martingale problem related to the McKean-Vlasov SDE (2.2)
if and only if its flow of marginal distributions (Pt);[s,7) is a fixed point of Z. Our goal is thus to prove that
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for some m > 1, the m-th iterate Z(™ is a contraction on (As1pds 7). We fix Pl P2 ¢ As 1, and we define

recursively for all m > 1, Yl’(m) and 72’(7”) as the unique weak solutions to

{in’(m):b(t,Yi’m,[Yi’(m_l)]))dterZt, tels,T], ie{1,2}, 51)

X" =g,

s

with ([Yi’(o)])te[s,ﬂ = P;. We also introduce the associated decoupling fields. Namely they are the weak
solutions to

{de’i’(m):b(t,Yf’i’m,[Xi’(m_l)]))dt—i—dZt, tels,T], ie{1,2}, 5.

—,i,(m)

X =z.

Thanks to Theorem 5, the distribution of Yf’i’(m) has a density with respect to the Lebesgue measure denoted
by pim(i,s,t,x,-). Remark that the notation makes sense since by weak well-posedness, the distribution of

Yf’i’(m) depends on the initial condition £ only through its distribution p. Moreover, by weak well-posedness

of SDE (3.1), Yi’(m) has a density p;m(u, s, t, ) which satisfies the following key relation

Pism (1, 8,1, y) = /dpi,m(u,s,t,x,y) dp(z).
R
Let us give the implicit parametrix representation of p; (i, s,t, z,y). We define for all 0 < s <r <t <T and
z,y € RY
ﬁ(r,t,x,y) = q(t—r,y—:v), (33)

Him(p, 7t 2, y) == b(r, z, [X:,(m_l)]) - 0xp(r,t, x,y).

The space-time convolution between to functions f and g is given by

t
f®g(,u,7’,t,x,y) = / / f(luararluxuZ)g(N7T,7t7Z7y) dz dT,u (34)
r JRd

when it is well-defined. The convolution iterates of H; ,, are defined recursively by Hf;;l =Him® ’Hfm By

convention H?,m = Id. By Assumption (H1), we can apply Theorem 5 which ensures that

pi,m(u7 S, t7 x, y) = ﬁ(37 tu x, y) + pi,m X Hi,m(u7 S, t7 T, y) (35)
Using Theorem 5 and Proposition 8, we deduce that there exists a positive constant C' such that for all i € {1, 2},
m>1,k>1,0<s<r<t<Tandz,yecR?
|pi,m(:u7 S, ta €, y)| < 0,0o(t —5Y = :E)’

HE (7t 2,y)| < C’k(t—r)_clﬁ(k_l)(l_i)lﬁlg jl1— 1 1— 1 Pt — 1y — ) (3.6)
i,m\f Ty by by > i o) o S .

For any 0 < s <r <t<T, z,y € R we denote by
Apim (i, 8,8, 2,y) = prm(p, 8,1, 2,y) — p2m(p, s, t,7,y),
AHm(N7 T, ta €, y) = %1,771(”7 T, ta €, y) - %Z,m(u7 T, ta €, y)

It follows from the definition of H; y,, the Lipschitz continuity of b(s,x,-) with respect to the total variation
metric (and its expression as the L' norm of the difference of the densities) and (B.17) that for some constant
C > 0, one has for all m > 1

AH 1 (7 b2, y)| < Cpy (K0 ™), X2 (8= 1) 5 pl (= 1,y — ) (3.7)

< C/ ‘Apm(lu’7 5T, $l7 y,)‘ d,u(:z:') dy, (t - r)_%pl(t -nYy-—- 33‘)
R2d
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We similarly obtain for m = 0 that

MM (1,7t 2, y)| < Cdy (P PP)(E—7) 75 p! (¢ =1y — ). (3.8)
Let us prove that for all m > 1, the following representation formula holds true
o
Ap (i, 5,t,2,9) = > Pom @ A @ HE (1,58, 8, 3,), (3.9)
k=0

the series being absolutely convergent. Starting from the implicit parametrix representation formula (3.5), we
have

Apm(/*‘v S, t7 x, y) = Apm ® Hl,m(lu’7 S, t) x, y) + P2,m & AHm(M? S, t7 x, y)
Iterating this procedure, we easily prove by induction that for all N > 1
N
N+1
Ap (5, 4,2,9) =Y Do @ MM @ HE (18,8, 2,y) + Apm @ HYE (1,5, 8,7, y). (3.10)
k=0

We want to take the limit N — 400 in (3.10). By using (3.6) and the convolution inequality (B.16), we obtain
that for some positive constant C'

‘Apm®”HN“(uvs t,a y)‘

N
1 1
< O(p — _ N+1 _é 1 AT B
—/S/Rde (r—s,2—2)C" " (t —7) 1;[ <<1 >,1 a>p(t ry —z)dzdr
N . .
< OoN+2 N+1 1 LN o, Y
<OV - 1_1 (41 ),1 ) e

The upper-bounded converges to 0 as N tends to infinity thanks to the asymptotic behavior of the Beta func-
tion as it is the general term of a convergent series. Following the same lines, we prove using again (3.6)
that the series appearing in (3.10) is absolutely convergent. Letting N tends to infinity in (3.10) yields the
representation formula (3.9).

We are now going to prove by induction that there exists a positive constant C' such that for all m > 1,
t e (s,T], z,y € R?

0T ‘ 1 1
|Apm (1, 8, t,z,y)| < C™(t—s)™ H <1 +j <1 — E) ,1— E) ds,t(Pl,P2)p0(t —s,y—uxz). (3.11)

J:
Base case m = 1. It follows from (3.6), (3.8) and the convolution inequality (B.16) that
i ® 810,60 <C [ [ 90 = 0.t = 1) R P P 0y - 2z
< C’(t—s)l__dst(Pl PHO(t — s,y — ), (3.12)

since ds (P, P?) < ds (P, P?) for r € [s,t]. Following the same lines and using the bound (3.6) on ’Hfl, we
show that for some constant C' > 0, one has for all £ > 1

P21 ® AHL® ’Hlf’l(,u, s,t,x, y)

k—1
< KCO(t—5)hdyy (P, POt — 5,y — 5)CH (¢ — 5 0-3) ] B <z (1 - l) - 1) .

=1
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By summing over k£ > 1, we deduce using the asymptotic behavior of the Beta function that for some constant
C > 0, we have

[e.e]
> ‘le © AH1L @ HY (1, 5,t,2,y) (3.13)
k=1

< Ot — 8)1 7w dyy (P, P2t — 5,y — ).
Plugging (3.12) and (3.13) into the representation formula (3.9) for m = 1 concludes the proof of the base

case.

Induction step. We assume that (3.11) holds true at step m for a certain constant C' that will be chosen at
the end of the induction step to ensure that (3.11) is verified at step m + 1. We denote by K any constant
independent of m and C' appearing in the induction step. By using (3.7), one has

‘AHm+1(M,T,t,$,y)’ < K(t—r)_épl(t—r,y _‘T)
m m(1—l)m_1 . 1 1 1 p2
C"(r—s) o Bl1+ 1—5 ,1—5 dsr (P, P?).
j=1

This inequality together with (3.6) yield

P2,m+1 @ AHmi1(p, 5,8, 2,9)| (3.14)

1

t
= K/ / Pr—s,2—2)(t —r)"3pl(t —ry — 2)C™(r — s)"(17a)
s JRA
m—1 1 1
H B <1 +] <1 - _> 71 - _> dsm(Pl,Pz)dZdT
i=1 “ «

< KC™(t— (m+1 (1-2) H <1 +J <1 — é) ,1— é) dsvt(Pl,P2)p0(t — 8,y — ).

Following the same lines and using the bound (3.6) on ’Hlfm 11, we show that for some constant K > 0, one
has for all £k > 1

< KO™(t — s)(m (1~ H <1+g<1—é> 1—é>dst(P1 Pt — s,y — )

e ife(o-1)a-b).

By summing over £ > 1, we deduce thanks to the asymptotic behavior of the Beta function that for some
constant K > 0, we have

00
Z ‘pZ,mJ,-l X A,}-lm,-i-l @ Hllg,m—i-l(:u'a s, t, x, y)‘ (315)
k=1

< KC™(t — 5)m+D(1- f[ <1+g<1—é> 1-%)%(131 P20t — s,y — ).
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Finally, plugging (3.14) and (3.15) into the representation formula (3.9), we obtain

- 1 1
|Aps (1,5, t 2, )| < KC™(t — )V (-2) ] B <1 + (1 — 5) 1— a) do i (P', P?)p"(t — 5,y — @).
j=1

This ends the proof of the induction step provided that we choose C' > K in (3.11), which is possible since K
does not depend on m.

Conclusion of the proof of Theorem 1. Using the asymptotic behavior of the Beta function, we get that
for m large enough, we have for all t € [s,T], z,y € R?
’Apm(,ufu S, tu x, y)’ S Eds,t(P17 P2)P0(t —S5Y— x)?
where € > 0 is such that

1
6/ po(t—s,y)dyzs/ P(Ly)dy = 5.
]Rd

R4
Finally, we have

d57T(I(m) (Pl), z(m) (P2)) = sup sup
te(s,T] h, Ao <1

sup / Apmlpts s, t,,)| da(x) dy
te(s, T JR2d

L B0 05:8.9) = D2l t.9))

IN

IA

1
5ds,T(Pl, P?).

The Banach fixed point theorem ensures that Z has a unique fixed point in Ag 7 ,. Thus, the martingale
problem associated to the McKean-Vlasov SDE (2.2) is well-posed. Moreover, we know that for any initial
data P € A, 7, the sequence (I(m)(P))mzl converges towards the solution to the martingale problem with
respect to the metric ds . This proves (2.6).

4. PROPERTIES OF THE TRANSITION DENSITY

This section is devoted to prove Theorem 2. Let us introduce the parametrix expansions of the densities
that is at the core of the method. We denote by ¢(t,-) the density of Z;. We define for all 0 < s <r <t < T,
p € Ps(RY) and z,y € R?

i)\(37r7t7‘ruy) = q(t_r7y_x)7 (41)
H(p, s, 78,2, y) = b(r, @, [XPH]) - 0up(s, 7, b, 2, y).

Note that the proxy p(s,r,t,x,-) does not depend on p and s and is the density at time ¢ > r of the solution to

{d)?[ T — d7Z,,

= 4.2
X, =zx€ ]Rd, (42)

and H is the associated parametrix kernel. We also define the space-time convolution operator between to
functions f and g by

t
f®g(u7 87 T7 t7 ‘T7 y) :: / / f(/‘l/7 87 /r‘7 /r‘/7 x7 Z)g(u7 87 T,7t7 27 y) dZ dT,7 (4'3)
r JRd

when it is well-defined. The space-time convolution iterates ¥ of H are defined recursively by H! = H
and HF .= H ® H*. By convention f ® H° is equal to f. In order to simplify a bit the notations, we will
write f ® g(p, s,t,x,y) := f @ g(w, s,s,t,x,y), H(u,s,t,z,y) := H(u, s, s,t,z,y) and the same for other maps.
Finally, we denote by ® the solution to the following Volterra integral equation

P(p,s,r,t,x,y) =H(p, s, rt,z,y) + HQ P(u,s,7,t,2,y),
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which is given by the uniform convergent series

(o]
O, s, b, y) = > H (5,7, 1,,y). (4.4)
k=1

Step 1: Properties of the Picard approximation of the transition density associated to (2.9). In
order to study the regularity with respect to u of p(u, s,t,x,y), we consider an approximation sequence based
on Picard iteration. We fix a measure v € Pg(Rd) and s € [0,7") and we start by considering the following
stable-driven McKean-Vlasov SDE

ax; oW = b, x5 vy dt +dz,, te s, T,
X7 =g 6= e Py,
The associated martingale problem is well-posed and there is weak existence and uniqueness for SDE (4.5).

As previously, the distribution of X} W) i5 denoted by [X;* ’(1)]. We also introduce, for 2 € R?, the following
decoupled stochastic flow associated to SDE (4.5)

(4.5)

ax; O =y xp W (x5 O) de 4 dzy, e [s,T), (4.6)
xoml) = g e Re, '
Then, for all m > 1, we define recursively
x50 — ¢ [ = p e Pa(RY).
and
de,m,u7(m+1) _ b(t,Xf’m’“’(m+1), [th%(m)]) dt +dZ,, te[s,T), A
x5om ) e R, (48)

Note that these are note McKean-Vlasov SDEs. The densities of [X; ’“’(m)] and [X;"" ’(m)] are denoted by
Pm (i, 8, t, ) and pp,(p, 8, t, x, ) and satisfy

Pm (1, 8,8, y) = /Rd Pm (1, 8, t, . y) dp(x). (4.9)

We define for all 0 < s <t < T, r € [s,t), p € Ps(R?) and z,y € R?
ﬁm(s7r7t7$7y) = ﬁ(r,t,:n,y) = Q(t -y - 33), (410)
Hon (1, 5,78, 2,) = b(r, 2, [X2P D)) - 0,5 (s, 7,8, 2, y).

Note that the proxy ppn,(s,rt,x,-) does not depend on m, p and s. We denote by @, the solution to the
following Volterra integral equation

(pm(,u'u 37 T7 tu ‘Ta y) = ’Hm(,u, 37 T7 tu ‘Ta y) + Hm ® (I)m(/% 87 7’, t7 .Z', y)7 (411)
which is given by the uniform convergent series
[e.e]
ém(ltjﬁ S7T7t7x7y) = Z/Hf:n(#7 S7T7t7x7y)' (4'12)
k=1

Let us recall that the Beta function B is defined, for all z,y > 0 by

B(z,y) = /01(1 )l g — %7

where I' is the Gamma function.
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Applying Proposition 8 and Theorem 5, since all the controls are uniform with respect to the measure
argument and thus on m > 1 too, we deduce the following two propositions.

Proposition 1. e There exists C' > 0 such that forall k > 1, m > 1, u € Pg(Rd), 0<s<r<t<T
and z,y € R?
1 1 kol 1 1
|Hﬁmwmmxwﬂsoﬂt—m<ﬁ@*“F”ITB<iG‘iﬁjl—a>¢@_ny—@. (4.13)
j=1

e For v € (0,7n] such that v < a — 1, there exists C' > 0 depending on « such that for all £ > 1, m > 1,
uepﬁ(Rd), 0<s<r<t<Tandz,zs,ycR?

1
|an(uv S,T‘,t,$1,y) - Hfrz(#) S,T,t,$2,y)| < Ck(t - r)_%+(k_1)(1_é)|$l - x2|ﬂy

§B<—g+ﬂ' <1— 1) 1= l) [Pt —ry—m)+p'(t—ry—a2)]. (4.14)

« «

e The series (4.12) defining ®,,, is absolutely convergent and there exists C' > 0 such that for all m > 1,
p€Ps(RY, 0<s<r<t<TandzyecR?

| Do (8,78, 2, y)| < C(t — T)_épl(t — 71y — ). (4.15)

e For v € (0,n] such that v < a — 1, there exists C' > 0 depending on v such that for all m > 1,
€ Pg R, 0<s<r<t<Tandxy,x9,y € RY

o+l
’®m(ﬂ,S,T,t,xl,y)—CPm(,u,S,T,t,$2,y)‘ S C(t_r) Wa "Tl—xQ”y [pl(t - Y — .Z'l) + pl(t -y - 1'2)] . (416)

Proposition 2. For any m > 1, u € Pg(]Rd), 0<s<t<Tand z € R? the distribution of th’x’”’(m) has a
density with respect to the Lebesgue measure denoted by py,, (1, s,t, x, ) and given by the absolutely convergent
parametrix series

(o.]
Pty 8, ,y) = Pls, t,,y) + P @ HE, (1, 5,1, 2, y)
k=1

=p(s,t,2,y) + D@ P (s, t,2,y). (4.17)

Foranym > 1, u € Pg(Rd), 0<s<t<TandyecR? pn(us,t, - y)is of class C' on R? and py, (i, 5,1, -, y)
and Oypm(u, s,t, -, y) are continuous on R?. Moreover, the following properties hold true.

e There exists C' > 0 such that for all j € {0,1}, m > 1, u € Ps(R%), 0< s <t <T and z,y € R?
2D (11,5, t,2,9)| < Clt = )75 p7 (8 = 5,y — ). (4.18)
e For all j € {0,1} and v € (0,1] with v € (0, (2 —2) A (n+ o — 1)) if j = 1, there exists C > 0 such
that for all m > 1, u € Pg(R?), 0 < s <t < T and 1,79,y € R?

102D (11,5, £ 1, 9) = Dpm (11, 8,1, w2, y)| < Clt—s)""w |1 —wa|7 [p/(t = s,y —21) + p/ (¢ — 5,y — x2)] . (4.19)
We state in the following proposition all the properties satisfied by the transition densities p,, which are
used to prove Theorem 2. As the proof is rather long and technical, it is postponed to Section 7.
Proposition 3. For any m > 1, ¢ € (0,77, y € RY, the map (p,s,7) € Pg(RY) x [0,¢) x RY > p(-,-,t, -, 9)
belongs to C*(Pg(R?) x [0,t) x RY) and satisfies the following properties.
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e There exists C' > 0 such that for all m > 1, u € Pg(Rd), 0<s<t<T,uzyveR?

< (t—s)"ap’(t s,y — x)

f:Ck(t _ g)-D(1-2) ]ﬁB (1 +7 (1 - é) 11— é) . (4.20)

k=1 j=1

e There exists C' > 0 such that for all m > 1, u € Pg(Rd), 0<s<t<T,uzyveR?

‘%pm(u, s, t,x,y)(v)

<(t—s)"s et — 5,y — @)

Bt — g)k-D(+IF 111 pe=1y 1 421
Zo HB<+ +i(1+—)1-—) | (421)

e For all 7 € (0,7 A (v — 1)) there exists a constant C' > 0 such that for all m > 1,0 < s <t < T,
e Pﬁ(Rd)’ T,y € R¢

1)
v e Mm ) 7t7 )
Ov 5 —pm(k; 5,1, 2,y)(v)

0 (pt, 5.ty 2, y)| < (8 —8) " p It — s,y — ) 3 OF(t — o) B D0+2T)
k=1

]ﬁ3<g+0—1) <1+n7_1>,1—é>. (4.22)

j=1
e For all v € (0,1] N (0, (2 — 2) A (n + a — 1)), there exists C' > 0 such that for all m > 1, u € Ps(R%),
0<s<t<T,uzy,v,vs €R?

1) ) “ley 41
av—pm(ﬂ737t7x7y)(vl) - 8U_pm(,u737t7xuy)(v2) S (t - S)n @ ++1 o ’Ul - U2‘7P0(t -5y — .Z')

om om

g:l(?k(t—s) (1422 HB<1+ j<1+"7_1>,1—é> . (4.23)

e There exists C' > 0 such that for all v € (0,1], m > 1, p € PB(Rd), 0<s<t<T,uzvy,v,vs € R

1) )
‘%pm(lu7 S, t) z, y)(Ul) - %pm(:uv S, t7 €, y)(UQ)

SC’(t—s)l_ltTwhq — Pt — s,y — ). (4.24)

e There exists C' > 0 such that for all v € (0,1], m > 1, p € PB(Rd), 0<s<t<T,z,x9,y,veR?

<Ot —s) 7 o — 2ol

1) 1)
‘%pm(,l% S, t7 ap y)(U) - %pm(/% S, t) z2, y)(U)

[po(t —s,y—x1)+ Pt — s,y — x9)] . (4.25)
e For all v € (0,1]N (0,7 +a — 1), there exists C > 0 such that for all m > 1, u € Pg(RY), 0< s <t < T,
T1,%2,Y,V € Rd

—5

1) 1)
av%pm(/% S,t,ﬂj‘l,y)(’U) - av%pm(/% S,t,ﬂj‘g,y)(’U) < C(t - S) +1_7 |$1 - $2|’y

[po(t —s,y—x1)+ Pt — s,y — x2)] . (4.26)
e There exists C' > 0 such that for all v € (0,1], m > 1, ,ul,,ug EPs(RY, 0<s<t<T,z,yecR?

’pm(,ula S7t7‘7:7y) pm(,u27 S, t Zz y)‘ < C(t - S) e Wl (N17N2)P0(t -5y - ‘T) (427)
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e For all j € {0,1} and v € (0,1] with v € (0, — 1+ n) if j = 1, there exists C' > 0 such that for all
m>1,0<s<t<T, ui, o GPB(Rd), z,y € RY

I4+y+3

| pm Hi, 8.t y) 8%pm(,u2,8,t,x,y)| < C(t - 8)1_ Wl (leu2)pj(t —5Y— l‘) (428)

e For all v € (0,1], there exists C > 0 such that for all m > 1, 0 < s < t < T, pu1,pu2 € Ps(RY),
z,y,v € R?

1) 1) _ygq_1

%pm(/il,s,t,!ﬂ,y)(v) —%pm(,ug,s,t,x,y)(v) < (t—S) atl aW](M17#2)p0(t_s7y_$)
ic’f(t HB 1——+ 1—l =) (4.29)
k=1 7 o

e For all v € (0,1], there exists C > 0 such that for all m > 1, 0 < s < t < T, uy,pu2 € Pg(R?),
T, Y,V € R4

n—y—1
«@

1) 1) _1
av%pm(,ul,s,t,x,y)(v) _av_pm(ﬂ%sat,x,y)(v) < (t_s) i Wy(ul,,ug)po(t—s,y—x)

om

ch (kl )1+ HB<1+_+ <1+HT_1>,1—é>. (4.30)

e For all j € {0,1}, v € <0,1 — —> there exists a constant C' > 0 such that for all m > 1, t € (0,77,
51,82 € [0,1), p € Pg(RY), z,y € R?

|azjnpm(lu7 817t7$7y) - azjnlpm(uvs%tvljvy”
_ ol . — ol .
SclMﬁ(t—sl,y—x)+ |31 = 2| .p](t—SQ,y—x)] . (4.31)

t—s)ta (t — so)7ta

e For all v € (0,1), there exists a constant C' > 0 such that for all m > 1, t € (0,T], s1,s2 € [0,1),
e Pﬁ(Rd)7 T,Y,v € R¥

1) )
‘%pm(lu7 51, t) z, y)(U) - %pm(:uv 52, t7 z, y)(’U)

51 — 897 51— 82|7
< [ 51 2‘+l_1po(t—81\/82,y—$)+ Lo 2‘+1_190(t—31/\32vy_$)] (4.32)
(t—Sl\/Sg)ﬁ/ 2 (t_sl/\SQ)PY ¢
3 =D TT 1 L=l
C*(t — 51\ 55) R~ D(1=3 Bll2—~—Z| A1l -){1—-=],1——].
2 ( S1 82) ]1;[1 vy +(] ) al’ o

e Forall vy e (0, 1+ "T_l>, there exists a constant C' > 0 such that for all m > 1, ¢ € (0,7}, s1,s2 € [0,1),
e Pﬁ(Rd)7 r,Y,v € R¥
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0 0
av%pm(/% 817 t7 .Z', y)(U) - av%pm(/% 827 tu ‘Ta y)(’U)

51— s2[7

IN

31— 2" PPt — 51V 89,y — ) +
(t—s1 \/82) T T ’ (t —s1 /N 82)7 T T

kZ:C’kt—sl\/SQ )k=1)( ]:[ ([ <1—|—Tl>—7]/\1—|—(j—1) <1+777_1>,1—é>.
1 j=1

Remark 6. Note that by the asymptotic behavior of the Beta function, we get that all the series appearing
in the right-hand side members of the preceding inequalities are convergent.

POt — 51 A g,y — :E)] (4.33)

Step 2: Passage to the limit in the previous estimates. We are going to take the limit m — +o00 in all
the estimates proved in Proposition 3 to deduce that the transition density p(u, s,t, z,y) of the McKean-Vlasov
SDE (2.7) satisfies the regularity properties and estimates of Theorem 2. This will be done along a converging
subsequence given by Arzela-Ascoli theorem. Notice that all the partial sums of the series appearing in the
all the upper-bounds of Proposition 3 have a limit when m — +o0o using the asymptotic behavior of the Beta
function.

First of all, note that Theorem 1 yields

sup dry ([X2HM] [X3H]) — 0.

rée(s,t] m—++00
It follows that for all 4 € Pg(RY), 0<s<t<T, z,y € R?
Mol s toayy)  — Hlws,t,2,y),

where H(u, s,t,x,y) was defined in (4.1). We can thus let m tend to infinity in the parametrix series (4.17)
which yields the following pointwise convergence

pm(,u,s,t,:n,y) m—>—+>oo p(“787t7$7y) (434)

thanks to the parametrix expansion (B.8) of p. Let us fix (t,y) € (0,7] x R? and K a compact subset of
Ps(R?) x [0,t) x RY. Using (4.19), (4.28) and (4.31), we deduce that the sequence of function (py, (-, t,,9)),, €
CO(K)N is uniformly equi-continuous on K. It is also uniformly bounded by (4.18). The Arzela-Ascoli theorem
ensures that we can extract a subsequence of (pp(-,-,t,-,v)),, which converges uniformly on K necessarily
towards p(-, -, t,-,y) by (4.34). This yields the continuity of p(-,-,¢,-,y) on K and thus, since K is arbitrary, on
Ps(RY) x [0,) x RY. Moreover, passing to the limit in (4.18), (4.19), (4.28) and (4.31) for j = 1, along the
converging subsequence previously obtained of (py,(-,,t,-,y)),,, we obtain that (2.13), (2.14), (2.22) and (2.25)
hold true for j = 0. We now prove that p(u,s,t,-,y) is of class C' on R? for any p € Pg(Rd) and s € [0,1).
To do this, we fix R > 0. By (4.18) and (4.19), we can apply the Arzela-Ascoli theorem to the sequence
(02D (1, 8,t,-,y)),, € CO(Br)N, where B denotes the open ball of R? with radius R. Since R is arbitrary, we
can construct, using a diagonal extraction procedure, a continuous function on R? which is the limit, uniformly
on each compact subset of R?, of a subsequence of (9upm (i, 8,t,-,y)),,. This proves that py, (i, s,t,-,y) is of
class C!. By (4.18), (4.19), (4.28) and (4.31), the continuity of d,p(-,-,t,,y) on Pg(RY) x [0,%) x R? is again
a consequence of the Arzela-Ascoli theorem applied to (9upm (-, t,+,¥)),, € (C°(K))N where K is an arbitrary
compact subset of Pg(R?) x [0,¢) x RY. Taking the limit m — 400 along a converging subsequence in (4.18),
(4.19), (4.28) and (4.31), we get that (2.13), (2.14), (2.22) and (2.25) are satisfied.

Let us now focus on the existence of the linear derivative of p. We fix 7 < ¢ and K a closed and bounded
subset of Pg(R?) x [0,7] x (R?)2. Note that since 8 > 1, K is relatively compact in P;(R%) x [0,¢) x (R%)? for
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the metric d defined for all iy, s € Pg(RY), s1, 52 € [0,7], 71, 22,v1,v2 € R by
d((p1, 1,21, v1), (p2, S2, T2, 02)) == Wipa, p2) + |51 = s2| + |21 — 22| + |v1 — v2l.

Using (4.24), (4.25), (4.29), (4.32), we deduce that the sequence of functions (%pm(-, ot y)())m is uniformly
equi-continuous on K with respect to the metric d. Moreover (4.20) ensures that

)
sup sup —pm (1, 8, t,2,9)(v)| < +oo. (4.35)
m>1 (u,5,2,0)€P5 (RY) x [0,7] x ()2 | 01T

Then, we apply the Arzela-Ascoli theorem which gives the existence of a subsequence of (%pm(-, ot y)())m
which converges uniformly on /C with respect to d. Since this is true for all 7 < ¢t and for every K bounded subset
of Pg(R%) x [0,7] x (R?)2, we can use a diagonal extraction procedure. This yields the existence of function g
continuous with respect to d on Pg(R%) x [0,t) x (R%)? such that, up to an extraction, (%pm(-, St )(),,
converges towards g uniformly on each compact subset of Pg(R%) x [0,%) x (R?)2. Note that g is also continuous
with respect to the usual metric on Pg(RY) x [0,¢) x (R%)? and that (4.35) implies that for each 7 € [0,t), we
have

sup l9(k, s, @, v)| < +o0.
(,LL,S,(E,’U)E’P[—} (Rd) X [077—} X (Rd)2

It is therefore a good candidate to be a linear derivative. We now prove that p(-,s,¢,x,y) admits a linear
derivative given, for all u € Ps(R?), s € [0,t), z,v € R by

1)
- 4.
5mp(:u787 t?':l"?y)(,u) g(lu’7 87'1"7,0)7 ( 36)

which is continuous on Pg(R?) x [0,¢) x (R?)2. For all p, v € Pg(R%), one has

1
5
Pm (i, 8,8, 2, y) — pm(v, s, t,2,y) = / / 5—pm(Au + (1 =Ny, s, t,2,y)(v) d(p — v)(v) dX.
0 R4 m

We take the limit m — 400 along the subsequence of (%pm('a 1, ,y)())m converging towards g that we
have obtained above. By the dominated convergence theorem justified by (4.35) and since (py,)n, converges
pointwise towards p, we obtain that

1
s sitizny) = psting) = [ [ gt (1= Vs dlu = v)) dr
0 R4

This proves (4.36). Moreover, taking the limit m — +o00 in (4.20), (4.24), (4.25), (4.29) and (4.32) along the
converging subsequence yield (2.15), (2.19), (2.20), (2.23) and (2.26). Using again the Arzela-Ascoli theorem,
we prove that for all u € Pg(Rd), s €10,t), x,y € R?, the map %p(,u,s,t,a:,y)(-) is of class C! on R?, that
av%p(-,-,t,-,y)(-) is continuous on Pg(R?) x [0,¢) x (R?)? and that it satisfies (2.16), (2.18), (2.21), (2.24)
and (2.27).

Remark 7. We have made the proof of the extraction of converging subsequences for a fixed y € R?. However,
following exactly the same lines as for the estimates of Holder-continuity with respect to z (4.19), (4.25) and
(4.26), we can prove similar estimates with respect to y. This ensures that the converging subsequences can
also be assumed to converge uniformly on each compact subset of R¢ with respect to y.

Let us prove (2.28). We fix £ > 0. Thanks to (4.20) and (4.21), we can find a compact subset K of R? such

that
0
su —DPml W, S, T, x, v
[ sw stz

By Remark (7), up to extracting a subsequence, we can assume that the functions (%pm(,u,s,t,:n, )(v))

0
< _MPm 77t77 é
gm0} dy <<

m
and (av%pm(,u, s, t,x, )(v))m converge uniformly on K towards %p(,u, s, t,z,-)(v) and av%p(,u, s,tyx, ) (v).
Noticing that (2.28) is true for p,, by (7.17), (7.7), (7.18) and (7.8). We can thus write
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/Rd gp(u,s t,z,y)(v) dy

0 1)
/Rd 5—])(/1,,8 t X y)( ) %pm(u787t7x7y)('v) dy‘

/
S
,Cém

1)
_p(lu’7 s,t,x,y)(v) - %pm(/% s,t,x,y)(v) dy +e.

We conclude by letting m tend to infinity and with a similar reasoning for 9, %p

Step 3: Regularity with respect to time and backward Kolmogorov PDE (2.11). It remains to
prove that for all u € Pg(R?), t € (0,7, 2,y € R?, the map s € [0,¢) — p(p,-,t,z,7y) is of class C! on [0,¢)
and that dsp(-,-,t,-,y) is continuous on Pg(R?) x [0,t) x R? and satisfies (2.11). Let us fix h € [0,s]. By the
well-posedness of the nonlinear martingale problem proved in Theorem 1, we deduce that the transition density
satisfies the following Markov property

p(p, s — hot,x,y) = Ep([XETH], s, 8, XEThoH 4), (4.37)

By (2.13), (2.15), (2.16) and (2.14), (2.18) with 7 > o — 1, we can apply It6’s formula of Proposition 7 for the
function (u,x) € Pﬁ(Rd) x R+ p(u, s,t,x,y). Taking the expectation in Ité’s formula, we obtain that

Ep([XSMH], 5,8, XSTm51 ) = p(u, s,t,2,9) +/ h-i”rp(-,s,t, Sy)([X S, X 5mhwry dr,

where

Lyh(p, ) = b(r,x, ) - Ouh(p, ) + /R [+ 2) = b, @) — 2 Dby, ) —,Z‘Cfﬁa

+/ b(r,v,,u) 81)5ih(,u,$)(’0) d,u(v)
0 0 dz
/Rd /Rd[ D) +2) = 5l 2) () = 2+ 0o R, )(0) | g du(o).

We have thus

S

1 * — s—h,x
(p(ps s — hyt,z,y) — plp, s, t,2,y)) = ﬁ/ thrP('vsatmy)([Xf ) X ETm dr.

Using the continuity and the boundedness of b as well as the Holder continuity and bounds on p(-, -, t,-,y),
O ('7 S5t y)v %p(v 5t y)() and av%p(7 TR2RP y)() pI‘OV6d above, we find that

1
E(p(u73_h7taxuy) (,LL,S t x y)) —> gsp( S, ,’,y)(ﬂ,x).
The map s € [0,t) — p(u, s,t,x,y) is thus left-differentiable on [0,¢). It also follows that the map (u, s, x) €

Ps(RY) x [0,¢) x RY = Zip(-, 8,t, -, y) (1, x) is continuous. This proves that p(u, -, t,z,y) is C! on [0,¢) and that
it satisfies for all u € Pg(R?), s € [0,t), x,y € R?

asp(ﬂ737t7x7y) = - Sp('737t7'7y)(u7x)'
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Let us now fix f : R - R a bounded and uniformly continuous function. We fix ¢ > 0. There exists § > 0
such that for all ,y € R? with |z — y| < §, we have |f(z) — f(y)| < e. Using (2.13), we obtain that

sup FW)p(p, s, t,z,y)dy — f(z)| = sup / (f(y) = f(x)p(p, s,t,2,y) dy
zeRd | /R4 zeRd |JRE
§s+0||f||oo/ Pt — s,y)dy
ly|>d
< et Ol fle / (=) (14 (t—s) 8 |yl) " dy
ly|>d
:E+C|]f|]oo/ (U ) e
|z|>(t—s)" @ d

We conclude taking the limsup when s — ¢ in the preceding inequality that p(u, s, t,z,) — 0,.
s—t—

It remains to prove (2.17). Using (2.13), (2.14), (2.15), (2.16), (2.18), the boundedness of b, and the same
reasoning as used in the proof of (B.11), we find that there exists a positive constant C' such that for all
uEPB(Rd), 0<s<t<T,uzyveR?

1
|b(s,x,,u) : amp(:uv s,t,:z:,y)| < C(t - S)_Epl(t —5Y— $)7

dz

/[Rd [p(:uvsyta$ + z,y) _p(lu’787t7x7y) -z amp(ﬂvs7tv$7y)] W < C(t - s)_lpo(t —5Y— $)7

b(s,v,p) - f%%p(u, s,t,2,y)(v)] < Ot —s)at1=ap0(t — s,y — x),

5 s 5 dz
L | sintnsteano+2) = plus.t)) = 2 O plans ) 0)| i

<Ot —s) 0 )0t — s,y — ).

This concludes the proof of (2.17) and thus ends the proof of Theorem 2.

5. BACKWARD KOLMOGOROV PDE ON THE SPACE OF MEASURES

We prove in this section Theorem 3.

Step 1: Continuity of U on [0, T] x Pz(R%). Reasoning exactly as in the proof of Proposition 6.1 in [8],
the continuity of U on [0,7") x Pg(R?) follows from the continuity of the map (u, s, ) € Pg(R?) x [0,T) x R
p(u,s,t,x,y) and (2.13). Let us prove it on [0,7] x Ps(RY). Let (tn)n € [0,T)N, (ttn)n € Ps(RH)YN and
1 € Pg(RY) such that [t, —T| — 0 and Wp(un, ) — 0. Since ¢ is continuous on Pg(R?), it is enough

n—+oo n—+oo
to prove that Wy ([Xy# "], 1) Nl 0. We start with the weak convergence. Let us fix f : R = R a bounded

and uniformly continuous function. We write

)P tms o T, ) dy dp () — / f(@)duz) = / (F) = F(@)p(tns tus T, 2, y) dy djin ()
R2d Rd

Since Wg(n, ) — 0, it is clear by definition that I, — 0. Let us now deal with I;. We fix ¢ > 0.
n—-+00 n——+00
There exists 6 > 0 such that for all x,y € R? with |z — y| < &, we have |f(z) — f(y)| < e. Using (2.13), we
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obtain that
< [ |00 = fmtin ) | i)

<t C)fllne / T = t,y) dy

ly[>6
d 1
§€+C“f“oo/ (T—tn)_a(1+(T_tn)—a‘y’)_d_ady
ly[>6
:E—l-CHfHoo/ ) (1+‘Z’)_d_adz'
|2|>(T—tn) " @d

We conclude that I; — 0. It remains to show that
n—-+0o00

/ 912Dt by T, ) dpn () dy — / 2P du(a).
R2d n—-4o0o Rd

To see this, we write

Lo 0t Tz dy () = [ el = [ (91”2, 9) dy e o)

R2d
+ [ el - w)(e)
Rd
=:J1 + Jo.

Since Wg(pin, 1) —+> 0, we deduce that Jo —+> 0. For Ji, by the mean-value theorem, there exists a
n—-+0oo n—-+0oo

positive constant C' such that for all z,y € R?
lyl” = |27 < Cly — 2[(jy/*~* + |z7~1).
We obtain by (2.13) and the space-time inequality (B.13) that

[ < C(T - tn)é/ (17t + 12l (T = tnsy — @) dy dppn ()

R2d

< C(T - tn)é / p_B(T - tmy - LZ') + "T‘B_lp_l(T - tnay - LZ') dy d,un(x)
R2d
<@ =) (1+ [ ol o)
]Rd
< C(T - tn)é7

since sup,ey fpa |27~ dpn(z) < +o00. We have thus proved that Wﬁ([XfF"’“"], ) — 0, which concludes the

n—-4o0o

first step.

Step 2: Estimates (2.30), (2.31) and (2.32). By Proposition 6 and Proposition 3, we know that the map
U belongs to C1([0,T) x Ps(R%)). Moreover, for any t € [0,7), u € Pg(R?) and v € R?, we have

U = [

5 s o((Xg ) w1, T,v0,y) dy (5.1)
m rd OM

om

+ /de ( g D[ X)) (y) — %M[X{}H])(m)) %p(u,t,T,x,y)(v) dy du(z),
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and

05U 0) = [ (G=olIXHD0) ~ =0l IXHD0)) uplint.T,v.) dy (5:2)

om sm

0 ¢ 0 ¢ o

— ([ X — —o([ X Oy—p(p, t, T, x, dyd .

# [ (G0l — 50X D)) Ousplot T)(0) dy )
It follows from (2.13), (2.15), the d-Holder continuity of %(JS(,u)() uniformly with respect to u € Pg(R?) and

the space-time inequality (B.13) that there exists a positive constant C' such that for all t € [0,T), p € Pg(Rd)

and v € R?, one has

< O((T = t)a + |v]°) + C(T — t)ati=a

——U(t, 1)(v)

)
om

< C(1+v]°).

By (2.13), (2.16), we similarly get that there exists a positive constant C' such that for all ¢ € [0,7),
p € Pg(R?) and v € R?

0 U(t p)(0)| < O — )" 4 O(1 1)1+

-1

<O(T—t)=.

We now prove (2.32). Let us first assume that |v; — va| > (T — t)i In this case, it follows from (2.31) that

0 o

0o Ut 1) 01) — Do U1, 1) (12)]| < oo U b, )(0n)| + [ Ut 1) 02)

6—1

<O(T—1)%%

—1—x

< C’(T—?f)(s o |U1 —’U2|’Y.

Assume now that |v; — vg| < (T — t)é One has

0v5o (1 1) (01) = O U (1, 1) (02)

= /Rd < i ¢([X§“M])(y) - %QS([X%M])(W)) (Oxp(py t, Tyv1,y) — Oup(p, t, T va,y)) dy

om
om om

[ (G0l D) — 50X D) ) Ourplint. T, ) (00) = Bl T ) (02)) dy ).

Thanks to the uniform §-Hélder continuity of s2-¢(p)(-), (2.14), (2.18) since v € (0, (2a — 2) A (n + o — 1))
and (B.14) since |v; — vo| < (T — t)é, we obtain that

00Ut 1) (00) — DUt 1) (v2)

om m

+1
<C [ =l @7 o= PNty = o) dy
R

NEES W |
+C/2d ly — 2’ (T =)o T oy — 0T — t,y — 7) dy dp(a).
R

Using the space-time inequality (B.13), we deduce that
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0 o

05Ut ) (v1) = 05Ut )(v2)

<C (T—t) a |U1 —’U2|’Y.
Step 3: Time-derivative and backward Kolmogorov PDE (2.33). Let us fix t € [0,T) and h € [0, ].

From the Markov property stemming from the well-posedness of the associated martingale problem related to
(2.7), we obtain that

Ut~ o) = (X)) = s(XEN ) = Ue, [0,

Since U € CY([0,T) x Ps(R?)) and thanks to (2.30), (2.31) and (2.32), we can apply It6’s formula of Proposition
7 for the function U(t,-). It yields

]

0t =) = Ut + [ B (0 U (X )OE) b X X))

h
i t—h,pu t—h,u . i t—h,u t—hu
/t h /Rd <5mU X ])(XS +Z) 5mU(t’ [Xs ])(Xs )

i t—h,pu t—h,u dz
fn U XD (K) -2 ) i ds

9, e

_ U+ [ AU X)) ds,
t—h

where %, was defined in (2.12). Using the continuity and the boundedness of b as well as the regularity
properties of the map p +— U(t, 1) obtained above, we find that

%wg_mm—U(M)—+ﬁ (t ) (1)-

This proves the left-differentiability of the map ¢ € [0,T) — U(t,u). It also follows from the regularity of the
drift b and of U on [0,7T) x Pg(R?) that the map (t,u) € [0,T) x Ps(RY) — LU(t,-)(u) is continuous. Thus,
the map t € [0,T) + U(t, n) is C! and satisfies for all ¢ € [0,7") and u € Pg(R?)

This shows that U is solution to the backward Kolmogorov PDE (2.33).

Step 4: Uniqueness of the solution to (2.33). Let us consider V € C°([0,7] x Ps(R%)) N CL([0,T) x
Ps(RY)) is another solution to (2.33) satisfying (2.30), (2.31) and (2.32). Let us fix (t, ) € [0,T) x Ps(R9).
For any 7 € [t,T), we can apply Ité’s formula of Proposition 7 for the map (s, u) € [t, 7] x Ps(R?) = V (s, p)
which yields

V(X0 = Vi) + [0V (s X ds + [ AV (5 (X)) ds.

Since V solves (2.33), we obtain that V (7, [X"]) = V (¢, ). We then use the continuity of the maps (¢, i) €
[0,T] x Pg(RY) = V(t, 1) and 7 € [t,T] s [X2*] € Ps(RY) to let 7 tends to T. This yields

O((XF) = U(t,p) = V(t, ).
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6. QUANTITATIVE WEAK PROPAGATION OF CHAOS

This section is dedicated to prove Theorem 4. We first need to establish additional regularity properties on

the solution to the PDE (2.33) to prove our propagation of chaos result.

Proposition 4. Let us fix 6 € (0,1], L > 0 and v € (0,1]N(0, (2a—2) A (n+a—1)). Then, under Assumption
(H2), there exists positive constant C' = C(d, T, «, 3, (H2),0, L,~) such that for all ¢ € C%J(Pg(Rd)) (defined
in Definition 3), the solution U of the backward Kolmogorov PDE (2.33) with terminal condition ¢ at time 7'

satisfies the following properties.

e Forallt € [0,7), u € Pg(RY), v € R?

0 5
U] < OO+ lof)
e Forallt € [0,7), u € Pg(RY), v € R?
0, U(t ) ()| < C(T — )%
b5 Ut 1m)(v)| < :
e Forall t € [0,T), p1, 2 € Ps(RY), v1,v2 € RY
=T (t, 1) (01) = D= U (£, 12 (12)| < C(T = £) =5 (Jor = ol + W7 (s, i)
Vsm , M1 )(V1 Vsm y 2 )(V2) | = 1 2 1 (M1, 42)) -

e Forall t € [0,T), uy,p2 € ’Pg(Rd), veR?

<C(T - t)%Wl(,ul,m)-

Ut (0) — U )0)

Proof of Proposition 4. First, note that (6.1) and (6.2) have been proved in Theorem 3.

Proof of (6.3). We write

5 g 0 °
Oy -t ) (v1) = o Ut iz) (v2) = Qoo Ut i) (v1) = Bog U (1 i) (v2)
5 0
0y U (b 1) (v2) = Dy U (8, 12) (v2)
=11 + Is.

Then, using (2.32), we obtain that

1—v

L] < O(T — )= o1 — va.

We now focus on I. Using (5.2), we get

(6.4)
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Do U0, 1) (02) — DU (1 ) (02)

-/ (5 SXE ) ()~ (X5 >) Oup(pi . T, v, ) dy

om

. <i¢<[x%“11><y> (i)

om
- [ (moxie=ne) - o
-, (%qs([x%’”])(y)

We decompose it in the following way

5 1)
8U%U(t, Ml)('UQ) - av%U(ta N?)(UQ)
1)

5

= [ (Gt D) - o D) — |50

om

) Opz—p(p1,t, T, x,y)(v2) dy dp ()

Oep(p2,t, T, v2,y) dy

av p(pa,t, T, z,y)(v2) dy dpa(x).

\ /\_/

0

D)~ XD )] ) Oplo 0T, v,

# [ (X D) = S0(X5D(0) ) @aplir,t. T v2.0) — Daplia.t. Tova,0) dy

+ [ (o) - o - [

om om

v [ (roltxi=hm - o))

m

XPD) - sl X)) )

1)
51)%1)(#61, t,T,x,y)(v2) dy dp ()

1) 1)
(&; 5—1)(#1, t,T,z,y)(vy) — av%p(m, t,T,z, y)(v2)> dy dpy ()

# [ (o)) - 5= oX5 Do) ) o

=J1+Jo+ I3+ Js+ Js.

(ﬂ?v t) T7 z, y)(UQ) dy d(lu’l

— p2)(z)
(6.7)

Before estimating each term of the preceding decomposition, let us prove that for all v € (0, 1], there exists

a positive constant C such that for any ¢ € 0%5(735(1[@))’ te€0,7), pi,p2, € Ps(R

D B(XE ) ) — (X)) -

om

0

om

A XD0) — 50X

), z,y € RY

< C(T—t)alw =y W) (1, p2).  (6.8)



30 THOMAS CAVALLAZZI

To prove this, we write

S X D) — 50X D) - |5 o X)) ~ 5 (X))

/ /Rd <5m2¢ ma)(y,v) - 56 5 ¢(my)(z, U)) (p(p1,t,T,v) — p(p2,s,T,v)) dvdX
:/ /de <W¢(mA)(y,v) - 5—2¢(m,\)(az,fu)> p(pa,t, Ty’ v) d(puy — p2)(2') dv dA
/ /de <5m2¢ (mx)(y,v) — 56 ——o(my)(z, ’U)> (p(u1,t, T,2' ,v) — p(ua, t, T, 2, v)) dus(z’) dvdA
=: K1 + Ko,

where my = A[X ’“1] + (1 - )\)[X%M]. It follows from (2.22) and the -Holder continuity of %gb(u)(-,v)
uniformly with respect to pu € Pg(R?) and v € R? that

1
K| < C(T =) |y — 2P W) (11, o). (6.9)

Concerning K1, we set for 2/ € R?

2 2
Py i [ (o). o) = 5z6m)@,0) ) pln .7, 0) o

Let us fix 2/, 2" € R%. Thanks to (2.14) and the §-Holder continuity of 6 = (b( )(+,v) uniformly with respect to
1 € Ps(RY) and v € R?, one gets that
|F(a') = F(a")] < Clo —y"(T — )" a|a’ — 2",
Taking an optimal coupling between pq and pq for Wi directly yields with Jensen’s inequality
K| < Cla =y (T = 1)WY (i, pr2). (6.10)

Combining (6.9) and (6.10) concludes the proof of (6.8) since o € (1,2). We can now turn to estimate each
term of (6.7). Using (6.8), (2.13) and the space-time inequality (B.13), one obtains that

< C [ @ =0 3W G pely =l (T = )75 (T =ty = ) dy

6—vy—1

<C(T-1t) Wi (p1, p2) /]Rd PLT — t,y — vy) dy (6.11)

L®q7(ﬂlaﬂa)'

For Jo, it follows from the J-Hélder continuity of s2-¢(p)(-) uniformly with respect to u € Pg(R?), (2.22)
since v < 7+ a — 1 and the space-time inequality (B.13) that

§—~—1

<C(T—t)

24
9 <€ [y = ol (T = 055 W G ) (T = by = ) dy
< O = 0" 57 W (1, o) (6.12)
s—1—
<SCOT =)o W (1, pa),

since a € (1,2). For Js, (6.8), (2.16) and the space-time inequality (B.13) yield
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n—1
| J5] < C/ T — )=y — 2P Wy (w1, p2) (T — )5 F72 0T = t,y — x) dy dpua ()
< C(T — 1) o W (g, o) (6.13)
5—
<O ) Wy (jur, pi2).

It follows from the d-Holder continuity of 52-¢(u)(-) uniformly with respect to u € Pg(R?), (2.24) and the
space-time inequality (B.13) that

n'yl

|Ja] < C/Rgd ly — z[°(T — t) G WY (a1, 12) (T — t,y — ) dy dpsy ()
<O —t) e T Wi (1, p2) (6.14)

§—1—v
<SO(T ) W, pr2).

Let us prove that
|H(z) — H(z')| < C(T —t)" & T4 o — 2], (6.15)
We finally deal with J5. We set for z € R?

1) = [ (G0l D) - 5mblXH D) ) 0splunt T ) o)

om

Let us fix z, 2’ € R%. Assume first that |z —2/| > (T — t)E. The §-Holder continuity of s>-¢(u)(-) uniformly
with respect to 1 € Pg(R?), (2.16) and the space-time inequality (B.13) ensure that

|H(z) — H(2')| < |H(x)| + |H(z")]
<C/ ly — 25T — )&+ pX(T — b,y — 2) dy
<o(T —t)*“*n '

< O(T — t) ==+ g — ).

In the case where |z — /| < (T — t)é, thanks to (2.28) we write

H(z) — H(z2")
:/’@;wmwm<wg%ww#m@)af<m¢TwwwMy
o[ (o)) — o)) ) (90t o)) — Dt T, )0 )

@) (2
= [ (Goexi ) - oK) )@ﬁywwwmme%QWmmwm@@.

om

Thanks to the é-Holder continuity of 5 2=¢(p)(-) uniformly with respect to p € Pg(R?) and (2.21) since
v <n+ a—1, we directly get that

H@) - HE) <C [y -1

R4

Since |z — /| < (T — t)é it follows from (B.14) and the space-time inequality (B.13) that
|H(x) — H(2')] <C/ ly — o' P (T — )" 715 o — 2/ p°(T — t,y — o) dy

<o(T ) =0yt lz — /|7

n—1-—vy

ale — 2] [T =ty — ') + p°%(T — t,y — )] dy.
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Then, it follows from (6.15) that

§—1— -1
[J5] < C(T —t) = P WY (o)
S—1—x

<O —t) o WY (1, p2). (6.16)
Coming back to (6.5) and using (6.7), (6.11), (6.12), (6.13), (6.14), (6.16), we have shown that

§—1—v

L] < C(T—1t) o« W (11, pa).

This estimate together with (6.6) ends the proof of (6.3).

Proof of (6.4). It follows from (5.2) that

%U(f,,ul)(v) — %U(am)(v)
_ / (X ) p(er, T, 0,9) dy
Rd m

om

+/de < 0 ¢([X%N1])(y) - %W[X;Ml])(:l?)) %p(m,t,T,x,y)(v) dy dpy ()

- /Rd %qb([X{?“])(y)p(uz,taT,Uay) dy

om

. /ﬂ@( (1)) ) — %(ﬁ([X%m])(w)) 2 T, ,9)(0) dy ).

We decompose it in the following way

U 1) (0) — 5= Ut 2)(0)
= [, (G100 = 56X )00 ) st 7000 dy
Rd m m
4 [ 56X (o, 8. T,0,0) — plaa, T, 0.9) dy
Rd 0N
# [ (o D) - ol X @) - | 5K D) - 50X
%p(ul, t, T, y)(v2) dy dpa ()
+ [ (o= h - rollxi)w)

0 )
<%p(,u1,t,T,:n,y)(v2) - %p(,u%taT,x,y)(W)) dy dlu’l(x)

+ [ (oD - 5molXE D) ) soplin,t. T g)en) dy s ~ o))

=Ji+Jo+J3+ s+ J5. (6.17)

We first focus of J;. Let us prove that there exists a positive constant C' such that for all ¢ € [0,7),
pi1; p2 € Pg(RY), y € RY

0 o

X D) ~ 50X D) CT 05 Wi ). (6.15)
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To prove this, we write

DG ) — 50X )

/ /d 5»,71,2(2S m)\ y’ )( (/letTvz)_p(:u%taT,Z))dZd)\
=:/€ /LM;§E5¢onﬂ>@hz>umu1,az:x,z)_.p(u%t,7;$7z»(h“(x)dsz
1 52
*‘/ﬁ /éw;%55¢“”Aﬂy7znwﬂ2¢afz$wacuul-uzxx>dsz

=: K1 + Ko,
where my 1= A\[ X3 + (1 — N)[X52]. We rewrite K as

K= / /de Sz 2ma) (v, 2 / /Rd 5 Pt Ty, 2)(w) d(p — o) (w) dr dp () dz dA,
where M, = ruy + (1 — r)uz. We set for w € R?

2
F(w):= /d 5?712¢( A) (Y, )%p(Mr,t,T,x,z)(w) dz.

For wy,ws € R%, one has

F(wl) — F(’wg)

52 1o
= /Rd 5—2¢(m,\)(y,2)/ Oy 5—p(Mr,t T,z,2)(swy + (1 — 8)ws) - (w; —ws) ds dz

/ /Rd <5m2 ma)(y, 2) = 5 )5 —p(M,,t,T,z,2)(swy + (1 — s)wa) - (w1 — wa) dz ds.

It follows from the -Hélder continuity of = gb( )(y, ) uniformly with respect to u € Pg(R?) and y € RY,
(2.16) and the space-time inequality (B.13) th

8
wwo—mwﬂgaT—>lﬂ“ jwi — ws).
This yields
K| < O(T — 1) & 5 Wy (jun, p2)

5—1
< C(T—t)Twl(/Ll,/Lg). (6.19)
We control K as for Ky by studying the regularity with respect to x of the function G given by

52

G(z) = /]Rd W(b(mx)(y,z)p(ug,t,T,x,z) dz.

For z1, x5 € R?, one has
52
G(z1) — G(x2) :/ 5 ——5¢(m)(y, 2 / Oup(pio, t, Tyrxy + (1 —1r)xe, 2) - (1 — z2) drdz

= [ [ (mmw) ~ sootma)ran + (1= 1)

Orp(pi2,t, Trzy + (1 — r)xg, 2) - (11 — x2) dz dr.
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Using §-Holder continuity of 5m2 ¢(1)(y, -) uniformly with respect to u € Ps(RY) and y € R?, (2.13) and the
space-time inequality (B.13), we obtain that

67
G(w1) = Glwa)] < C(T —1)s |21 — o).
It proves that

[Ka| < O(T )"« Wi, pa). (6.20)

Combining (6.19) and (6.20) concludes the proof of (6.18). We can now turn to estimate J; in (6.17). Using
(6.18), one gets

5—1
‘J1’ SC d(T—t)TW1(N1,,Uz2)p(,Uz2,t,T,U,y)dy
R
5—1
< C(T—t)Twl(/Ll,ug). (6.21)
For Jy, we rewrite it as
_ - tuz - _
B= [ o000 [ ]| et L)) s — )2

where M, := ru; + (1 — r)pe. Following the same lines as for the proof of the above estimates on K (6.19),
we obtain that

o] < CO(T —1)"s Wi (pur, ). (6.22)

Following same lines as in the proof of (6.13), (6.14) and (6.16) by using (2.15), (2.23) and (2.20), we can
prove the following estimates

[Js| < C(T = )" 172 W (s, o), (6.23)
4] < O(T — )" T2 Wy (pr, pi2), (6.24)
|Js| < O(T — )" T2 Wi (jua, i2)- (6.25)

Gathering (6.17) (6.21), (6.22), (6.23), (6.24), (6.25), we have proved (6.4).
O

Proof of Theorem 4. Let us first introduce some notations. We can write for all i < N and for all t € [0, 7]

t ~ .
Z} :/ / 2z N'(ds, dz),
0 JRd

where A% is the Poisson random measure associated with Z¢ and N is the associated compensated Poisson
random measure. Then, we set for all ¢ € [0, 7]

Z}
Zy = : | e®)Y
zY
As the Lévy processes (Z"),, are independent, the process (Z1"); is a Lévy process in (R%)V. Its Poisson random
measure NV and its Lévy measure v are defined as follows. For all ¢ : [0,7] x (RN — R*, one has

T N oot '
/ 6(s,2) NN (ds, dz) — Z/ 6(5,0,...,0,2:,0,...,0) Ni(ds, d;). (6.26)
0 JRNd i—1 Y0 JRI
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For all ¢ : RN% — R, one has

o(x Z ooy 0,2,0,...,0) dr(xy). (6.27)

RNd

Note that since (Z™),, are independent processes, for all ¢ € [0, T, the support of the random measure N- N (t,dx)
is contained in

N-1
U {O}Rd % Rd % {O}N 1—1 (Rd)N
=0
Let us define for all t € [0,T], = (z1,...,2y5) € (RHN
b(t7 xlyﬂ]mv)
bN(tvm) = € (Rd)Ny
b(t IN; Hg )
N
where 7Y = % Z 0z, Thus, writing
j=1
xN
XtN = )
NN
¢

the SDE (2.34) defining the particle system can be rewritten as
dXN =bN(t, XN)dt +dZV, te]0,T),
(6.28)

Proof of (2.35). Let us consider U the solution to the backward Kolmogorov PDE (2.33) with terminal
condition ¢ at time 7' given in Theorem 3. Using Lemma 5 and the fact that U € C*([0,T) x Pg(R?)), we
obtain that the function (t,z) € [0,T) x (RH)N — U(t, ) belongs to C'([0,T) x (R?)N). Moreover, for all
t€[0,T) and x = (z1,...,2x5) € (RD)Y, we have

(U@
QU (1, Tiz ) = :
av%U(taﬁ]mV)(xN)

Let us fix y € (0,1] N (v —1,(d + o — 1) A (2ac — 2) A (n+ a — 1)). We easily see using (6.3) that the map

x +— O, U(t, i) is y-Holder continuous locally uniformly with respect to ¢ € [0,7"). This comes from the fact
that for all & = (z1,...,2n),y = (1, yn) € (RHY

Wl (Mm Huy Z |3§‘k - ykp

We denote by NV the Poisson random measure associated with ZV = (Z',..., Z") defined in (6.26) and by

N its associated Lévy measure defined in (6.27). Since v > a — 1, we can apply the standard It6 formula for
this function and the (R%)¥-valued process (X;¥);. Noticing that t € [0,T] — U(t, 1¢) is constant, we obtain
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that for all ¢ € [0,7)
Ut ) = Ult, i) = (U0, 750) = U0, o)

/(% (s,7iY) ds

: i
+/ / - U(s,ﬁéV(N i2) T U(s,ﬁéV(N ) — (%U(s,ﬁf,\gl\; )-z| dvN(z)ds (6.29)
0 (]R ) L s s s
t I —~N
+/ / ~ U(S7E§N,+Z) — U(S7E§N, ):| N (dS,dZ)

[ —~N
u// s ) = Ul )| s, d2)
Bl L s s
=L +1+ I3+ 14+ Is.

Note that t
/0 /( oy [U(Wﬁmz) —U(s,ﬁﬁN)] dv™ (z)ds
1 s s

is well-defined. Indeed, if we set, for h € R%, h~j :=(0,...,0,h,0,...,0) € (RHN where h appears in the j-th
coordinate, one has using (6.2)

[,
=z//cU

C

gc/o (T—s)% ds/§|z|du(z),

where m}, _, = wﬁ%N Pt w)ﬁ%N . We conclude since a € (1,2).

N,s—

Ul(s ﬁ%NiJrz) - U(s,ﬁ%N)‘ dv™ (z)ds

dv(z)ds

(S7ﬁ%1\i+z}) - U(Svﬁf)\f({)

my w)(XZ N hz)| |z| dw dv(z) ds

By (6.27), we write

N ot
— E —N —N
I3 - ra /0 /(Rd)N |:U(S’MX§V+£Z~) - U(Svﬂxi\i)

1 1)
%%

=—Z/4me mi L W) (XN 1 2)

iN o _N iN
U X)L (  JXEY) 2| () s,

U(s,nﬁﬁ (XN z} dv(z) ds

where m?, W

wﬁf)\f(,\L vs T (1— w)ﬂj)v(,\i. In order to make appear the backward Kolmogorov PDE (2.33), we

decompose I3 in the following way
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t 5 B ) _ ) _ _
I3 = / /]Rd /]Rd [%U(s,ué\ézv)(x +z) — %U(s,ué\f(;{)(w) - av%U(SaﬂéV({)(m) '2} dv(z) dﬂ%;{ () ds

s

NZ/ /R/ Lm s,z,w)(X’NJrz)—éiU( mi )X

- iU(s,ﬂ%J\i )(Xg,N + Z):| dwdv(z)ds

0 _N
+ %U(Svﬂxg)(){s 5

=: I3,A + [373.

Since (X2

s

Owing to the backward Kolmogorov PDE (2.33) in Theorem 3, one has

)selo,7) 1s cad-lag, we deduce that almost surely for almost all s € [0, ] we have ﬁ% N = ﬂ% N = .
t
B bt ha= [ QUGN + LU0 ) () ds
0
=0.
Thus, we obtain the following decomposition

Ut 1) — Ut ) — (U0,71) = U(0, o))
N

_ l Z N . i Z N
o N Z/ /Rd |:5m 372710)(X ) 5mU(3 s,z,w)(X )
5 : 5 3 .
+ %U(s,n{,v{ﬁ)(xsfv ) — %U(s,,u%ﬁ)(XsLN +2)| dwdv(z)ds
t —~N
<[ f Uy ) - Ul )| 8 (s 2) (6.30)

t
—~N
+/0 /B [U(s,ﬂ%N_i_z) - U(Svﬁil\i ):| N (d87dz)
1 s s
=Lp+ 14+ Is.

It follows that for all ¢ € [0, 7))
E|U(t, 7' ) = Ut )| < E[U(0,7ig') = U(0, po)| + B s | + || + | I51). (6.31)

We now treat each term separately. For I3 g, one has
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Bllynl < -3 2y (s,ml )XY 4 2) = 2 U(s,md L ) (X)
3,B| > NZ Sm. s,z,w om S s,z,w
+ iU(s A NN = (s 7Y VXN 42| dw du(z) ds
dm ’ X37 s~ om ) X37 s
‘ szw)(XsLN_‘_ )_5_U( szw)(XsLN)
+ iU(s AN = 205, 7 ) (XN + 2)| duwdu(z) ds
dmo VXLV s m X,
1 N
— mi (XN + Az
<% 2:: . )( )
J _ i
—OU%U(S,M%?L )(XSLN + A2)| |z dX\ dw dv(z) ds
iN d _N i,N
: M) (X5 +2) - %U@’ﬂxy)(&f +2)
+ iU(s i )(X0N) - iU( WX dw du(2) ds.
om T TXED m M,z ) (X

Recall that mi,z’w = wﬁj)V(N vz T (1- w)ﬂ%N . Moreover, one has

W o Fixen ) < Williyn g0 Tixen )

Then, by (6.3) with v € (0,1]N(a—1,(0 +a—1) A (2a —2) A (n+ a —1)) and (6.4), we deduce that

N ot 1+
1 s-1—y |2|' Y
E|I < — E T — o d d
| 3’B| o l' Z_l/o Ll( S) Nﬁ/ V(Z) 5

L[ 795 B )
+N; ; %( —s)aﬁl/(z) s.

Since v < § + a — 1, we have 5—}7—’7 > —1 and therefore the map s € [0,T) — (T — 3)671777 is integrable and
z € By v |2|'*7 € LY(By,v). Tt yields

C
Ell35 < 775- (6.32)

Let us now focus on Iy. Recall that mg o = wﬁ% N oz T (1 —w)ﬁ% ~ - Thanks to Cauchy-Schwarz inequality

and the L?-isometry of compensated Poisson random integrals, there exists a constant C' > 0 independent of
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N such that we have for all ¢ € (0,T]

2([ Ll

E|L4]

IN

2 dv(z) ds> 2 (6.33)

N
D=

dv(z)ds

= [ ),

N t 25 —2 %
gC’(ZE/O Bl%(T—s)a 2 (z)ds>

= —5 i, N
v X
N/[O 1]28 (5mU(S mSZW)( + hz) - zdhdw

I
/\ /\
™M= 1

Finally for I5, BDG’s inequalities and the fact that 1 < 8 < 2 yields for all ¢

E|I5| < (E (/Ot/( ey
A

0,7

l

S
U(S7ﬁ%1\i+z) - U(‘%ﬁ%{ ):| N dS dZ )
B
2

IN
Q
=

U(S7ﬁ%1\i+z) - U(‘%ﬁ%ﬁi)

NN(ds dz)]

1
B B
U(S,ﬁé\él\i +z) - U(Saﬁ{)\éNi) NN(dS, dZ)) (634)

B
dv(z) ds)

IN
Q
/N
&=
o\w
/\
=

=

1 0
_ 81)_
% N [0’1]2 5m

J
IE/Ot/c %(T—s) a

Uls, mszw)(XZN + hz) - zdhdw

Il
Q
/-~

1
B B

|17 dv () ds )

IN

Q
Q ~
I

IN
2}—-
.o

As a consequence of (6.30), (6.32), (6.33), (6.34), and the fact that y A1 > 1 — % sincel< f<a<1l+4n,
we have for a constant C' > 0 that for all N > 1 and t € [0, 7))

E|U(t, 1) — U(t, pe)| < E[U(0, 750 ) — U(0, po)| + (6.35)

N'"E
It follows from (6.2) that the map %U (0, )(+) is Lipschitz uniformly with respect to u € Pg(R?). The
Kantorovich-Rubinstein theorem ensures that
E|U (0,72 ) = U (0, po)| < CWA(Tiy , po)-

By Fatou’s lemma, the continuity of U on [0,7] x Pg (R%) and since ﬁg, = Y almost surely, we can let ¢ tends
to T in (6.35) which ends the proof of (2.35).
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Proof of (2.36) and (2.37). Coming back to (6.30) and using (6.33) and (6.34), we see that I, an I5 are
centered random variables because of the martingale property of compensated Poisson random integrals. We
thus obtain that

[EUREY) = Ut u)l < [EUO,E) — U(0, 1))l + Ells,5]-

The initial data term is handled in the same way as in the proof of (2.36) and the control of E|I3 p| has already
been done in (6.32). We thus get that for all ¢ € [0,7T)

_ _ C

[EU ) = Ut p)l < CEW (g, o) + 7

and we conclude by letting ¢ tend to T that (2.36) holds true. Finally, we prove (2.37) using the same argument
as in [7]|. Indeed, reasoning as for %U and the estimate (6.1), we can prove that U(0, -) admits a second order

linear derivative %U (0,-)(+,) and that it satisfies that for all u € Ps(R%), v,v’ € R4

52

e <O+l + P,

U(0, p)(v,v")

for some positive constant C'. Reasoning as in [7] (after (5.24)), we obtain that

52

E(U(0.7)) - U(0. ) = / / AlE( U0, M) (€6 — 2 U0, ~NA1’A2)(§§)>d)\1d>\27

551) N)\17)\2 —

A — ~ N, ~ ~ —_
where uév’ Y= a4+ (1= Ap)po, uév’ o= il + (1= Ao, @ o= mh + %(&
/\2,uN ALy (1= X)) N.As , (€Y); being an i.i.d. sequence of random variable with common dlstrlbutlon o and &

a random variable mdependent of (¢%); with distribution pg. This ensures that there exists a positive constant
C such that for all ¢ € C*(Ps(R%)) and N > 1

==

U(0,75) — U0, mo)| <

because jig € Pas(R?). This concludes the proof of (2.37).

7. PROOF OF PROPOSITION 3

This section is dedicated to prove Proposition 3, which is rather long and technical. We proceed by induction
on m > 1. The base case m = 1 is immediate. It is enough to apply Theorem 5 since pi(u, s,t,z,y) does not
depend on p. For the induction step, we assume that all the estimates of Proposition 3 are satisfied for p,,. For
the sake of clarity, we denote by K a positive constant depending only on (d, v, b, T') appearing in the induction
step and independent of the induction assumption, which may change from line to line and which will determine
the choice of the constant C' appearing in Proposition 3. Let us introduce a notation used in this section. If
I, s,2,0) € Ps(RY) x [0,1) x (R?)? is a function, we define A, ,, f(-, 5, 7,v) := f(u1,8,,0) — f(u2, s, 7,v)
for py, puo € Pg(Rd). The same notations holds with respect to the variables x,v. For the time variable, if
51,82 € [0,t), we define Ay, s, f(p, -, 2,v) := f(s1V s2,2,0) — f(s1 A S2,2,0).

7.1. Preparatory technical results.

Lemma 1. e There exists K > 0 such that for all 0 < s <7 < T, u € Pg(R?), z,v € R?, one has

<K 1+§:C’“(r—s)k(1—é)lﬁ8<1+g‘<1—é>,1—é> . (7.1)

50 [ L) )
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e There exists K > 0 such that for all 0 < s <7 < T, u € Pg(R?), z,v € R?, one has

5o [btr [X20)] (0

§
L m M 1 1 1
<K(r—s)= 1+ch(r—s)k HB(l—i———i— <1+T>,1—E> - (72)
k=1 j=1

e There exists K > 0 such that for all 0 < s <r <t < T, u € Pg(R?), z,y,v € R%, one has

‘% < K(t—r)y S p(t —ry —a)

[1 + iCk(T _ g)k(1=3) kﬁs <1 +j (1 - é) 11— ;)] . (7.3)

e There exists K > 0 such that for all 0 < s <r <t < T, u € Pg(R?), z,y,v € R%, one has

Hm-ﬁ-l(,ufa s, T, ta z, y)(’l))

av%Hm—l-l(ﬂ,Svrvt’x’y)(v) < K(T - S)%(t - r)_épl(t -y - $)
1—|—§:C’k(r—s ]:[ +—+ A BERE § TN
2 1 — ) i-=) (T

Proof of Lemma 1. Using the induction assumption, we deduce that for all y € R?, the map u € Pﬁ(Rd) —
Pm (i, 5,7, y) has a linear derivative given, for all v € R?, by

5 B 5 , ,
%pm(:uv 5,1, y)(’U) - pm(:uv 57,0, y) + /Rd %pm(:uv 5T, T, y)(v) dlu($ )
Thus, the map p € Ps(RY) — b(r, z, [ X, oo (m )]) has a linear derivative given by

5 (o D] ) = [ bl RO 5,70, 2) (75

m da 0m
0 0
- svuv(m) / !
w [ bl ) ) s 2)(0) s dia),

Using the boundedness of 32-b on [0, T] x R? x Pg(R?) x RY, (4.18), and the induction assumption, we deduce
that

— [b(r,z, [X])] ()

‘ m

<K+ K pm(p, s, 2", 2)(v)| dzdp(z’)
R2d
( 1)k_1 1 1
<K+ K Fr — s)b=D=5 1+5(1-=2).1-=
SK+K | ZC’ j];[lzs +J o KL

(r— )" p (r — 5,2 — 2') dz dp(a’)

§K+K§:C’k(r—s)k(l_;)lﬁ8<l+j<1—é>,1—%).
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This proves (7.1). Let us now focus on (7.2). Note that for all v, 2’ € RY, we have

/ abpm(lu"svt’vaz) dZ = / 81} 6 pm(ﬂvsyta$lvz)(v) dZ =0.
Rd R4 om
Thus, using the induction assumption and differentiating (7.5) with respect to v, one has for all v € R?
1)
5,1,(m)
O b, (X307 () (7.6)
:/ o b(r, z, [X5H ] (z) — 9 b(r, z, [X5* ) ()| Oppm (i, s, 7,0, 2) dz
Rd 5m 9y ) T 5m ) ) T Y ) )
) ) 0
i 5,1, (1) -7 8,10, (M) 1Y (! i ! !
+ /R2d [6mb(7’ x, [ X} D(z) 5mb(7‘,x, (X, N (z )} Oy 5mpm(u, s,y 2)(v) dz du(x).

Using the n-Hoélder continuity of %b with respect to v and uniformly with respect to the other variables,
(4.18), and the induction assumption, we deduce that

05 [blr,a, [Xf’“’(m)])} (v

)
SK(r—s)"" + K [ 2= a0 pm(p, 5,72, 2)(v)] dzdp(a)
R2d om
<K(T‘—S)n;1 ch (k 1)1—1—"1 HB 1_1_77_1_1_ 1_|__1 1_1
o R2d ot « ’ «
(r—s)nal“_ﬂz—x 70°(r — 8,2 — 2') dz du(z")
1 1 ( 1) kol n—1 n—1 1
Kl )+ K — 8)5 SR Ok — )05 kY Ol I
<K(r—s)a +K(r—s) ZC(T’ s) HB 1+ - +7(1+ " , 1 5
k=1 7j=1
It ends the proof of (7.2). Using (7.1), it is clear that H,,,1 has a linear derivative given for all v € R? by
2 o5, 1o 9) ) = (o [o(r, X)) (0)) - 02l t,2.9) (7.7)
5m ) DA IR ) 5m ) ) T ) ) )
and that
Do Hms1 (5,7, 9) (0) = ( By [b(r x [me)])] () ) - Qub(r,t, 7). (7.8)
5m ) 2T ) 5m Y Y T 2 )
Thus, (7.3) and (7.4) follow directly from (7.1), (7.2), and (B.17). O

Lemma 2. Forany k> 1,0<s<r<t<T, z,y € R? Hm—i—l( s,r,t,z,y) has a linear derivative which is
C' and satisfies the following properties.

e There exists a positive constant K, depending on m and a positive constant C' independent of k and
m such that for all k > 1, p € Pg(Rd), 0<s<r<t<T,zvy,veR? one has

Ok st y) )| < KkCF L — )5+ ED(-3)

5m
HB<j (1_3 ,1_é> Pt —ry—2), (1.9)
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and

Oy LU (157 2, ) (0)| < Kok O — )5 (1 — r)= (- D(1=2)

om
HB( (1——) ,1—&) plt —ry—x). (7.10)

e There exists a positive constant K, depending on m and a positive constant C' independent of k and
m such that for all k > 1, p € Pg(RY), 0 < s <t < T, x,y,v € R one has

1
P sl (o) (0)| £ KophCH e = )14 000005 (i (12 1) 1)

HB( (1——) ,1—&) POt —s,y—a), (7.11)

and

P 0 M 5.t 2 )(0)] < Kk (e )5 P00 (e (1= 1) 1 22

om
o1 )t )t o

j=1

Proof of Lemma 2. We proceed by induction on k to prove (7.9) for all m > 1. The base case k =1 is a direct
consequence of (7.3). Assume now that (7.9) holds for H¥ ., and let us prove it for Hk . By definition, we
have

t
k
Hm—:_ll(ﬂ,s ’f’,t,l‘,y) :/ /dHm+1(,u,s,r,r',:n,z)Hme(,u,s,r',t, Zyy) dzdr'.
r JR

Using Lemma 1 and the induction assumption, we deduce that Hfjj}l(-, s,r,t,x,y) has a linear derivative
given by

1) 1) 1)
—HE = %Hm—l-l RHb 1+ Hmp1 ® 5 — M1



THOMAS CAVALLAZZI

44
Using (4.13), the induction assumption (7.9) and the convolution inequality (B.16), we deduce that

5m m+1
t

S Km/ / (T/_T)_épl(T/_T7Z—x)Ck(t_T/)—é_;’_(k_l)(l_é)
r R4

k-1 1 1
HB(j <1——> ,1——> pl(t—r/,y—z)dzdr/
o o

i=1

‘iﬁk“ (1, 8,71, 2, 9) (V)

¢
+ / K(r' — r)_épl (r'—rz— a:)Kmk;Ck_l(t — T')(k_l)(l_é)
r JRd

. 1 1 )
<j< ),1——) (t—r/)_Epl(t—r’,y—z)dzdr
« «a

< KnC*(t —r) "2t 0-2) T B <j (1 —~ é) 11— é) Pt —ry— )

j=1
1 1
KK, kC* ' (t — )~ atk(-3) (1= =),1—=)p't—ry—
+ ECY Mt —7) ]118 J sk o p(t—ry—ux)
k —l—i—k(l—l)k_l ‘ 1 1y 5
< Kp(k+1)CHt —r)"a a Bli(l-2 ) 1=~ )p(t=ry—a)
j=1

if we chose C' > K. Following the same lines, we prove that for any k > 1, %Hﬁl
and that it satisfies
O ik

1) )
8@%/]‘[]:;;_11 - 8@%%7}1—1—1 & HffH—l + Hm—l—l ® 8@%Hm+1-

4118 C! with respect to v € R?
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Using (4.13), the induction assumption (7.10) and the convolution inequality (B.16), we deduce that

5
Ous—Ho (115,71, 2, 9) (v)

j=1
<K Ck(r—s)w(t—r)_%rk(l_é)ﬁl? J 1—l 1—l Pt —ry—x)
—_ m ‘7:1 a ) a )
+ KK, k:C’k_l(r—s)nTl(t—r)_iJrk(l_;)ﬁb’ J 1—l 1—l pHt—ry—x)
m e «a ) a 9
k n=t “1ik(1-1) = 1 1\ 4
< Knpk+1)C%(r—s)a (t—r) a a B 1—5 ,1—5 p(t—ry—x),
j=1

if we chose C' > K. It proves (7.10). The estimates (7.11) and (7.12) follows immediately from (7.9), (7.10),
Lemma 11 and the convolution inequality (B.16).

0

Lemma 3. e Forany 0 <s<t<T,uc PB(Rd), r € R%, we have

o[t X)) | < K[ (AN = IO 5.t )] dy (), (7.13)

e Forany 0 <s<r<t<T, pcPsRY, z,y € RY we have

1O Hom i1 (1, 5,7, 2, y)| < K(t—7) "2 p (¢ — 1,y — ) /de(l Alz" = y|")|0spm (1, 5,7, 2, y)| dy dp(x”).  (7.14)

Proof of Lemma 3. Proof of (7.13).
By the induction assumption at step m, we see by the dominated convergence theorem that the map s €

[0,t) — b(t,x, [Xf’”’(m)]) is differentiable and that

s,u,(m o s,u,(m 0 s,u,(m
0, |bit, . [x; )] = / —b(t,a, [X; ")) - bt (X)) (@) ) Ospn (.t y) da(a’) dy.
R2d \ 0M om
The boundedness of %b and the n-Hoélder continuity of %b(t, x,1)(+) allows to conclude.

Proof of (7.14).
Because of the expression (4.10) of H,,,+1 and since p(u, s, 7, t, x,y) does not depend on s, (7.14) follows from
(7.13) and (B.17). O

Lemma 4. e There exists a positive constant K, depending on m and a positive constant C' such that
forallk>1,m>1, uePs(RY), 0<s<r<t<T, zyecR?
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OHE 1 (s 5,7, 1,2, y)| < KpkCF 1 — s)a 1 (¢ — ) atE=D0=0) pl (¢ — .y — 2)

HB< <1——>,1—é>. (7.15)

e There exists a positive constant K, depending on m such that for all k > 1, m > 1, 4 € Pg(Rd),
0<s<r<t<T, z,ycR?

|asq>m+1(:uv s,r,t,$,y)| < Km(T‘ - s)g_l(t - r)_épl(t -nYy—- l‘) (716)

Proof of Lemma 4. Proof of (7.15). We proceed by induction on k > 1. The base case k = 1 comes from
(7.14) and the induction assumption (4.22) for dsp,, Indeed, the induction assumption and the space-time
inequality (B.13) ensure that

LA = a0l )l dial) < ol = )27 [ 070 = sy = ) dy o)

We conclude since 1417 < «, the map p~7(r — s, ) belongs to L'(R?%) and Jza p T (t — 5,y) dy is equal to a
constant independent of s and ¢. For the induction step, we assume that (7.15) holds at step k. By definition,
we have

t
HES (s, 2, y) = / / Homer (8,777 2, 2YH g1 (1, 5,708, 2,) dz i
r JRA

It follows from the induction assumption and the dominated convergence theorem that the map s € [0,¢) —
Hfjﬁrll(u, s,r,t,x,y) is differentiable and that

357'[5;;11(%3 Tt 2, y) / / OsHmsr (1, 5,777 2, 2YHE L (8,77 8, 2,y) dz dr’

+/ / Homt1(p, 8,1, r’,a;,z)@SanH(u,s,r’,t,z,y) dz dr'
r JRd
=11 + Is.

Using the base case k =1 and (4.13), we deduce that

! 4 L k Li(k—1)(1-2

|11 S/ / Kp(r —8)a= (! — )" apl(r! — 12 — 2)Ck( — /)~ atk-D(-3)
r JRA

1
HB< (1——) ’1_E> plt — 1y —2)dr' dz
i 1
< KpnCFr —s)a=Y(t —r) —at H < <1——>,1—a>p1(t—r,y—:n).

For I, from the induction assumption (7.15), (4.13), the convolution inequality (B.16) and since L < 1, we
obtain that
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t
|I5] < / K(r' — T)_épl(r' —rz— x)Kkak_l(r/ — s)g_l(t — T/)_é“k_l)(l_é)
r JRA
- 1 1
HB <j (1— —> 11— —> p (it =y — 2)dzdr’
o o

t
L B e e S )

HB< (1——) ,1—&) prt—1"y —z)dzdr’

< KopkCF(r — s)a=1(t — r)~ath(-3) L t—ry—:z:f[ < (1—l>,1—1>,

a

provided that we choose C' > K in (7.15). This concludes the induction step for (7.15).

Proof of (7.16). Using the definition of ®,,4; (4.12) and (7.15), we obtain by the dominated convergence
theorem that s € [0,7) — ¢pa1(p, s, 7, ¢, x,y) is continuously differentiable with

00
8sq>m+1(iu7 s,rt,x, y) = Z asHﬁz-kl(/Jv s, 1t x, y)
k=1

Then, (7.16) follows immediately from (7.15).
O

7.2. First part of the proof of the induction step. We split the proof of the induction step into different
parts for the sake of clarity. We start by proving the estimates (4.20), (4.21) and (4.22).

Proof of (4.20) and (4.21). We start by showing that for all 0 < s < t < T, z,y € R% the map
Pms1(s, s, t,x,y) admits a linear derivative given which is C! with respect to v € R? and such that for all
v eR?

) N
%I)mﬂ(/h S, tv z, y)('U) = Zp & %an+l(u7 S, tv T, y)('l]), (717)
k=1
and
) > 5
av%pm-l—l(:u’ S, t7 z, y)(v) = Zp by av%Hm—i-l(:uv S, ta €, y)(v) (718)
k=1

where the series are absolutely convergent. Moreover, we also have the following representation formulas

1)
5 —DPmt1(p, 8,8, 2,9)( me+1 ® Hin1 @ Hi 1 (1, 5,t,2,9)(v), (7.19)

and

)
Oy vSm pm-l-l(:u’S t,x y me-l—l ®a Hm—l—l ®/an+1(lu787t7x7y)(v)' (720)

To prove (7.17), we fix p1, po € Pg(R?) and we write thanks to Lemma 2 and Fubini’s theorem
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pm+1(1u17 S,t,ﬂj‘,y) - pm+1(1u27 s,t,:z:,y)

o
= Zi)\(g) Hﬁ1+1(ul7s7taxay) _1/7\®H51+1(N2737t7$ay)
k=1

0 t
= Z/ /Rdﬁ(svrv$7z)(an—i-l(Ml’Svrvt) Z7y) —an+1(/L2,S,T’,t, Z7y)) dz dr
k=19

0 t R 1 §
= [ A [ b O (= N st 2 9) ) dlos = pa) () d dz
k=1"°%

1 < ptop 5
= / / Z/ / p(S,?",ﬂj‘,Z) an_;_l()\,ul + (1 - )\)/.LQ,S,T‘,t,Z,y)(’U)
0 JriiJs Jrd om
d(pr — p2)(v) dAdz drd(p — p2)(v) dA

1 0 N S
— /0 /]Rd Zp@ %H%H()\ul + (1= MNpe, s, t,x,y)(v) d(pr — pe)(v) dA.
k=1

Note that owing to (7.11) the series (7.17) is absolutely convergent, locally uniformly with respect to (u, s, z,v) €
Ps(RY) x [0,¢) x RY x RY. This concludes the proof of (7.17). Moreover, we have proved that the map
(iy 8, 2,0) — %pmﬂ(u, s,t,x,y)(v) is continuous. By differentiation under the integral using (7.10), we obtain
(7.18). The dominated convergence theorem yields the continuity of the map (u, s, z,v) +— 0, %pmﬂ (ys,t,2,y)(v)
is continuous. Let us now focus on the representation formula (7.19). Using the parametrix expansion (4.17)

of pm+1, one has for all u € Pg(Rd), 0<s<t<T,z,y<cR?

pm-l-l(“v s,t,:z:,y) = ﬁ(s7t7$7y) + DPm+1 ® Hm-l'l(iu’ 87t7x7y)'

We can easily see by induction thanks to (7.9) that for any k& > 1, one has

) i 1) i
%anﬁ-l(ﬂa S, T, ta z, y)(’l)) = Hﬁl—‘gl ® %Hm-i-l b2y Hzn-l,:-ll (N? S, T, tv z, y)(U)

M-

<
Il
—

We plug this expression into (7.17), and since the series is absolutely convergent, we obtain setting | = k — j
and ¢ = j — 1 and by Fubini’s theorem that

§ = i 6 -
%pm—l—l(:uv s,t,:z:,y)(v) = Zzp & an—l—jl ® %Hm+l b2y Hﬁn—l—ll(:uv s,t,:z:,y)(v)
k=
SRS R l s .
= Zzp & Hm—l—l ® %Hm-l-l ® /Hm—l—l(:uv s,t,:z:,y)(v)

) .
=D Pm1 ® 5= Hmi1 @ Hip 1 (15,8, 7,9) (v).
=0
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This is exactly (7.19). Let us now prove that the estimate (4.20) is still true at step m + 1. It follows from
(7.3), (4.18) and the convolution inequality (B.16) that for some positive constant K independent of m one has

~

0
P& %Hm—l—l(ﬂa s, t,x, y)(’U)

SK/:/Rd 1+éck(r—s)k(l_;)ﬁlg<1+j(1_é>’1_é>

PP — s,z —x)(t — r)_épl(t —ry—z)dzdr

m k

<SK(t—s)'"w+ K> CFt— sV T] B (1 +j (1 - é) 11— é) POt — s,y — ).

k=1 j=1

Using this inequality, the bound (4.13) for H¥, +1, the convolution inequality (B.16) and summing over £ > 0,
we find that there exists a constant K independent of m such that

1)
‘_pm—i-l (N7 S, t7 x, y)('U)

= pm+1 ® m—l—l ®Hﬁ1+1(u,8,t,x,y)(v)

i 1 il (1-1) i 1 1
< IRV R kip _ oyk)(1-1 L LN o, B
< K(t—s) +K,§:10 (t—-s) jlzllB 1+5(1 o .1 " p(t—s,y—x)

) m+1 . k—1 1 1
<(t—s)Taplt — s,y — ) ZCkJrl —s) 1_5)HB<1+j<1—a>,1——> ,

i=1 “
provided that we choose C' > K in (4.20). It ends the proof of the induction step for (4.20).

Notice that by differentiating under the integral (7.19) using (4.18), (7.4) and (4.13), we obtain the repre-
sentation formula (7.20) for 9, %pmﬂ. Let us now prove that the estimate (4.21) is verified at step m + 1. It
follows from (7.4), (4.18) and the convolution inequality (B.16) that for some positive constant K independent
of m one has

~

0
P& 81)%7'[771-1—1(,“7 S, ta z, y)(v)

t n—1 m k k n—1 kol 77—1 77—1 1
< —§) o _ k() T~ 4y T - -
_K/S/Rd(r s) 1—1—5 C%(r —s) ‘||B<1+ - +]<1+ - >,1 a>

k=1 j=1
PO(r — s,z —x)(t —7) épl(t—7",y—z)dzdr
L1 o (14221 b n—1 n—1 1

< K g)i241-1 |g by k(142 1 — (12— ") 1= Ot — — ).
< K(t—s) +k§:10 (t—s) j|:|ll3 L L e Al | e U At

Using this inequality, the bound (4.13) for ’Hm +1, the convolution inequality (B.16) and summing over k£ > 0,
we find that there exists a constant K independent of m such that
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)
81) _mpm—i—l (N7 S, t7 x, y)(U)

(o]
1)
< Z Pm+1 ® av%Hm-Fl ® Hl;n,—i—l(“v S,t,$,y)('U)
k=0
LESSE Y ok k(14221) ‘ n—1.,. n—1 1
SK(t—s)a ™o |14> CHt—s) [Bl1+—+i(1+— ) 1-=
— e « o «
(t=s)"a T2t~ 5,y — )
. . m—+1 . k—1 1 _1 1
<(t—s)T At —sy—a) [ D CRE- 5) (=D (1+737) 113 (1 + 14 <1 + 77—) 11— —> ,
[0 o [0
k=1 j=1

provided that we choose C' > K in (4.21). It ends the proof of the induction step for (4.21).

Proof of (4.22). Let us first prove the following representation formula for 9s®,,,11
8S@m+1(,u'7 s, T, ta x, y) = [asHm—i-l + a8,7'-[777,4-1 ® q)m-i-l] (lu’7 s, T, tu x, y)
+ (I)m-l—l ® [857'[771-‘,-1 + 857'[771-1—1 @ cI)m-l—l] (,u, 5,1, y) (721)
By differentiating the relation ®,,11 = Himt1 + Hme1 ® Pppr1, we obtain that
8Sq>m+1(:uv s, 1t x, y) = aSIHm-l-l(:u’ s,rt,x, y) + asHm-l-l ® q)m-l-l(:uv s, 1t x, y)
+ Hm—i—l & 8Sq)fn-l'l (#7 s,r,t,x, y)
Notice that by (7.15) for kK =1 and (4.15), we get that
7 1
‘[857_[771-‘1-1 + as,}-lm,-i-l & @m-i-l] (N? S, T, tv Zz, y)‘ < Km(T - S)El_l(t - r)_Epl(t - Y- .Z')

The kernel [OsHpmt1 + OsHms1 @ Pont1] (1, 8,7, t, z,y) yields a time-integrable singularity in (r — t)_é, we can
iterate the previous relation to obtain that

asq)m+l(u7 S, T, t7 x, y)

oo
= Z H?’jl-‘rl &® [83Hm+1 + 83Hm+1 ® (I)m-i-l] (:uv S, T, t7 x, y)
k=0

= [asHm-l-l + asHm-l-l b2y <I>m+1] (:uv S, T, tv €, y) + (I)m-l-l ® [asHm—l—l + asHm-l-l & (I)m-i-l] (:uv S, T, ta x, y)

In order to deal with the differentiability of the map s € [0,¢) — ppm+1(p, s,t,x,y), keeping in mind the
parametrix expansion (4.17), we first study the differentiability of the map

s € [0,7’) = ﬁ(s,r,x,z)<I>m+1(,u,s,r,t,z,y) dz.
Rd

Since fRd Osp(s,r,x,z)dz = 0, we deduce by the dominated convergence theorem that
as </d 1/)\(87 rz, Z)q>m+1 (#7 S, T, t) 2, y) dZ> = /d 832/9\(8, ", Z) (¢m+1(/~‘7 S, 7, t7 2 y) - q)m-i-l(:u) S, T, t7 xz, y)) dz
R R

+ / p(s, 7,2, 2)05Poy1(u, 8,70t 2,y) dz (7.22)
Rd
= Al + A27
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which is continuous with respect to (1,s,z) € Ps(R?) x [0,7) x R%. We now control A; and Ay. For Ay, it

follows from (B.11) and (4.16) with v = 7, the space-time inequality (B.13) that
(0= )00 — 5,2 = )t = 1) s = aff [Pt = ryy — )+ Mty — 0)] dz

A1 < K
R4
<K [ (=)t — sz —a)t =) [p Tt =y — )+ p Ut ry — )] de.
R4
Note that [pq p~7(r — s,z — x) dz is a constant independent of s and r . By the definition of p=" (B.7), the

fact that r > s and the convolution inequality (B.16), one has

sy =) (- )T (- )Ry —a) ] (1.29)

Ai| < K(r—s)a Mt —7)"
Concerning A,, it follows from (7.16) and (B.17) that

|Ag| < / Kp(r — s,z — 2)Kp(r — s)g_l(t — r)_é,ol(t —ry—2z)dz
R4
< Kn(r— )27t =) 7"t = s,y — ).
By the dominated convergence theorem justified by the controls previously obtained on Ay and As, we obtain

that the map s € [0,t) — P ® Ppt1(p, s, t,x,y) is differentiable with
68 (]/9\@ (I)m+1) (#7 S,t,, y) - _q>m+1(uv s, t,x, y) + 681/)\(8 (I)m-i-l(:uv s, t,x, y) + 1/)\® as(I)m—i-l(/Ja s, t,x, y)

= _q>m+1(/~173,t7$7y)
t
+/ / 88]/9\(87T7$7 Z) (q)m-i-l(“v 5,71, z,y) - q>m+1(lu7 87T7t7gj7y)) dzdr
s JRd

t
+/ / ]/)\(8,7",33,Z)asq)m+1(,u,8,’f',t, Z7y) dz dr.
s JRd

Thus, the map s € [0,t) — pm+1(l, S, t, x,y) is differentiable with

8spm+1(/% S,t,ﬂj‘,y) = asﬁ(s7t7$7y) - q)m-i-l(lu’ S,t,ﬂj‘,y)
+ asl/)\® q>m+1(lu7 S, t) z, y) + ]/9\® 8Sq>m+1(/~lv S, t7 €, y) (724)

Then, plugging (7.21) into (7.24), we obtain that
8spm+1(,u7 S, tu x, y) = asﬁ(37 tu Z, y) - (I)m-i-l(/% S, t7 x, y) + 881/)\@ (I)m+1(ﬂ7 S, t7 x, y)

+ DR (OsHms1 + OsHms1 @ Prt1) (1, 8,6, 2,y)
+ D@ Prg1 @ (OsHmg1 + OsHims1 @ Pryr) (11,8, t, 2, ).
By the parametrix expansion (4.17) of p,,+1, we obtain the following representation formula
Ospmi1 (ks 5,8, 2, y) = Osp(s,t, 2, y) — Prmsa(p, 5,1, 2,y)

+ 681/)\(8 q>m+1(:u7 s, t,x, y)
+ Pm+1 ® (88Hm+1 + 88Hm+1 ® q>m+1) (#7 S, t) x, y)

=11 + Ir + Is.
We can now prove that the estimate (4.22) is still true at step m+ 1 for some choice of the constant C' which
appears in (4.22).

For I, we note that (B.18) and (4.15) yield
L < K(t—s)"'p(t—s,y—a) <K({t—s)""p 1t — s,y —x),

since a € (1,2) and pO(t — s,y —x) < p~1(t — s,y — x).
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Concerning I, it can be rewritten as

t
I2 = / /d asﬁ(s,r,x,z) (q>m+1(1u787’r7t7 Z7y) - <I>m+1(,u,s,r,t,$,y)) dzdr.
s JR

Owing to the bound (7.23) obtained for Ay, which was defined in (7.22), we deduce that

A+1 4
«

<K [ (=93 =0 [0 - sy - o) (-0 -9 a = al) ] ar

_1_

< K(t— s)_ép—ﬁ(t —s,y—x)+K(t—s) = %(1 + (t — s)_é|y _ x|)—d—a+ﬁ
< K(t—s)Tap Mt — s,y )
< K(t- 3)_1ﬂ_ﬁ(t — s,y — ).

We now focus on I3. Using the induction assumption (4.22), (7.14), the fact that n+7 < « and the space-time
inequality (B.13), we get that

’asHm+1(N7 S, T, t7 x, y)‘

_1 1 _7
<K(t-r) oty —a) [ =y 9) - sy )
R

m k—1
By gy =D+ 152 i n=1y 1 /
ZC(T s) ( )H3<a+(j 1)<1+ - >,1 - dy dp(x")
k=1 j=1
< K(r—s)a Yt —r)"apt(t —ry —2)

Ck(r — 5)E-D(+2) kl:[lB <g +(j—1) (1 + "—_1> 11— 1) .

. « o
k=1 j=1

NE

Since the kernel ®@,,,,1 yields a time-integrable singularity by (4.15), we deduce with the preceding inequality
that

Has,Hm-‘rl + 857'[771-1—1 ® cI)m-l—l] (,u, S, T, t, €, y)’
< K(r—s)d Yt —r)"apt(t —ry — 2)

m

Y CF(r — )0+ Iﬁs (g +(i—1) (1 - ”T_1> 11— é) :

k=1 j=1

It follows from this inequality, (4.18) and the convolution inequality (B.16) that
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Gathering the previous estimates on I, Is and I3, we have

|65pm+1(lu’7 S,t,, y)|

<(t—s)"p Mt - s,y —0)K 1+§m:0k(’“‘sk f[ < ]_1)<1+%>’1_é>

k=1
+(j—1)<1+777_1>,1—é>

provided that we choose C' > K in (4.22). This concludes the induction step.

m+1 y k—1
<(t—s)p Tt — s,y —x) Z CF(t — s)(k_l)(H%) H B <

k=1 j=1

SIS

7.3. Preparatory technical results.

Lemma 5. e For all v € (0,1]N(0, (2ae—2) A (n+a—1)), there exists a positive constant K independent
of m and such that for all u € Pg(]Rd), 0<s<r<T,zv,vs €R? one has

m3{Ww$wMWMwn—m3{Ww$wMWng (7.25)

om om

-1 1
— vg|? 1+chr—s’“+" HB<1+ 7+j<1+777>,1—a>

k=1

<K(r—s)

e For all v € (0,1] N (0, (2a — 2) A (n 4 o« — 1)), there exists a positive constant K independent of m and
such that for all u € Pg(RY), 0< s <r <t<T, z,y,v1,v3 € RY one has

o o
om om
n—1—vy

< K(r—s)"a(t—r)"w vy — va|"p}(t — 1,y — )

- —1- —1 1
B<1+u+ <1+77—>,1——>
. 0% Q «

k=1 7j=1

Proof of Lemma 5. First, note that we only need to show (7.25) since it implies (7.26) because of (7.7). We
can write

81) Hm+1(/i,377‘7t7337y)(1)1) - av %m+1(ﬂasyr7taxay)(v2) (726)

1)
Xs,,u,(m) .
Avl,vgav Sm [b(r,x, [ r ]):| ( )

= / 5 b(T, xz, [Xﬁ’u’(m)])(z)Avl7U28$pm(uv ST Z) dZ
Rd 0N
1)

+/ ib(r 2, [X 3 ]) (2) Ay 0, Oo =P (11, 5, 7,7, 2) () dz dp(a')
R om

2d OM

=/ O by, (X)) — b2, (X)) (03) ) Avy o Oopin (5,7 - 2) dz
Rd 5 5m ’

m

m m

= (s 5, 2) () dz dia(e)

Aotz m

=11 + Is.
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Let us first focus on I;. We start by assuming that |v; — va| < (r — 8)% Using the n-Holder continuity of
b(r,z, ) (), (4.19), (B.14) since |vg — vo| < (r — s)i and (B.13), we get that
|| < K/ |z — va|T(r — s)_%“\vl — | pt(r — 8,2 — vy) dz
R4

n—y—1

< K(r—s) o |vg —wel.
Now assume that |v; — ve| > (r — s)é The gradient estimate (4.18) yields

ni=| | (ibv,x,[XﬁvW])(z)—ibw,x,[x,f’ﬂ‘m)])(m)) Dot 5,701, 2) dz
Rd 5m 5

m

[ (bl X ) = b, D) 0) ) B 2)
R4 6 (5777,

m
< K(r-— s)%
< K(r— s)%;ﬂ — vgl7.
We have thus shown that
’Il‘ <K(7’—8) ‘Ul—’l)gp
Then, we have
|I5] <K/ — N (r—s)" e = 7+1—7’v1_v2"y O(r — 5,2 — /)

m

= ~1 1
E:Ck 5) (=D (1157 IIB<1+ g<1+ﬁzf>,1—a> dz du(z')

SK(T‘—S)W clw I lvg — g

N n—1-+ n—1 1
ch s)(k=D(1+ a)HB<1+7+j<1+—>,1——>
(0% « «

0

7.4. Second part of the induction step. We prove here that the estimates (4.23), (4.24), (4.25), (4.26) and
(4.27) hold true.

Proof of (4.23). It follows from (7.26), (4.18) and the convolution inequality (B.16) that for some positive
constant K independent of m one has

N 0
Avl,vg <p ® 8@ %Hm—l-l) (/Ly s, t,x, y)()‘

t — 1 —
SK/ / (r—s)" " (t—r)"alvr — v (t — ry — 2)p°(r — 5,2 — )
s JRd

1+20k( K HB<1+ fy+]<1+—al>,1—é> dz dr
k=1
< K(t— ) Ry — 00— s,y — o) 143 CF(r — )75
k=1

—1- —1 1
]IB<1+Q———1+ <L+l——>ﬂ——>
. « (e} «

J=1
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Starting from the representation formula (7.20), using this inequality, the bound (4.13) for H¥, 41, the con-

volution inequality (B.16) and finally summing over & > 0, we find that there exists a constant K independent
of m such that

1)
‘Avl,vzav_pm-i-l(,uﬂ S, tu €, y)()‘

om
. 5
= Avhv? <pm+1 ® 8”%7_[7”4‘1 ® an-i—l) (:uv s,t,:z:,y)(')'
k=0
1 1 s 1
e .
<SK(t—s)"a Hoafur — w102t — s,y —a) |1+ CF(r — 5)H+HT)
k=1
—1- —1 1
HB<1+777 ’Y+j<1+—77 >,1——>
. o « (e
7j=1
< (t—s) a1 oy — w0t — 8,y — )
m—+1 - k—1 1 _q )
> Crt— )t T B <1 Y (1 + "—) - —>
k=1 j=1 (0% « [0

provided that we choose C' > K in (4.23). It ends the proof of the induction step for (4.23).

Proof of (4.24).

Let us first assume that |v; — vo| > (¢ — s)i Using (4.20) and the fact the series appearing in this bound
has a limit when m tends to infinity, one has in this case

1) _1
‘Avl,vz s Pm(i, s,t,x,y)(')‘ <C(t—s)"ap'(t—s,y—x)

< CO(t— s)_%ﬂ_é\vl — v TP (t — 5,y — ).
In the case where |v; — va| < (t — s)é, the mean value theorem and (4.21) yield

e M oy — gt - s,y - @)

C
< CO(t— s)g_%ﬂ_%]vl — w70t — s,y — )
C

2411
(t—s) a7 a o — vt — 5,y — 2).

Proof of (4.25).

We first note that since (4.20) has been proved before, (7.3) ensures that there exists a positive constant C
such that for all m > 1

]

%Hm(/% 87T7t7x7y)(v) < C(t - T)_épl(t -y — $)
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Using this inequality, (4.19) and the convolution inequality (B.16), we obtain that

om

6
Agm,:m |:pm ® _Hm:| (:uv S, 7, ta Bl y)(v)

t
B
/ / Agy aoPm(ps 1’y 2) = Hm(py 5,77, 8, 2, ) dz dr’
r R4 5’171,

t
< C/ / (r' — )"z — zo|? (PP =7z —21) + 2 =1z —a0)] (- r')_épl(t — 7y —2)dzdr’
r JRd

_ 14y
<Ot =) oy —ao [pO(t =y —x) + PO — 1y — 22)]

We conclude by the representation formula (7.19) and (4.13) (since the series appearing is convergent) that
we have

5 - 5
‘Axl,xz%pm(u7sut7'ay)(v) S Z Axl,xz |:pm ® %Hm ®an:| (/,L,S,t, ,y)('U)
k=0

1ty
<Ot — ) " |y — @] [0t — s,y — x1) + o0t — 5,y — x2)] .

Proof of (4.26). We first note that since (4.21) has been proved before, (7.4) ensures that there exists a
positive constant C' such that for all m > 1

5

81)%%7”(”7 Sarathvy)('v) < C(T - 3)%(15 — T)_%pl(t -7,y — .Z')

Using this inequality, (4.19), the convolution inequality (B.16) and the fact that v < o — 1 — 7, we obtain that

0
A [ @ 00| (55, 09) 0

t
/ / Ds s Do (hs 807573 2) 00— Hon (1, 5.7 £, 2, ) d
s Rd 5m

n—1

a (t—r)_épl(t—r,y — z)dzdr

< C/: /Rd(T — ) a |z — xo|" [p0(r — 8,2 — a1) + p°(r — 5,2 — x2)] (r — 5)

_1—
< Ot — )R gy — o [Pt —ry —m1)+p°(t —r,y — 22)] .

We conclude by the representation formula (7.20) and (4.13) that we have

2 ) < . .
‘Awl,m&, 5mpm(,u, syt y)(v)] < ,;:0 Ay 2o [pm ® Oy 5mHm ® Hm] (1, 8,t, -, y)(v)

—1— 1
<C(t— s)" L 7+1—g|;1;1 — xo|” [,oo(t —ry —x1) + POt — 1y — z2)] .

Proof of (4.27). Let us first assume that Wi (u1, u2) < (t — s)é In this case, by definition of the linear
derivative, the Kantorovich-Rubinstein theorem, and (4.21), we get

! 1)
‘AM1,u2pm(’7S7taxay)’ = / / 5_pm()‘lul+(1_)‘)N2787t7x7y)(v) d(ﬂl _NQ)(U) d)\‘
0 Rd 0N

< sup
A€[0,1], vERE

—1 1

< O(t— )T P Wi(u1, p2) 00t — 5,y — @)
_ 14~

<Ot — )" WY (pa, p)p°(t — s,y — ).

Wi (1, p2)

0
v FPm 1- ) 7t7 ’
Ov5—Pm (M + (1= Apz, 5,1, 2, y)(v)

In the case where Wi (u1, po2) > (t — s)é, the parametrix expansion (4.17), (B.17) and (4.15) yield
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‘Au17uzpm('787t7x7y)‘ S ‘AMLMZ [i)\@ cp777,] ('787t7x7y)‘
S ‘i)\® ‘I)m(/i1737t733=y)’ + ’i)\® q’m(ﬂ273=t7m7y)‘

<Ot - s>1—%p0<t — s,y —a)
<Ot — )& W) (1, 1)t — 5,y — ).
7.5. Preparatory technical results.

Lemma 6. e For any v € [n, 1], there exists a positive constant K such that for all m > 1, puj,us €
Ps(RY),0< s <t<T,zeR?

b(t, 2, [X; ) = b(t, 2, (X)) < K (= ) 'S W (i, ). (7.27)

e For any v € [n,1], there exists a positive constant K such that for all m > 1, uj,pus € Pg(]Rd),
0<s<r<t<T,z,ycR?

|’Hm(,u1,8,r,t,x,y) —Hm (:u278 rt,x y)| < K(T - S) « (t_r) Wf(m,m)pl(?ﬁ—r,y _$)' (7'28)

e For any v € [n,1], there exists a positive constant K such that for all m > 1, py,pus € Pg(Rd),
0§s§r<t§T,az,yeRd

1
(@ (11, 5,71, 2,y) = Bpnlpz, 5,7t y)| < K(r— )" (8= )72 W] (1, p2)p' (¢ =y — ). (7.29)
Proof of Lemma 6. Proof of (7.27) and (7.28).

By definition of the linear derivative and denoting by m; := [[ X sopa(m )] +(1- l)[th’M’(m)], we have
b, . (X)) — bt [ ;7))

1
5
B / 50 m) () [P (s 5,8, 9') = P2, 5,8, y')] dy' dl
Rd 0T
' 5
= [ L bt m) @ patin st ) s = o)y

/ / 5—6 (2, m) () [pm (11, 5,1, 2", y') — pm (2, 5,8, 27, y')] dy’ dps(2”)dl
R2d 0T
=11+ Is.

For I;, we need to control, for 2/, 2" € R?

0
L Gob s m) 0l a4 = .t ]

In the case where |2/ — 2| < (t — s)é, we write

1)
/ —5 b(t, x,my) (Y [pm (1, 8, 62", Y') — pm (1, s, 6, 2", ') dy'
R4 m

- d ! 0 !t AW/
O (5, 1,15’ + (1= V)a”yf) - (af ") '

Using the n-Holder continuity of %b and (4.18), we obtain that
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0
L gttt m) @) 5ot /) = plpn, st df
< K(t— s)an1 2" — 2"
<K(t—s) 5|2 —a"|.

Assume now that |2/ — 2| > (t — s)é One can write
0
L gttt m) @)oo 5ot /) = ppn, st ) df

_ 0 n_ O "
- 5mb(t7$7ml)(x) 5mb(t7$7ml)(x )

° ") — 0 / It /

6 / 5 i " / /
# [ gttt mi) = Sbit @) b, st o) dy

It follows from the n-Hdélder continuity of %b, (4.18) and the space-time inequality (B.13) that

L om0l 5.8.2757) = pin 5.t
< K(|2' —a"]"+ (t - 5)%)
< K(|2' —2""+ (t — s)a)
< K(t— s)%\m/ -2,
since v > n. Jensen’s inequality yields
| < K(t—s)"= W (1, p2).

It remains to study I which can be rewritten as

0
12 — / /2d |:_b t X ml)(y/) - %b(tu Z, ml)(x/) [pm(ula S, tu ‘T/a y/) - pm(,u27 S, t7 .Z'/, y/)] dy/ d,LLQ(.Z'/)dl
R
(7.30)
Thanks to (4.27), (4.18) and the space-time inequality (B.13), one has since a € (1, 2)
14y
I < K(t—s)'" @ P W] (1, o)

< K(t—s)"a W] (1, pa).

This concludes the proof of (7.27). The proof of (7.28) immediately follows from the definition (4.10) of H,,
and (B.17).

Proof of (7.29).
We prove by induction of k > 2 that there exists a constant K independent of k such that for any k > 2,
m>1, p1,p2 € Pg(RY), 0<s<r<t<T, z,ycRY

A o HE (s, t 2, y)| < (r—8) "5 (8= 7)o« W] (1, po)p (t — 1,y — )

Zz:ci(t —p)i=23) f[zs <j <1 - é) 1 é) . (7.31)
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We do not prove the base case k = 2 since it relies on the same computations as the induction step using (7.28).
For the induction step, assume that (7.31) holds for #¥, and let us prove it for #%+1. One has

t
\Amm’}{fnﬂ(', syt x,y)| < /d Hon (1, 8,77 2, Z)AMMH,@L(', s,r' t 2, y) dz dr’
R

_l’_

t
/ d Aﬂlyqum('7 S, T, T/7 z, Z),an,(:u’% S, T/v t? 2, y) dz dT/
r JR

By (7.28) and the bound of HF, (4.13) (note that the series appearing in this bound in convergent and thus
can be bounded independently of k£ and m), we have

t —
B N e e L e R A BB L
R4
11
<K(r—s) o (t—r)"+1 an (1, p2)p* (t — 7y — )B <1—a,1—a>.

By induction and using (4.13), one has

t 1 — 1
n<K [ /Rdw—r>-apl<r'—r,z—x><r'—sﬁ(t—r'>-aW3<m,m>pl<t—r',y—z)
T

ZC’t—r (1-3) HB< (1__>’1_E> dz dr’

K=o [ [ =070 =z =) =) W )~ )
ZZ:C’i(t —r)ii=2) ﬁs <j (1 - é) 1- E) dz dr’

k i+1
SK(T—S)T(t—T)‘in(ul,uz)pl(t—ny—x)ZC( r)HD(-3) HB< <1——>,1—é>

i=1

Summing the bounds obtained for I; and Is, we have proved that
A HEF st )| < (r = 8) "% (8 — 1) T2 W (pua, r2)p (£ — 1y — )
k+1 1
CZ t— B 1——),1——
e (e R

if we choose C' > K since the beginning. Finally, summing (7.31) over k > 1 yields (7.29).

g
Lemma 7. e For all v € [, 1], there exists K > 0 such that for all m > 1, uy, us € Pg(RY), 0< s <t <
T, z,v € R?
0 s.pa1,(m) 0 pi2,(m)
50 (X)) (0) = == b(t a, (X)) (0) S K(t—s)"= W] (1, pa). (7.32)

e For all v € (0, 1], there exists K > 0 such that for all m > 1, uy, us € Ps(RY),0< s <t < T, z,v € RY
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s o0 L] 0= 5 ot 22 0 < s~ SV%W{Y o1

o[

e For all v € (0,1] N (0,7 + « — 1), there exists K > 0 such that for all m > 1, pi,us € Pg(RY),
0<s<t<T,z,veR?

Ml,u25 (‘,S,t,$l,y/) dy, dlu2($l) (733)

av% [b(a% [vamv(m)])] (v) — 31)% {b(t,x, [th’m’(m)])} (v)] <

+K/ (LA — o)
RZd

e For all v € (0, 1], there exists K > 0 such that for all m > 1, uy, us € Ps(RY),0< s <t < T, z,v € RY

By s gopnCosite o)) @ dpaa). (13

) 1)
'%Hm+1(ﬂl, s, t,x, y)(v) - %Hm-ﬂ(:u?v s, 1, x, y)(’U)

+K(t—r)—i/ A2
R2d

Mlvuz%pm('ﬂgvn ‘T/hy,)
e For all v € (0,1] N (0,7 + a — 1), there exists K > 0 such that for all m > 1, u,us € Ps(RY),
0<s<t<T,z,veR?

< K(r—s) a(t—r) s W} (u, p2)p' (t—r,y—2)

dy dps(a)p'(t —r,y —x). (7.35)

0 0
81)%%7714-1(#17 87 7’, t7 .Z', y)(U) - 81)%%7714-1(“17 87 7’, t7 .Z', y)('U)

<SK(r—s)"a (t—r) o W] (u, p2)p(t — ry — ) (7.36)
+K(t_’r)_;/ (1/\|x’_y/|77) A#17H28Uipm('7s7r7x,7y/)‘ dy’d,ug(x')pl(t—r,y—:n).
R2d (5m

Proof of Lemma 7. Proof of (7.32). By definition of the linear derivative and denoting by m; := [[X; Sih,(m )] +
(1= )[X:#™] we have

bt 2, X @) — b (X))

/ /Rd 5m2 b(t, x,m0) (0, Y) [P (111, 5,8, y") — D (12, 8, t,9")] dy' dl
= / /RQd Wb(t7x7ml)(v7y,)pm(ula S7t7x/7y/) dy, d(ﬂl - NQ)(x/)dl

1)
+/ / 520 m) W,y ) pm (s 5,807 y') = Pz, 5,8, ', y')] dy' dps(')dl
R2d 0N
=11 + 5.

For I;, we need to control, for 2/, 2" € R?

52
/Rd 5502 m) 0, ) pm (5,12, y') = P, 5,6, 2",y )] dy'

In the case where |2/ — 2| < (t — s)é, we write
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52
/Rd Sm2 —=b(t,z,m) (v, Y ) [pm (p1, 5,1, 2,9 — pm(u1, s,t, 2", 9] dy’

/ /Rd [5m2 (t,2,m) (v, y) — %b(t,x,ml)(v, '+ (1 —l/):p”)}

ampm(iulv s, t, 'z’ + (1 - l/)$//7 y/) ’ (33‘/ - 33‘//) dy/ dl’.
Using the n-Holder continuity of %b(t, x, 1) (v,-) and (4.18), we obtain that

52
/l%d 5m2b(t X ml)(v y )[pm(,ul,s t x y) pm(ﬂl’s’t"x//’y/)] dy/

S K(t _ S)%L/El _ IIJ‘//|

<K(t—s) % |2 — 2"

Assume now that [z' — 2" > (t — s) One can write
52
/Rd 5500t 2 m) (W, )P (s 5, 1,2',y') = P, 5,4, 2", y)] dy
2 52

= ssb(t,x,my) (v,2') = <5 b(t, @) (v, 2”)

&2 , 52 / o /
t N L m ’ 99 Yy )
—I-/Rd [5m25(,x,ml)(v,y) 5m2b(,x,ml)(v,x)}p (1, s,t,2"y") dy
+/ 52 b(t,x ml)(U y’) . 5—26(t z,my) (v x//) Pm(,ul st o y’)dy’
R4 dm?2 T ’ om?2 [ ’ 3oy by
It follows from the n-Holder continuity of —6232 b(t,x, 1) (v,-), (4.18) and the space-time inequality (B.13) that

62
/ b(t $ ml)(U Yy )[pm(,ul,S t 33‘ y) pm(ﬂlvs7t7$”7y/)] dy,
R

a om?
< K(|2' —a2""+ (t - 5)%)
< K(ja' =27+ (t - 5)=)

<K(t—s)% |2 — 2|,
since v > n. Jensen’s inequality yields
| < K(t =)' WY (i, o).

It remains to study Io which can be rewritten as

62
12 / /]RZd |:5m2 t x7ml)(v7y,) - Wb(tuxuml)(vax/) [pm(ulaS7taxlay/)_pm(,uf27S7t7x/7y/)] dy, dﬂ2(x,)dl
(7.37)
Thanks to (4.27), (4.18) and the space-time inequality (B.13), one has since a € (1, 2)
[Io| < K(t - 3)1__ W (pa, p2)
< K(t— )" W (1, p2).
This concludes the proof of (7.32).

Proof of (7.33). We begin to treat the case where Wy (11, uo) > (t — s)é Using (7.1) and noting that the
series appearing in the bound is convergent, one has
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o
om

bt (X)) ()] < \% (bt (X7 )| ()
<K

< K(t—s) a Wi, pa)

| ot )] )

‘A/"LluLLQ

We now focus on the case where Wy (1, o) < (t — s)é Using (7.5), one has

T L [Xf’"(m)])] ()
/Am,uz 2 (X ) (W)pm (1, 5,0, ) dy
<[ %b(t,x, XD 1) A5, 0,) dy
+/R Az 55 b(t, z, [Xf"’(m)])(y)%pm(m,s,t,w’,y)(v) dy dpn («')
[ bt XN 0) 5t ) (0) d s — ) @)

o 0
+ / 500 (XN () Ay iy (5.2 ) (0) dy dp ()
R2d 0N om

=h+4+L+I3+ 1+ I5.
Thanks to (4.18) and (7.32) which is true for all v € (0, 1] since Wy (u1, u2) < (t — s)i, we obtain that

L] < K(t—s)"% W) (1, p2)

< K(t—8)"a W] (1, pa).

It follows from the boundedness of %b and (4.27) that

14y

L] < K(t—s)'""a W{ (1, p2)
< K(t—8)"a W] (1, pa).

Owing to (7.32) which is true for all v € (0,1] since Wi (u1, p2) < (t — s)é and (4.20) (the series appearing
in this estimates is convergent), one has
I < K(t— )" T 72 W] (1, o)
< K(t—s) W] (i, ),

Let us now deal with I;. We need to control

. 6 8,#2,(777,) 6 / 6 "
J-—/]R b(t, =, [X; D) | 5 -pm(u, s,t,2"y)(0) = =—pm(p, 5,1, 27, y)(v) | dy.

da0m

Thanks to (4.25) and the boundedness %b, we obtain that
1| < K/ (t— ) 2! — 2] [0t — s,y — ')+ p°(t — 5,y — 2")] dy
Rd

< K(t— 5)1_1%7 |z’ —2|7.



PROPAGATION OF CHAOS FOR STABLE-DRIVEN MCKEAN-VLASOV SDES 63

Jensen’s inequality implies that

14
Iy < K(t— )% WY (11, p2)
< K(t—s)” %Wl (1, p2)-

Finally, for I5, one has

b s.pia.(m b
15| = /R 5 b ) @) Ay o 5 (5,12 ) (0) dy dpia(a)
0
SK | B Pm( S,t,w/,y)‘ dy dpa(a’).
R2d

Gathering all the previous estimates, we have proved that

'% e, [ )) (0) = < ot 57 )] )

5 < K(t—s)"a W] (1, pa)

—I—K/ A
Rd

Proof of (7.34). We begin to treat the case where Wy (11, uo) > (t — s)é Using (7.2) and noting that the
series appearing in the bound is convergent, one has

)
1,142 %pm(v S, t7 $l7 y/)‘ dy d,u2($,)

0

. s,,(m) i i s,p2,(m)
\Awav — |b(t,, X)) <v>\ < |os - + 05— [bta, X)) (v)
< K(t—s)a

< K(t—s) o

[b(t, @, X)) (0)

(/Jlnu2)ﬁ/-

We now focus on the case where Wy (u1, pu2) < (t — s)é In this case, by (7.6), we have

0 S, (m
B Dz [vlt 2. (5] (o)

o s,,(m
:/ AH17H25_b(t7x7 [Xt’ { )])(y)&cpm(,ul,s,t,v,y) dy

/ G () Ay s Dar (15,10, ) dy
S,-,(m 6
[ B b, D 00,5 ) o)y ()
X SH2,(m) 0 ! _ !
/2d 5 Xy ])(y)avémpm(ul,s,t,x,y)(v)dyd(ul p2) (")

m J
+ /R bt [X;‘”’( D)1 —pm(-,5. 1,2, y) (v) dy dpaa’)
=L +1a+ I3+ 14+ Is.
Thanks to (4.18) and (7.32) which is true for all v € (0, 1] since Wy (u1, u2) < (t — s)i, we obtain that

n——1

L < K(t—s) o W)(u1,p2).

I5 can be rewritten as

5 S m 5 S m
I = / bt X ) () — bt 2 (X)) (0) ) A @b 5280, ) dy.
Rd 5 5’171,

m
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It follows from the n-Holder continuity of %b(t, x,1)(+), (4.28) since v € (0,7 + o — 1) and the space-time
inequality (B.13) that
+1 1+’Y+1

I < K(t —s)
< K(t—s)a

W1 (Ml,,uz)

(m,m)-

Owing to (7.32) which is true for all v € (0, 1] since Wy (u1, p2) < (t — S)% and (4.21) (the series appearing
in this estimates is convergent), one has

L) < K(t—s)"a s T2 W) (1, o)
n—y—1

SK(t—s) o Wi(u,p2).

Let us now deal with I;. We need to control

o 0 s,p2,(m) 0 / 0 "
J = /]Rd mb(t x, [X ])(y) 8vémpm(ﬂlvs7tv$ ,y)(’U) avampm(iubsvt)x ,y)(’U) dy

Let us prove that

|J| < K(t _ S) "7(171+1+’7T’1|x/ - :E//|’Y‘

Assume first that [2'—z"| < (t—s)é. In this case using (7.20) and (7.7), we have [5q 0y 5pm (11, 5,t, 27, y)(v) dy =
0. We can thus rewrite

_ i 8,#2,(777,) _ i 57#27(777«) "
7= [ sttt X))~ S [ )

m

J , o "
[av%pm(iulvs7tv$ ,y)(’U) —&,%pm(,ul,s,t,:ﬂ ,y)(U) dy

Thanks to (4.26), (B.14) since |2/ — 2| < (¢t — s)i and the n-Holder continuity of 52-b(t,z, u1)(-), we obtain
that

TV [ ly=ae =) R =0 = sy =) dy
The space-time inequality (B.13) yields
IJ| < K(t—s)at™a =gz’ — 2.
Assume now that |2/ — 2| > (t — s)E. In this case, we rewrite

J=

5 S m 5 S m
bl (X)) ) — b, (X H)(z/)] (11, 5,8, 2, y)(v) dy

R4 [ m
[ [ttt D 0) = Sbea, D 6] 8 gt 0) ) d

Then, we use (4.21) (the series appearing in the bound being convergent) and the n-Holder continuity of
s-b(t, 2, 1)(-) which yield

om

| < K(t—s)ata s
< K(t- S)g+—”*g*1+1—§’x/ i

Jensen’s inequality implies that

1
L) < K(t—s)" o TS W (1, o)
—v—1
SK(t—s)"o W] (m, pa).

Finally, for I5, one has
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5 S m 5 S,p2,(m 5
j£m1(5 bt . [X7"* ) (y) = 5 bl (X Hxx@)AAMMQaﬁggpmc,&tﬁﬂ,yxv>dyduxxﬁ

[I5] =
m

gK/<mmum®A
R2d

Gathering all the previous estimates, we have proved that

0
H17H2av%pm('v s, t, $l7 y)‘ dy dlu’2(x,)

av% [b(t,iﬂ, [th’“l’(m)])] (v) — @}% [b(t,x, [Xf’“%(m)])} (v)| <

)
+K/ (1A 2 —y|") Auhm&,—pm(-,s,t,x’,y') dy dus(x').
Rd om

Proof of (7.35) and (7.36). Both estimates are immediate consequences of (7.33) and (7.34) using the
expression of %Hmﬂ given by (7.7) and (4.18).

O
7.6. Third part of the induction step. We prove here that the estimates (4.28), (4.29), and (4.30) hold true.

Ql~

Proof of (4.28). Assume first that Wy (u1, p2) > (t — s)a. In this case, the parametrix expansion (4.17)
(which can be differentiated with respect to x), (B.17) and (4.15) yield

‘A}/«Luza:]n‘pm('?sat?x?y | < ‘Aul e [(9%15@(1) ] ( S, t x y)‘
< |9p @ @, s, 8P @ B (o, 5,1, 7, 9)|
<C(t— S)I‘Tp’(t -5,y — )
145+ )
<Ot — )" W] (un, w2)p (¢ — 5,y — ).

We now focus on the case where Wi (u1,p2) < (t — s)i Let us prove that the following representation
formula holds true

o0

AML!/&@%pmﬁ-l(’a s, t, x, y) = Z (a;]gpm-i-l ® Aul,qum+1) & an—i—l(ﬂ% s, t,x, y) (738)
k=0

Indeed, using the representation formula (4.17) which can be differentiated with respect to € R?, we get that
AM1,uza£pm+1(’7 S, tu Z, y) = ag;pm-i—l ® Aul,uzﬂm+l(u27 S, t7 x, y) + AM1,uza£pm+1 ® %m-i-l (Nla S, tu xZ, y)
Hence, we easily prove by induction that for all n >1, one has

n

Aﬂlvﬂ2agpm+1('7 S, t) z, y) = Z (8%pm+1 & Au17H2Hm+1) & an+1(/$2, S, t7 €, y)
k=0

+ A s D1 @ HEY (s, t,2,y). (7.39)

Thanks to (4.18) and (4.13), we deduce that Am,uzﬁipmﬂ ® Hmt+1 ® thjjrll(ul, s,t,x,y) converges to 0 as
n tends to infinity. Then, it follows from (4.18), (4.13) and the convolution inequality (B.16) that

‘8jpm+l & Aul,ugHm—i-l(,UQa s, t,x, y)‘

/ / ‘ D1 (12, S, 7, X z)Au17M2Hm+1(-,s,r,t,z,y)| dz dr

<K// r—s) i r—sz—a:)(t—r)_épl(t—r,y—z)dzdr

§K(t—s)_§ _Ep](t—s,y—x).



66 THOMAS CAVALLAZZI

From this estimate and (4.13), we deduce that for any k& > 1

. i 1 .
‘(azjnpm—l-l X AHl,MQHm—I-l) b2y an—i—l(lu% 87t7x7y)‘ < K(t - s)_i—‘rl_g-i_k(l_é)pj(t —S5Y— 33‘)

s(o(o-2)o- o DI 2)1-2)

Thanks to the asymptotic behavior of the Beta function, we deduce that the series appearing in (7.39) is

absolutely convergent which yields the representation formula (7.38). Now, since v € (0,1] if j = 0 and

v € (0,n+a—1)if j =1 we can chose ¥ > 7 such that 4 € [n,1] if j=0and 5 € [n,n+a—1)if j =1. It

follows from (4.18), (7.28), the convolution inequality (B.16) and since 5 € [,7 + o — 1) when j = 1 that
‘@{pm—i—l ® AH17H2Hm+1(:u27 s, t,x, y)‘

/ / ‘ D1 (12, S, 1, X z)Au17M2Hm+1(-,s,r,t,z,y)| dzdr
<K// r—s) i (r—s,z—a)(r—s)a (t—r) %Wf’(ul,ug)pl(t—r,y—z)dzdr
Rd

b (Z ]+1_7W1 (Mlv#?)pj(t_s7y_$)‘

From this estimate and (4.13), we deduce that for any k& > 1

< K(t—s)

. —~—3 1 1 ~ .
‘(azjnpm—l-l ® AHL#QHm—I-l) ®an+1(ﬂ2,87t,ﬂj‘,y)‘ < K(t - s)n 2 J+1_a+k(1_g)W{Y(/~‘l7/~L2)p](t‘ —5Y— $)

so(o-2) i D2 2)

Summing over k > 0, we find that since v <5 and Wy (u1, p2) < (t — S)é, we have

Ay @ Pt (5t y)| < K(t— )"0 0 Wy (1, pa)p/ (t — 5,y — @)
< K(t— )" a W] (un, wo)p (t — s,y — @)
14+
< K(t— )@ W, p2)p (¢ — 5,y — ).

This concludes the proof of (4.28).

Proof of (4.29). We first assume that Wi (1, pe) > (¢ — s)é In this case, using (4.20), one has

)
AN17M25 pm-i-l( S,t,l’,y)(?))

< K(t—s)"3p%(t — s,y — )
1
< K(t - s)_g+1_aW](Mlvﬂ2)po(t —5Y - $)

a1
< (t—s) oA W] (1, ) Ot — 5,y — )
m—+1

;Ok(t— lj (1——+g—1)<1—é>,1—%>,



PROPAGATION OF CHAOS FOR STABLE-DRIVEN MCKEAN-VLASOV SDES 67
provided that we choose C' > K in (4.29). We now treat the case W1y (pu1, po) < (t—s)é. By the representation
formula (7.19), we have the following decomposition
5 d
AULMZ %pm-i-l(’u S, tu x, y)(’U) = Pm+1 & AMI,N& %Hm'f‘l (M27 S, t? z, y)(’U)

1)
+ Aul,uzpm-i-l ® %%m—i—l(ﬂh S, t7 T, y)('U)

0
+ <AH17H2 |:pm+1 ® %Hm+1:|> & q)m-i-l(:ul) s, t,x, y)(U)

om
=L+ 1+ I3+ 1.
For I, using (4.18), (7.35), the induction assumption (4.29) and the convolution inequality (B.16), one has

)
+ |:pm+1 X _Hm+1:| & A,ul,ug q>m+1(:u2a S, t, z, y)(v)

<K [ = sz=a) (=9 =)W G (=2

_1 1)
+(t—7)" @ / Ay o 5—pm(-, s, y/)‘ dy’ d,ug(:z:/)pl (t—ry— z)} dz dr
R2d m
< K(t— )72 Tw W] (u, p)p(t — 5,y — )

m k
gL 0 k k(1-1 T 1 1
+E(t—s) " T a W) (1, p2)p (t—say—x)g_lc (t - 5)" “)jl:llB<1_E+j <1_E>’1_E>'

For I, it follows from (4.27), (7.3) (the series appearing in the bound being convergent) and the convolution
inequality (B.16) that

t "
<K [ = W ) = sz =)t = 1) =y ) dedr

1

< K(t— ) R W (o) 0t — s,y — @)
< K(t—s)"a T a WY (g, )0t — 5,y — ).
Concerning I3, we note that it writes
Is = (I1 + I2) @ ®pyi1 (1, 8, t,x,y) (v).
Thus, using the preceding bounds obtained for I; and Is, (4.15) and the convolution inequality (B.16), we get
that
[Is] < Kt — ) a1 AW oy, ) — s,y — )

1
< K(t - s)_%-i_l_EWl’Y(Ml)/JQ)po(t —$Y— $)

We finally deal with I;. The convolution inequality (B.16), (4.18) and (7.3) (the series appearing in this

bound being convergent) yield

< K(t—s)"a 0t — s,y — ).

)
Pm+1 ® %Hm—i-l(:u% S, t) z, y)(U)



68 THOMAS CAVALLAZZI

Then, it follows from (7.29), which is valid for all v € (0, 1] since Wy (1, pu2) < (t — s)é that

t —
|14 < K/ ) K(r— s)l_épo(r —s,z—x)(r— s)%(t — T)_éWf(ul,ug)pl(t —ry—z)dzdr
s R
n— 1 1
SK(t—s)'s e e W (o) (t = 5,y — @)
n— 1
S K(t—s)'a W (un, o) (t — 5,y — ).

Gathering all the previous estimates, we have proved that

0
ANLMZ %pm-i-l('? s, t,x, y)('U)

1
< K(t—s) o e W] (i, )" (t — 5,y — )

m k
_1 Yoo, 1 1
1+ZCk(t—s)k(1 a)HB<1—a+y <1_5>’1_5>
k=1 j=1
S U S RO 0 = k (k—l)(1—l)k_l Yo 1 1
é(t_s) a an(Ml)MQ)p(t_s7y_$)ZC(t_s) * HB<1_E+J<1_E>71_E>7
k=1 Jj=1

provided that we choose C' > K in (4.29). This ends the proof of the induction step for (4.29).
Proof of (4.30). Assume first that Wy (u, pe) > (¢t — 8)é In this case, (4.20) yields

)
AU/LMZaU %pm-i-l(’a 5,1, x, y)(v)

<K(t—s)"s Pa 0t — s,y — w)
n——1 _1
SK(t—s) o TTaW] (1, p2)p°(t — s,y — @)
n—y—1_,4_1
a an(ul,ug)pO(t—s,y—x)

= k (k—1)(1 L*1)11‘6_1 n— n—1 1
t — 5)-D(+13 1+ 2777 o1+ 2= )12
>t [I5(1+ 222+ 6-n(1+22) 1-3),

«
J=1

<(t—s)

provided that we choose C' > K in (4.29). We now treat the case W1y (pu1, po) < (t—s)é. By the representation
formula (7.20), we have the following decomposition

) 0
AH17H280 %pm—i-l('a s, t,x, y)(’U) =Pm+1 ® AML,LLQOU%IHTYHJ(:U?’ S,t,x, y)(U)

0
+ Am,p2pm+1 by av%Hm—l—l(/Jla st x, y)(’U)

0
+ <AH17H2 |:pm+1 ® av%Hm+1:|> ® q>m+1(1u17 s,t,x, y)(’U)

1)
+ |:pm+l & av%Hm+1:| & AMLMZ q)m+l(/”427 S, t7 x, y)('U)

=01+ I+ I3+ 4.
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For I, using (4.18), (7.36), the induction assumption (4.30), the space-time inequality (B.13) and the
convolution inequality (B.16), one has since v € (0,7 +a — 1)

i<k [ [ sz [0 -0 W e -y —2)

5

+(t—7")_§/Rd(1A|w'—y'l’7) iz 5 =P s,r,w’,y’)‘ dy’dm(iﬂ')pl(t—r,y—z)} dz dr

n—y—1
«

éK(t—S) +1__W1 (Mlv#?)po(t_s7y_x)

m . 1 1
1 kip kl-l—l 1 o 1 - 1— =
+k§:10(t s) ||B + 1 + + 1 o) -

For I, it follows from (4.27), (7.4) and the convolution inequality (B.16) that

—1

t 1+ 1
LK [ /Rdw—s>1—T”Wf<m,u2>p°<r—s,z—w)(r—s>%<t—r>-apl<t—r,y—z)dzdr
s e O D
éK(t—S) * a tL 7+1 Wl (Mlv#?)po(t_s7y_$)

v

—y—1 1
SK(t_s)n o +1_EW1 (M17M2)p (t—S,y—$)

Concerning I3, we note that it writes

Iy = (I1 + 1) @ ®pui1 (11, 8, 1, 2,9) (v).

Thus, using the preceding bounds obtained for I; and I, (4.15) and the convolution inequality (B.16), we get
that

] < K(t—s)" o =1 7+1_7W1 (N17M2)Po(t—3=y—x)

m

k
L+ CF(t—s)F 1+—H <1+—+3<1+T77—1>,1—é>

k=1 J=1

1
< K(t—8)" 2 T W ()t — s,y — )

m

14+ Y Okt — sk f[ <1+—+ <1+777_1>,1—1>

a
k=1

We finally deal with I;. The convolution inequality (B.16), (4.18) and (7.4) (the series appearing in this
bound being convergent) yield

< K(t—s)T 1wt — s, - a).

6
'pm—l—l 0 av%,Hm—l—l(,u% s, t,x, y)(’U)

Then, it follows from (7.29), which is valid for all v € (0, 1] since Wy (1, pu2) < (t — s)é that

t p—
LK [ ] K= s 5780 s = )= )" (= )WY G, ¢ = 1y = 2) dsdr
R

1
< K(t—s)"a PR I W (u, w2) Ot — 5,y — )
<K(t—s)a

TG (1, 1) 00t — 5,y — ).
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Gathering all the previous estimates, we have proved that

KN
om

n—vy—1

1
SK(t—s) o TTaW (1, p2)p°(t — s,y — @)

Aul,uzav pm+1('737t7‘ray)(v)

m k
1+Y ¢ (t—s)k(1+’21)]_[8<1+u+ <1+"—_1> ,1—l>
k=1 7j=1 a
<(t—s)"a PW (1, p2) 00t — 5,y — @)

o b1 n—1 1
ZC’“ 5) =D+ HB<1+—+3<1+—>,1——>,
(% «

provided that we choose C' > K in (4.30). This ends the proof of the induction step for (4.30).

7.7. Preparatory technical results.

Lemma 8. e For any v € (0,1], 7 € (0,7 A (o — 1)), there exists a positive constant K such that for all
m>1,t€ (0,T), 51,82 € [0,t), u € Pg(RY), x,y,€ RY
|As soPm (st y)| < K Mp_ﬁ(t — 51,y —x)+ M/fﬁ(t — S,y —x)| . (7.40)
1oz - (t — 51)7 (t — s2)7

e For any v € (0, 1], there exists a positive constant K such that for all m > 1, ¢t € (0,T], s1,s2 € [0,1),
ue ’Pﬁ(Rd), x € RY

Asrsablts o, [ )| < Kt — sof [( = 51)877 4 (= 52)577] (7.41)

e For any v € (0,1], there exists a positive constant K such that for all m > 1, 0 < r <t < T,
s1,82 € 10,7), p € PB(Rd), z,y € RY

B Horr (17,2, )] < K (=) 0 0= ry = sy — 5o [(r— 5037 4 ()3 7] L (72
and

AP (1,7t 2, y)| S K(t— 1) pl(t = 1,y — )]st — 5o [(7‘ —s1)a T+ (r - Sz)gﬂ] - (143)

Proof of Lemma (8). Proof of (7.40). Assume first that |s; — sa| > ¢t — s1 V sa. Then, using (4.18), we get

that

‘Asl,szpm(/”'a'7tax7y)’
gK[po(t—sl\/SQ,y—x)+p0(t—81/\327?4—x)}

’81—82‘7 0 (t—Sl/\SQ)ﬁ/‘i“Sl—SQ”\/ 0
<K|l————— t— vV — t— A —
< [(t_slv(%)yﬂ (t—s1Vs2,y—2)+ (=51 Ao p(t—s1As2y—x)

s1 =827 |s1 —s2]7
<K | LT 0y g ey —a) 2 0 g A sy y — )]
= [(t—sleQ)vp (= Veny—a)+ 5o m e (s hsay —w)
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We now focus on the case [s1 — so| <t — s1V s9. For A € [0,1], we set sy := As1 V sg+ (1 — X)sy A sg. We
have thus by (4.22) (the series appearing being convergent)

|A31782pm(1u7 ) t) x, y)|

1
S/ ‘8spm(u7 S)ntaxay)’ ’31 _32’d)\
0
1 ~
§K]31—32]/ (t—s\)"Lp 7t — sy, y — x) dX
0
! —-1-4 -1 —d—a+1]
< Clan—saf [ (8= 52) R (L4 (= s2) oy = o)
0

< K|s1 —so|(t — 51V 32)1_7(t — 51V 32)_1_g (I+(t—sV 32)_%@ — x])_d_‘Hﬁ

1 ~
F(L+ (= 51 A s2) TRy — ) T4

for some 7 € (0,7 A (a—1)). Since |s; — sa| <t — 51V 59, we easily check that (t —s;Vs9)™t < 2(t—s1 Asg) L

It follows that

’A51752pm(u7'7t7x7y)‘
< Kls1 — sof" [(t -5V 82)_7_%(1 +(t—s51V 82)—§|y _ x|)—d—a+ﬁ

d ~
+(t—s1A82) TTa(l4+(t—s1 A 32)_5 ly — x|)_d_a+"}

|s1 — so|”

‘31 _32’“/ -
< Mt — A\ — B — .
>~ |: P ( S1/\82,Y .Z') + (t — 5 \/Sg)ﬂy

Aol (¢ — 51V 89,y — )| .
=5 Asa) p Mt —s1Vs2,y x)]

This concludes the proof of (7.40).

Proof of (7.41). By definition of the linear derivative and an centering argument, one can write setting
My = )\[X?VS%M(W)] +(1— )\)[Xfl/\sz’”’(m)] for A € [0,1]

A81,82b(t7x7 [X;M(m)]) - /

) )
o <—b(t,a:,mA)(y) — —b(t,a:,m,\)(a;')> Ay soPm (s St y) dp(x’) dy dX.
R

om om

We deduce using (7.40) for some 77 € (0,7 A (o — 1)), the boundedness of %b and the n-Holder continuity
of %b(t,x,u)(-) that

A ablt, 1,

31_32"\/ =
<K —x/m ’— Mt — g1 A —
= R2d|y 'l [(t—sl/\SQ)Vp (t—s1As2,y—2a)
|31—32|7 =
Torvap? (s Veny =2 dydu(e’)

Notice that because 4+ 7 < a, p~7"(t — s,-) is integrable. By the space-time inequality (B.13) and since
Jga P~ 1t — 5,y) dy is a finite constant independent of s and ¢, we obtain (7.41).

Proof of (7.42) and (7.43). By the definition (4.10) of Hy,+1 and since p(u, s,r,t,x,y) does not depend
on p and s, we immediately deduce (7.42) from (7.41) and (B.17).
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Concerning the proof of (7.43), we start from the Volterra integral equation (4.11) which yields

Asl,sz CPm-i-l(,ua T, tu x, y) = A81782Hm+1 (N7 5T, t7 x, y) + Asl,SQHm+l & @m-i-l (N7 S1 Vv 52,7, t7 x, y)
+Hm+1 ® Asl,sz(pm-i-l(,uﬂsl A 327T7t7m7y)' (744)

Using (7.42) and (4.15), we deduce that

|Ag 5o Hm+1 ® Pong1(p, 51V s2,7,t,2,y)|
< K/t /Rd(r’ - r)_ipl(r/ —ry—x)|sy — s2|” [(r' — sl)g_'y +(r' - 82)%_7 (t— r/)_é,ol(t —7y—2)dzdr’
r
< K(t— r)_éH_% [(r —sy)a T+ (r— 82)§_7:| plt —ry —x).
This inequality and (7.42) ensure that

|[AS1,52Hm+1 + A81,82;"[m+1 ® <I>m—l—l] (/‘7 s1V sg, 1,1, @, y)|
< K(t— 7‘)_% [(r —s1)a V4 (r—sg)a V| plt —ry —x). (7.45)

As @, yields a time-integrable singularity, we can iterate the implicit representation formula (7.44). We
thus obtain

Asl,szq)m-‘rl(ﬂy ) t7 T, y) = [Asl,ssz—i-l + Asl,SQHm—i-l & CI)m-i-l] (N7 51V s2, t, T, y)

00
+ Z an+1 X [Asl,SQHm—l-l + Asl,ssz-l-l ® <I>m+1] (lu’7 s1 N\ s2,t, 2, y)
k=1

After standard computations using (7.45) and (4.13) that we omit, we conclude that (7.43) holds true.

7.8. Fourth part of the induction step. We prove here that the estimate (4.31) holds true.
Proof of (4.31). We start by assuming that |s; — s2| > ¢ — s1 V s2. In this case, (4.18) directly yields

|As1,szagpm(ﬂ7 S, y)|
< |00pm (1, 51,8, 2,9)| + |04pm (1, 52,1, 2, 9)|

<K (t—31VSQ)_ipj(t—sl\/Sg,y—:n)—I—(t—31ASg)_ipj(t—sl/\SQ,y—x)}
[ s1— sa|7 » 51— 8|7+ (t—s1Vs2)T
<K | | =0 (t — 51V 82,y — 1) + | [+ )jp7(t—31/\82,y—:17)
_(t—Sl \/82)'\/—’_5 (t—Sl ASQ)'Y(t—SlASQ)E
[ Js1— sa|? ' 51— sa|7 ;
<K ¢ | y |)V+jp’(t—sl\/82,y—x)—|—(t | /\ |)V+jpj(t—81/\32,y—x)],
Lt — 81 S92 @ — 81 S92 o

which proves (4.31). We now turn to the case |s1 — s3] <t — 51V s9.
Differentiating with respect to x the parametrix expansion (4.17), we get

azjnpm(uv s,t,:z:,y) = a:{ﬁ(s7t7$7y) + 8%]3@ q)m(lu7 87t7x7y)'

We are going to use the following decomposition
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Asl,328§;pm(% ) t) z, y) = Ashszagﬁ(') t7 €, y)

t

—1—/ / Ag, 5,00 1,2, 2) P (1, 51V S2,7, 8, 2,y) dz dr
s1Vsy JRA
t

—I—/ / Ip(s1 A so, 1,2, 2) Ay 5o P (12,7, t, 2,y) dz dr
s1Vso R4

s1Vso .
— / AIp(s1 N sa,ryx, 2) P, (1, 81 A S2, 7,8, 2,y) dz dr
S

1A\82 R4

=L+ I+ I3+ 1.

By (B.20), we obtain that

s1 — s2|7 ; 51 — sa|7 i
|| < K | | =P (t —s1As2,y — )+ | | =0 (t— 51V 82,y — )| .
(t —s1 A sg)' T (t —s1Vsp) @

We now focus on Iy. Thanks to (B.20), (4.15) and the convolution inequality (B.16), one has

t — 5|7 ‘ — go|7 .
| I SK/ / [ 51— 5] pP(r—syAsg,z—x)+ 51— 52| p](r—sl\/SQ,z—x)]
s1Vsa J R4

(r—si A 32)7+§ (r—s1Vv 82)“”%

(t— r)_%pl(t —ry—z)dzdr

t — 5|7 .
SK/ / 51— 52| jp](r—sl/\Sg,z—:E)(t—r)_%pl(t—r,y—z)dzdr
s1/As2 J R4 (T‘ — 81 A\ SQ)AH—E

t — 557
—I—K/ / 51 = 2| jp](r—sl\/Sg,z—x)(t—r)_%pl(t—r,y—z)dzdr
s1Vs2 JR4 (r -5V 82)74_5

s1 — 89| : 51— so|7 j
<K | |j TP (t—s1 A s2,y —x) + | |j TPt =51V s2y —2)
(t—s1 Asp)’TatTa (t—s1Vs) e ta

s1 — so|? . 51 — 82|7 j
<K | | =0’ (t — 51\ 82,y — ) + | | 7P (= s1Vsyy—a).
(t—s1Asg)’ o (t—s1Vs)Ta

For I3, it follows from (B.17), (7.43) and the convolution inequality (B.16) that

t ,
|13] < K/ /d(r —S1AS9) apl(r—s1Asy,z—x)(t — T)_épl(t )
s1Vsa JR

1 1
_|_
(r—s1Vs2) (r—si/Asg)?

|s1 — sa|” ] dz dr

t .
§K131—82\7/ (r—s1Vso) a 7(t—r)"adr [P/ (t =51V sa,y — )+ p/(t — 51 A s2,y — )]

1Vs2

_d_ _1 i i
< Kls; — so7(t — 51V s9) "2 7T17% [P (t— 51V s2,y — @)+ p/(t — 51 A sa,y — )]

|51 — so|? . |s1 — s2|7 ;

=~ j - Y T j - Y ’

<K Pt —s1Vsy,y—1z)+ Pt —s1As2,y—x)
(75—81\/82)54_“/ (t—Sl /\82)5—1—7

where the last inequality comes from the fact that ¢ —s; A s; < 2(t — s1 V s2). We finally deal with 1. Owing
to (B.17) and (4.15), we have
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s1Vs2 .
|1 < K / (r—s1Aso) apl(r—siAssz—a)(t— r)_é,ol(t —ry—z)dzdr
$1/A82 R4
s1Vs2 j 1 .
<K (r—siAsg) a(t—r) adrp(t —s1/As2,y—x)
S1/\S2
i s1Vso j .
SK(t—Sl\/SQ)_a/ (r—s1 Asg) adrp’(t— sy As2,y—x)
CRRAY-D)

_1 _J ; ;
< K(t—s1Vs2) alst—so| Ta [pP(t—s1V 82,y —x)+pl(t — 51 Asa,y—a)].
Since by assumption v < 1 — %, we obtain

1 j . .
Iy < K (t — 51V s2)"a 705 — s [P (t =51V o,y — )+ p (t — 51 A 82,y — )]

s1 — s2|7 ; 51 — sa|7 ]
| ’j Pt—s1Vso,y—x)+ | ’j p(t—s1Nsgy—m)|,
(t—s1V s9)at? (t —s1 A s2)a™?

< |

where the last inequality comes from the fact that t — s; A sy < 2(t — 51V s9) and 1 — é > 0. This concludes
the proof of (4.31).

7.9. Preparatory technical results.

Lemma 9. e For any v € (0, 1], there exists a positive constant K such that for all m > 1, t € (0,71,
51,82 € [0,1), p € Pg(RY), z,v € RY

O btz (X)) (0)

S1,52 5m

A

< K|s1 — so|" [(t SR (- 32)?:’—7} : (7.46)

e For any v € (0, 1], there exists a positive constant K such that for all m > 1, ¢t € (0,T], s1,s2 € [0,1),
p € Pg(RY), z,v € RY

o

_ ol
<=l g
om

1, (m) K ol !
B 02, D] 0 < K2 [ oot dydute). (77

e For any v € (0, 1], there exists a positive constant K such that for all m > 1, t € (0,71, s1,s2 € [0,1),
re [81 \ 327t)7 IS PB(Rd)’ T,Y,v € R¢

]

1
‘ASl,S? %Hm'i'l(lu” -,T,t,x,y)(v) < K(t - T)_Epl(t -y — l‘)

— 5|7
sz sl / A
(r—s1Vse)?  Jpoa
e For any v € (0, 1], there exists a positive constant K such that for all m > 1, ¢t € (0,T], s1,s2 € [0,1),
p € Pg(RY), z,v € RY

1)
81,52 %pm (N7 5T xly y)' dy d:u(x/):| . (7'48)

o
om

|s1 — s2|7

(t -5V 82)74_%

+K/ (A Jy—2'")
RQd

<K

Attt 15 0

5
Asi 52005 —pmltt; s 1, o y)| dydp(a’). (7.49)
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e For any v € (0, 1], there exists a positive constant K such that for all m > 1, t € (0,71, s1,s2 € [0,1),
re [81 \ 327t)7 IS Pﬁ(Rd)7 T,Y,v € R¢

<K(t-r)apl(t —ry )

6
Asl,szav_Hm—i-l (ﬂ) 1yt y)(U)

om
S1 — 82 v
e IR
(r—s1 Vs’ a R2d

d

As1,8280%pm(:u7"7‘, w’,y)‘ dy du(:v’)] . (7.50)

Proof of Lemma 9. Proof of (7.46). By definition of the linear derivative and a centering argument, one can
write setting m) := A[Xflst’“’(m)] +(1- )\)[thlAs2’“’(m)] for A € [0, 1]

0 : m (52 52
ASl,SQ%b(ta'x? [Xt"LL’( )])(U) = /de <Wb(t7$7m)\)(,u, y) — Wb(t’ :Ij’ mA)(’U,:U’))
A31,S2pm« (#7 1, 33‘,, y) d,u($/) dy d\.

We deduce using (7.40) and the n-Holder continuity of %b(t, x, p)(v,-) that

1) . (m
'Asm@ %b(t, x, [Xt%( )])(U)
_ Y
< o si=ser Y
<k [ | e s sy )

31 —_ 32 Y =
mp Mt —s1Vsg,y—2')| dydu(x).

Notice that because n+ 7 < a, p~T7"(t — s,-) is integrable. We conclude by the space-time inequality (B.13)
and since fRd p~T(t — s,y) dy is a finite constant independent of s and t¢.

Proof of (7.47) and (7.48). Coming back to (7.5), we have the following decomposition

o
om

1) u(m
= /]Rd Asl,sz%b(t7x7 [Xt7u7( )])(y)pm(,uasl \/Sg,t,?],y) dy

Aspng— [blta, 1) (0)

5 S1/\S m
+}/ (2, X ) () Ay sapra(as 80, ) dy
Rd 0T

0 5, () 0 / /
+ /R2d Asl,sz 5mb<t7 €T, [Xt ])(y) 5mpm(ﬂy s1Vsa,t,w ,y)('l]) d,u(x )dy

Y s1As2,u,(m) 4 / /
b [ b D)) i) (0) i)

=L+ I+ I3+ 1.
It immediately follows from (7.46) and (4.18) that

Ll < K |s1 — s2|7 |51 — s2|”
T t—s)e (E—sg) e
< K—'S1 — 52|’

- (t—Sl\/Sg)'Y.

Then, the boundedness of 52-b and (4.31) yield
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|31 32|V |s1 — sa|” _-
LI <K t— — L N —v)d
| I / ) Mt —s1,y v)+(t_s2),yp (t —s2,y —v)dy
|s1 — s2|"
< K- oAl
- (t—sl\/Sg)ﬁf

Similarly to I3 and using (4.20), we deduce that

— e |7
‘[3,<K&
(t—31VS2)

Gathering the previous estimates on I, I, I3 and noting that %b is bounded, we conclude that (7.47) holds
true. Remark that (7.48) follows directly from the expression of %Hmﬂ given in (7.7) and from (7.47).

Proof of (7.49). We use (7.6), which yields the following decomposition

ASl,Sgal)

om

1) o (m
= /Rd A51,32 %b(tx) [Xt7“7( )])(y)aiﬂpm(:uv s1V Sg,t,’U,y) dy

[b(t, 2, 1)) )

6 S S m
b [ bt ) ) sy D110 9)
R m
5 wlh(”"b) 5 / /
+/de A51,825mb(t,x, (X, ])(y)f%&mpm(u, 51V 8o, t, 0’ y)(v) du(x’) dy

0 s1/As2,u,(m) 1)
—b(t X512 M Ay oo Oy (1, - b, dulz d
+/ﬂ{2d om ( [ t ])(y) 1 28 5mp (N? U, T ,y)(’l)) N(‘T) Y
=1+ Is+ I3+ Iy
It immediately follows from (7.46) and (4.18) that

51— s2|7 51— 82| _1
< |zl szl -
(s % (st
< g lsi—sl

(t—s1V 32)“”'1;" '

We rewrite I in the following form

6 S S m 5 S S m
I = /R d (5—b<t,x, ) () - bt [ >1><v>) Ay saDapin(jt, .0, y) dy.

m

Then, the n-Holder continuity of %b(t,x,u)(-) and (4.31) yield

|51 — 2|7
(t— o)+

|s1 — s2|”

L <K —_—
1| R4 (75—81)%’_é

ly — o0 (t — s1,y —v) + ly — o0 (t = s2,y — ) dy.

Since p/~"(t — s,-) is integrable and Jga P71t — s,2)dz is a constant independent of s and ¢. Thus, the
space-time inequality (B.13) ensures that

|s1 — so|”

(t — 51V 82)74_% '

I < K
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By using (7.46) and (4.21), we deduce that

|s1 — s2|7 |s1 — s2|” 0=l 1
I K| P P (V)
—51)7"a —59)7 @
<K |51 = 52

(t -5V Sg)fH_l?Tn '

Note that since fRd Gv%pm(u, s,t,x,y)(v)dy = 0, one can rewrite I as

o i S1AS2, 1, (M) 9 $1AS2,4,(m) / i / /
f= [ (Gaebtes DX 0) = b, 6 ) ) Bl ') (0) e

The boundedness of %b and the n-Holder continuity of %b(t, x,1)(-) yield

L] < LAy —a'|"
ni< [ an-ap -

B
Ay, 5000 =—Dm (L, -7, w’,y)‘ dy dp(z').

Gathering the previous estimates on Iy, I, I3 and I, we conclude that (7.49) holds true. Finally, notice

that (7.50) follows directly from the expression of av%’}-lmﬂ obtained by differentiating with respect to v (7.7)
and from (7.49).
]

7.10. Fifth part of the induction step. We prove here that the estimates (4.32) and (4.33) hold true.

Proof of (4.32). We separate the proof of the induction step into two disjoint cases. First, we assume that
|s1 — s2| >t — s1V s9. By (4.20) (the series appearing in the bound being convergent), we can write

1)
‘Asl,sg %pm(:uﬂ ) ta z, y)(’l))

) 1)
< | i
= ‘6mpm(ﬂvslvt7x7y)(v) + ‘5mpm(lu’7 Sg,t,ﬂj‘,y)(v)

<K|{t—sV 32)1_%,00(15 —s1Vso,y—x)+ (t—s1 A 32)1_5/)0(15 — 81N\ 82,y — a:)]

— 81V 89 o — 851\ S2 o
| (¢ Tta—l t y+<-1

N ol (£ — 51V 59)7
<K [51 — 5 POt — 51V sg,y — ) + 51 =5 + =51V 5) P2t — s1 A sy, y — )
y+L-1 1
_(t—sl\/SQ) @ (t—Sl/\SQ)'Y(t—Sl/\Sg)a
51— s2|7 51— s2|7
<K | | POt — 51V sg,y — ) + | | po(t—sl/\.sz,y—:n)],

This shows (4.32) holds true at step m + 1 provided that we choose C' > K in (4.32). We now turn to the case
|s1 — s2| <t — s1V s9. Using the representation formula (7.19), we get that

1) 1)
A _pm-‘rl(M) ) t) z, y)(v) = Asl,SQ (pm+1 & %Hm—l—l) (:uv ) t7 €, y)(v)

81,82 (5777,

1)
+ Am,sz <pm+1 ® %Hm—l—l ® q)m+1> (,u, ',t,:E,y)(U)

=11 + Is.

Then, we decompose I in the following way
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1)
I = / / Ag, soPm+1 (1, ',r,x,z)é—’HmH(u, s1V so,1t,z,y)dz dr
s1Vso JRA m

t 1)
+/ / pm-l-l(:u’ S1 /\327T7$7z)A81,82_Hm+1(/L7'7T7t7 Zyy) dz dr
s1Vsg JRA (5m

s1Vso 5
_/ / pm-i—l(/h S1 /\327T7$72)_%m+1(ﬂy S1 /\327T7t727y) dZ dT
s Rd om

1/\S82

= h1+ha2+13.

It follows from (4.31), (7.3) (the series appearing in the bound being convergent) and the convolution
inequality (B.16) that

Clsi=s” g 0
L1 <K — S5V — —s51 A\ —
111 /51V52 /Rd =51V 53] [P (r —s1V 89,y =) + p'(r — 51 A sg,y — )]

(t — r)_épl(t —ry—z)dzdr
51— s2”
(t —s1V 82)7+é_1

We now deal with I7 5. Using the induction assumption and (7.48), we deduce that

<K

[po(t — 51V sg,y —x)p’(t — s1 A S2,y — z)] .

)
Asl,sz %Hm—l-l(;uy 5T t7 z, y) (U)

0

1 51— s2|7
<K({t—r)aptt—ry—2z) [&—F/de A51,525 P, -, 2, y)‘ dyd,u(x/)]

(r -5V 82)7

1 |s1 — s2|”
< K(t— apl(t — —r)— 7.51
< K(t=r) i =y ) (751)
1 |51 — 5|7 |s1 — s2|7
+K(t—r)apl(t—ry —x) +
(r—s1V 32)7+é_1 (r—s1 A 32)7+%_1
m 1y 2t 1 1 1
ch(r—81\/82)(k_l)(l_a)HB<[2—’7——]/\1+(j—1)<1——>,1——>.
P e o o «

Notice that
(r—si Asg)’ta—t > (7‘—31\/82)“”%_1 if7+é—1 >0,
(r—s1As2)TTat > (t— sy Asp)Ta Tt 2 0F T (t — sy V) el iy 1_1<0

since t — 51 A s2 < 2(t — 51V s2). Using these inequalities, one has

RI= RI=

t - ~ . ,\/
/ (t—7)"= [( sl sl ](r—slvs2)<k—1>(1—é)dr

1Vs2 r—s1V Sg)ﬁ/—l—a_l (7’ A 82)74_5_1

_ Y 1 1
<k Is=s (t — 51V s2)F(1=3)B <1—fy+k<1—a>,1——>

(t - 851V Sg)ﬁ/—l—é_l «Q

LAzl (t—sl\/32)k(1_i)8<1+(k—1)(1—%),1—l>

(t— 51V sp) T et o

<K |51 — s2[7 (t_slv32)k(1—é)5<[2—fy—é] A+ (k—1) <1—1>,1—1>,

(t — 51V Sg)ﬁ/—l—é_l
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since the Beta function is decreasing with respect to its first argument. From this inequality, (7.51) and (4.18),
we obtain

|s1 — so|”

(12| < K(t y )Wl_lpo(t — 81 A\ S,y — ) (7.52)
— 51 59 a
m (1-1) b 1 1 1
1 Bt — sV sg)fl=a -y —=|A1+(-1(1-=),1-=
+k§::10( 51V 82) j];[qu gl a] + )< a>, a>

We now turn to the estimate on I; 3. Thanks to (4.18) and (7.3), one has

s1Vs2o 0 1
]Il,glg/ p(r—siAsg,z—a)(t—r)ap (t—ry—2z)dzdr
S

1A\82
SKL'sﬂlpo(t—Sl/\Szay—x)
(t—sl\/Sg)a
51— so|7
<K | | —p(t — s1 A sg,y — ).

Gathering the preceding estimates, we have proved that

|s1 — s2|7

|| < K(t y )«/+l—1 [,00(75—81 V 82,y — ) +p0(t—81 /\SQ,y—:E)] (7.53)
— 51 59 a
m (1-1) i 1 1 1
1 kit — k=3 2—y—=|Al+(G-1(1=-=),1—-=
+3-CHe— oo HB([ =i mrG-n(i-3)0-3)

As done before for I, we decompose Is in the following way

¢ )
I2 = / / A31752 (pm+1 b2y _Hm+1> (u,-,r,:n,z)fbmﬂ(u, S1 \/SQ,T‘,t,Z,y) dz dr
s1Vsg JRA om

t
é
+ / / <pm+1 b2y Hm+1> (ﬂ) S1 /\82,r,:17,z)A31,32<I>m+1(u,-,r,t,z,y) dz dr
s1Vs2 R4 5m

s51Vso (5
_ / / <pm+1 ® 5—Hm+1> (ty 81 A 82,7, 2, 2)Pot1 (1, 81 A S2, 7,8, 2, y) dz dr
s R4 m

1A\82

= Ip1+ Do+ I3

We follow the same line of reasoning as for ;. Using the bound (7.53) previously obtained for I; and (4.15),
we have that

|s1 — so|”

[l21]| < K T 1(15 — 51 \/82)1_é [Po(t— s1Vs2,y — )+ p'(t — 51 A 52,y — )]
(t —s51V 82)'\/—’_5_
U ( 1) k 1 1 1
1 Crit — sy Vas)f =) TIB(|2—v—=|A1+(G -1 [1-=]),1-=
+kZ::1 (t—s1Vs2) ]1;[1 T +( -1 5 5

Notice that (4.18) (7.3) and the convolution inequality (B.16) yield

<K(t—s)aplt—s,y—x). (7.54)

1)
‘pm—l-l ® %Hm—l-l(uv S, t7 €, y)(’U)
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Using this inequality and (7.43), we deduce that

|s1 — s2|7

1
Is9 <K/ / t—Sl/\SQ Tap(r—s1A80,2 —T)—Mm——
| | s1Vsoy JRE ( ’ )(7’—81\/82)7

Since t — s1 A sg < 2(t — 51V s2), we get

- _1
|22 < K ——(t— 51V 52) "7 p0(t — 51 A 52,y — ).

For I3, (7.54) and (4.15) yield

s1Vs2
|I53] < / (r—si1 A 32)1_ép0(7‘ — 81 AS2,z—x)(t — r)_épl(t —ry—z)dzdr
S

1/\S2
|51 — 8o/ 17w
SK(t y )1p(t—31/\327y_x)
—81 32 @
s1— s9|7 -1
<K (= sV sa) Rt — 51 A sr,y — ),

since |s1 — so| <t — s1 V s9. Gathering the estimates obtained, we have proved that

|51 — s2|"

(t -5V 82)74_&_1

1+§:Ok(t—slv$2)k(1_i)ﬁ8<[2—7—é] A+ (j—1) (1-%),1-%) . (7.55)
j=1

k=1

1
I < K (t—s1Vsg)l a [po(t — 51V 89,y — )+ pO(t — 51 A 52,y — )]

We conclude by (7.53), (7.55) and the fact that ¢t —s; V so <t — 51 A sy < 2(t — 51V s2) that

)
‘A81,826 pm+1(u7 7t x y)( )
s1 — 8ol
SK(t ’1\/ §L+1_1 [P0(t — 51V 52,y — ) + p°(t — 51 A 52,y — )]
— 81V 52 «
m i k 1 1 1
1+ZC’k(t—sl\/82)k(l_a)HB([Z—W——} A+ (j—1) <1——>,1——>
k=1 Jj=1 “ “ “
51— 2|7 0 |51 — 2|7 0
< p(t—s1Vs2,y—x)+ p (t—s1 /82,y —x)
[(t — 51V sp)ta! (t—s1 Asp)TFat
m+1 1 1 1
Koy =) 1 _ B N
kZlC (t—s1V s2) HB([ — }/\1—1—(] 1)(1 a>’1 a>’

provided that we choose C' > K in (4.32). This ends the proof of the induction step for (4.32).
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Proof of (4.33). We start by treating the case |s; — s2| >t — s1 V s2. Reasoning as before by using (4.21)
the series appearing in the bound being convergent), we get that
h i ing in the bound bei h

1)
‘Ashszav %pm(,u, ) t, z, y)(v)

-1

<K [(t -5V 32)%1“_%/)0(15 —s1Vsy,y—x)+(t—s1 A SQ)WTH_%,OO(t — 81N\ S92,y — a:)]

|s1 — s2|7

(t A Sg)ﬂﬁ_i_l—i_

<K 51 = sl
B (t - sV 82)7+7_1+

1n,o(t—.sl\/,92,y—x)—|— 17]p(t—81/\32,y—:1:)],

This shows that (4.33) holds true at step m + 1 provided that we choose C' > K in (4.33). We now turn to
the case |s1 — s2| <t — s1V s2. By the representation formula (7.20), we write

0

)
BBt st 20)(0) = By (i 90,50 Mo ) (o) 0

)
%%m—i—l ® q)m-i-l) (N7 y t7 x, y)('U)

+ Asl,sz <pm+1 ® 81)

=11+ 5.

Then, we decompose I in the following way

)
I = / / Agy soPmt1 (s 7,2, 2)0p —Hm41 (1, 51V S2,7,t, 2,y) dz dr
s1Vso 5

)
+/ / pm-i—l(,uasl /\Sg,r,x,Z)A517528U6—Hm+1(ﬂ,’,T,t,Z,y) dz dr
s1Vso R4 m

51Vs2 (5
_/ / pm+1(1u’7 81/\327T7$7z)805_7_[m+1(“781 /\SQ,T‘,t,Z,y) dz dr
51/A\S82 d m

=1+ hi2+ 13

It follows from (4.31), (7.4) (the series appearing in the bound being convergent), the convolution inequality
(B.16) and since v < 1+ %1 that

’31 — 52" 0 0
I <K -5V —x)+ A —
[11,1] e, /]Rd (r— 51V s) [p7(r =51V 82,y — ) + p'(r — 51 A 89,y — )]

n—1

(r—s1Vsy)'s (t— r)_é,ol(t —r,y—z)dzdr
|1 — sa["

<K —
(t - 851V Sg)ﬁH’é_H_%

[P°(t = 51V sa,y — ) + p"(t — 51 A s,y — )]

We now deal with I; 5. Using the induction assumption and (7.50), we deduce that
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)
Asl,sgav %Hmﬁ-l(ua 5T, tu z, y)('l))

1 51 — s3]
<K(t—r) apl(t—ny—w)[ | | T +/RM(1My—x’!")

(r -5V 82)74_77]
|51 — s2|"
(r—s1Vv 32)7+1%7

_1 4 51— s2[7(r — s1 Vsa)a  |s1 —sa[Y(r — s1 A sg)a
+K(t_’r) “p (t_ray_:E) 1_q41-m 1_q41-m
(r — 81 \/82)7+a T (7' — 81 /\32)’Y+a 3

5
As17828v%pm(:uﬂ T x’,y)‘ dy du(w’)]

<K(t—r)"aptt—ry - o)

m

—1 -1 1
SOk — 51 v sp)*BDI HB([ <1+"T> —’y] AL+ (G —1) <1+—77a >’1_5>'
k=1 =1
Note that
(r — s /\32)v+7—1+1 2 > (r— 1 \/32)7+l—1+ﬂ if v+ é -1+ % >0, (7.56)
(r—s1 Asp)Fa It > e TR sy v ) 1a ify+1-1+121<0 '

since t — $1 A s9 < 2(t — 51V s2). It yields

t I o' e |Y _
/ (t - T)_é |81 S2|1 1— 277 + |81 S2|1 JET) (T —s51V 32)(k_1)(1+nTl) dr
s1Vs2 (r—siVs)ta 7" (r—sp Asp)Tta T
|V _ -1 1 1
<K ke N (t—sive) B (2 (1+72) v k-1 (1-=),1-=
1_q41=m
(t - 351V SQ)PH_a I+ « (67 o
— so|7 - 1 1
(t—s1Vsy) Tt a o
PN _
< K ’31 32’ (t — 5V 82)]{:(14—"71)

(t—Sl\/Sg)’H'é_l"'l?Tn
B<[2<1+77_—1>_,4 /\1+(j—1)<1+77—_1>,1—l>,
o [0 [0

since the Beta function is decreasing with respect to its first argument. From this inequality, (7.51) and (4.18),
we deduce that

|51 — s2|"

(t —s51V 82)7+7_1+ o

1—|—ZC'kt—sl\/32 li[ ([ <1+;1>—’y]/\1+(j—1)<1+77—_1>,1—l>

(07 a
k=1

|1 2] < K

POt — 51 A sg,y — )

We now turn to the estimate on I 3. Thanks to (4.18) and (7.4), one has
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s51Vso -~
|I1 3] < / po(r — 851 Asg,z—x)(r—s1 A 32)7771@ — r)_épl(t —ry—z)dzdr
S

1A\S2
gyt
§K|(i1 82\|/ )lpo(t—sl/\s%y—aﬁ)
— 81 S9 )«
Sl—Sgﬁ/
<K ’ ’ 17,p(t—81/\82,y—$),

(t —s51V 82) rHo 1+
since v < 1+ 7%1 Gathering the estimates obtained, we have proved that
|51 — s9|”

1—n
(t—s1V SQ)V+§_1+TI

1—|—ZC’kt—81\/82 f[ <[ <1+71>—7}/\1+(j_1)<1+777_1>’1_é>

k=1

|| < K [P°(t =51V g,y — ) + p"(t — 51 A s,y — )] (7.57)

Then, we decompose I in the following way

t
1)
IZ = / Asl,sz <pm+1 ®av_7-[m+l> (/,L,',T,.Z',Z)CI)m+1(/,L,Sl \/327T7t727y) dz dr
s1Vs2 R4 5m
¢ )
+ / / ( mil ® 81,5—7-[m+1> (e, 81 A 2,7, 2, 2) Ag) 5o Prmt1 (i, -1t 2,y) dz dr
s1Vss J R4 m

s1Vso 5
- / 4 <pm+1 & 8U%Hm+1> (:uv S$1/\ S2,7, X, Z)q>m+1(lu7 s1 N\ s2, 1,1, z,y) dz dr
s

1182

=:lp1+Ioo+ Io3.

We follow the same line of reasoning as for I;. Using the bound (7.57) previously obtained for I; and (4.15),
we show that

51— S2|7 _1
2] < K(t |\/1 )Pyi|1_l+1n(t_81\/82)1 o [t — 51V sg,y —x) + p°(t — 51 A s,y — )]
— 81 S92 a @
1+Zth—sl\/32 (1+ HB o(1+2=1) AL+ (j—1) T A D
pt a a )’ a

Notice that it follows from (4.18) (7.4) and the convolution inequality (B.16) that

n—1

<K(t—s)s +1_%p0(t—8,y—x). (7.58)

)
‘pm—l—l ® Oy %Hm—l-l(;uy S,t,x, y)(U)

Using this inequality and (7.43), we deduce that

L 51— s2” 1
|122|<K/81vs2/Rdr—31/\82) p( slASQ,z—x)m(t—r) p(t—ry—z)dzdr.

n—1
Reasoning as in (7.56) to bound (r — s1 A s2) T3 since t — s1V sy <t—s1Asy<2(t—s1Vs2), we get

that

|51 — so|7
)ﬁ/+§—1+1fT"

_1
|Iro| < K (t—Sl\/SQ)l apo(t—sl/\SQ,y—x).

(t — 851V 82
For I3, (7.58), (4.15) and the convolution inequality (B.16) yield
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s1Vso
T3] < / (r—s1V 32)7“ apd(r—si Asy,z—x)(t — r)_%pl(t —r,y —z)dzdr
S

1A\S2

RPN =S
§K|81(t > v )1 po(t—sﬂs%y‘:”)
J— Sl 32 «
— 5|7
<K 51— s (t_sl\/32)1_%p0(t—81/\327ty—$)7

1 1—
(t—s1V 82)7+5_1+Tn
since |s1 — sg| <t — s1 V s9. Gathering the estimates obtained, we have proved that

|51 — s2|”

(t -5V SQ)PH_%_HJTT"

1+cht—sle2 f[ ([ <1+777_1>—’y]/\1+(j—1)<1+777_1>,1—é>

k=1

Ll < K (t—s1Vs2)la [P0(t — 51V 52,y — ) + p°(t — 51 A 59,y — )] (7.59)

We conclude from (7.57), (7.59) and the fact that t — s1 A s9 < 2(t — s1 V s2) that

)
‘ASLSQaU %pm-l-l(:uv S, y)(’U)

|51 — 827

(t - 851V Sg)ﬁf—l—é_H—l?T77

1+Zth—31\/82 f[ <[ <1+%1>—7]A1+(j—1)<1+n7_1>,1—é>

k=1

<K [p°(t — 51V sa,y — ) + pO(t — 51 A 89,y — 7))

|s1 — sa|”

< [51 = 52" POt — 51V sg,y — ) +
B (t—s1V 82)7+7_1+ = ’ (t—s1 A 82)7+%_1

plasy 3 =) 1 n—1 1
S OR(t— sy v ) DO+ H ([Q+__)_4A1+U_DQ+__)J__)
pt - o o} o

POt — 51 A sg,y — :E)]

provided that we choose C' > K in (4.33). This ends the proof of the induction step for (4.33).

APPENDIX A. DIFFERENTIAL CALCULUS FOR FUNCTIONS OF A MEASURE VARIABLE
Let us fix 8 € [0,2]. We use the following convention Py(R%) := P(RY), endowed with the weak topology.
Definition 4 (Linear derivative). A function u : Pg(R?) — R is said to have a linear derivative if there exists
a function %u € CY(Ps(R?) x R% R) satisfying the following properties.
(1) For all compact subset K C Ps(R%), there exists a constant Cic > 0 such that

)
Vi e K, Yo € RY, %u(,u)(v) < Cx(1+ |v)?).

(2) For all u,v € Ps(RY), we have

1
— [ [ sttt (= ) i - v)(o) .
0 JRrd 0N
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The function w is said to have a linear derivative of order two if for all v € R?, the map %u()(v) admits
a linear derivative %g(-)(v, -) such that %u is continuous on Pg(R?) x R? x R? and for all compact subset
K C Pg(R?), there exists a constant Cxc > 0 such that

2

~—u(p) (v, v')

Y e K, Yo, v € RY,
om

< Cr (14 |vf° + |v')°).

Definition 5. We define the space C*([0, 7] x R? x Pg(R?)) as the set of continuous functions u : [0, 7] x RY x
Ps (RY) — R satisfying the following properties.
(1) For any pu € Pg(RY), the map u(-,-, ) belongs to C*([0,7] x R?) with dyu and d,u continuous on
[0,T] x RY x Pg(RY).
(2) For any (t,x) € [0,T] x R, the map u(t,r,-) admits a linear derivative (u,v) € Pg(RY) x R? s
%u(t,:n,,u)(v) such that %u is continuous on [0,7] x R? x Pg(R%).
(3) For any (¢, z, 1) € [0, T]xR%x Pg(R?), the map %u(t, x, ) is of class Ct on R? and &,%u is continuous
on [0,7] x R? x Pg(R?) x RY.
We now introduce the notion of empirical projection.
Definition 6 (Empirical projection). Fix u : P (RY) — R. For all N > 1, the empirical projection uV of u is
defined for all = (z1,...,2x) € (RD)N by
uM(x) = u(@y),
N
where Y = % Z ;-
j=1
The following proposition is the analogue of Proposition 5.91 of [2] where 5 = 2, so we don’t give the proof.

Proposition 5. Let u : Pg(R?) — R be a function admitting a linear derivative %u such that all u € Ps(R?),
S u(p)(-) € CH(RY) and &,%u is continuous on Pg(R?) x RY. Then, for all N > 1, the empirical projection

om

uN of u defined for all = (z1,...,7y5) € (R)N by

uM(x) = u(my)
is of class C'. Moreover for all z = (x1,...,zx) € (RN
1,06
Op,u (z1,.. ., 2N) = Nav%u(uwjv)(:m)

The next proposition illustrates how a smooth flow of measures admitting a transition density can regularize
a function defined on Pg(R?). It is clearly reminiscent of Proposition 2.3 in [7]. We don’t prove it since it can
be done in a completely analogous manner.

Proposition 6 (Regularization by a smooth flow of density functions). Let us fix ¢ : PB(Rd) — R a function
admitting a linear derivative and consider a map (u,s,z) € Pg(R?) x [0,T) x R? — p(u, s, T,x,y), where
T > 0 is fixed and such that p(u,s,T,z,-) is a density function. We define the measure-valued map O :
(s, 1) €[0,T) x Pg(R?) = O(s, ) (dy) := (fgap(pt, s, T, x,y) dp(z)) dy € P(R?). We assume that the following
properties hold true.

(1) For any compact subset K of [0,T) x Pg(R?),
/ sup [y?O(s, u)(dy) < +o0.
Re (s,pn)EX

(2) For all y € RY, the map (u,s,2) € Ps(R?) x [0,T) x R?  p(u,s,T,z,y) belongs to C*(Ps(R?) x
[0,T) x RY).
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(3) For any compact subset K of Pg(R?) x [0,T) x R? x R? and for any j € {0,1}, there exists a positive
constant C' such that

/ sup {
R4 (p,s,2,0)EX

(4) For any compact subset K of Pg(R?) x [0,T'), there exists a positive constant C' such that

[ 1) s
Rd

(m,8)ER

5
61]} _mp(lu’7 S, T7 z, y)(U)

+109p(p, 5, T, 2, y)| + Iasp(u,s,T,w,y)l} dy < +o0.

dy < C(1+ |z”)(1 + |v]"),

)
i T
5mp(u, s, T,z,y)(v)

/ A+ 191%) sup [p(uss,T,0,9)| dy < CO+ [o]f),
R4 (m,8)EK
and

)
_p(M787T7$7y)(U) dy é C(l + |U|ﬁ)

om

sup / sup
z€Rd JRY (p,s)eX
Then, the function (s, u) € [0,7) x Pg(R?) = ¢(O(s, 1)) belongs to C1([0,T) x Pg(R?)). Moreover, we have

om

0, [6(0(5, 1))] = /

R2d
9
aom

(50O 0) ~ 50005, )(@) ) Qi T ) dy i),

5 0000 (0) = [ S-0(Os.) (5. T v.9) dy
m R

+ /de <%¢(@(S,M))(y) - %qﬁ(@(s,u))(x)) %p(,u,s,T,:E,y)(v) dy dp(x),

0

005 1000 (0) = [ (501005 0)(0) ~ 50-0(O051)(0) ) Duplros. T.v,)

</ ( 2 505, 1)) (y) — %we(s,mxx)) Do (41,5, 29) (v) dy ().

om om
We now focus on It6’s formula along the flow of probability measures associated with a jump process. Let us
fix Z! = (Z}); and Z% = (Z?); two a-stable processes on R? with a € (1,2). Their associated Poisson random

measures are respectively denoted by N and A2, their compensated Poisson random measures by N1 and M2
and their Lévy measures by v! and 2. Since a € (1,2), we can write for all ¢t > 0

t _ t ~
Ztlz// 2NY(ds,dz) and Zf:// 2 N?(ds, dz).
0 Rd 0 Rd

We fix 8 € (1,a) and vy € (0, 1] such that v > a — 1. We consider two jump processes X = (X);c[o,7] and
Y = (Y4)ie(o,7) defined for all ¢ € [0, T] by

t t
X = Xo+/ beds + Z}, and Yt:YO—I—/ nsds + 7%, (A1)
0 0

where Xg,Yy € LP(Q, Fp), b, : [0,T] x Q — R? are bounded predictable processes. The distribution of X; is
denoted by pu.

We state in the next proposition It6’s formula, which is deduced from Theorem 2 in [3] for the specific type
of processes that are considered in the present work.

Proposition 7 (Ito’s formula). Let u : [0,7] x R x P3(RY) — R be a continuous function satisfying the
following properties.

(1) The function u belongs to C*([0, 7] x R? x Ps(R%)) and d,u(t, -, u) is y-Holder continuous and bounded
uniformly with respect to ¢ and pu.
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(2) For all compact K C R? x Pg(R?), there exists Cx > 0 such that

)
vt € [0, T], ¥(x, p) € K, Vo € RY, | =u(t, x, 1)(v)| < Cie(L+ o).

(3) If v > 0, for any compact K C R? x Ps(R%), there exists Cx > 0 such that

vt € [0,T], V(z,p) € K, Yu,v" € RY, Gviu(t,x,u)(v) — &,%u(t,x,u)(vl) < Cilv—=2'|".

om
(4) For any compact K C R? x Pg(R?), we have

sup sup /
t€[0,T] (z,p)eK JRE

Then, the function (t,x) € [0,7] x R? s w(t,x, ) is of class C', with du(t,-, ;) ~-Holder continuous
uniformly with respect to t. Moreover, we have almost surely for all ¢ € [0, T

U(t, }/:fu Nt) - U(O, Y07 /’LO)

¢ t
:/ Opu(s, Yy, pis) ds +/ E <8viu(s,Ys,us)(Ys) .53> ds
0 0 5m

P 4
s —ult,z, 1) (V)| dp(v) < +o0.

t . 5 o 5 B
+/0 /RdE [%’UJ(&YVS?/LS)(XS + Z) - %U(S7YYS7/JS)(X87)

)
—Op—u(s,Ys, ps)(X4-) - z} dv'(z)ds (A.2)
om
t t _
[ ouuts Yo mads [ (s Yo ) = uls Yoo o) s, d2)
0 0 JRrd
t
+/ / [u(s, Y, 4 2, p1s) — u(s, Yo, pis) — Opu(s, Yom, ps) - 2] dv?(2) ds
0 JRrd
where (Q, F,P) is an independent copy of (€2, F,P) and (b, X) is a copy of (b, X).

APPENDIX B. PARAMETRIX EXPANSION FOR STABLE-DRIVEN SDES

Let us fix Z = (Z;); a rotationally invariant a-stable process on R¢ with o € (1,2). Its associated Poisson
random measure is denoted by N, the compensated Poisson random measure by A. Since « € (1,2), we can

write for all ¢t > 0
t o~
7 = / / 2N (ds,dz).
0 JRd

dz
dV(Z) = W

The Lévy measure v of Z is given by

We consider a function b : [0, 7] x RY — R? satisfying the following properties.

(1) b is jointly continuous and globally bounded on [0, T] x R,
(2) b is n-Holder continuous on R? uniformly in time, with 5 € (0, 1], i.e. there exists C' > 0 such that for
all t € [0,7] and 21,22 € RY

]b(t,xl) - b(t,xg)’ < C\xl - 1’2’77.
We fix s € [0,T) and we consider the following stable-driven SDE

dXP" = b(t, X, ") dt +dZ;, te s T),
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The density of Z; is denoted by ¢(¢,-). We denote by L the stable operator associated with Z defined for all
fe C;%/(Rd;R), with v > o — 1, i.e. f belongs to Cg(Rd;R) and Vf is y-Holder and for all € R? by

2@ = [ (f@+2) = £(0) = V(@) -2) (o). (5.2

We define for all s € [0,T), t € (s,T] and =,y € R?

ﬁ(87t7x7y) = Q(t—S,y—ﬂf), (B3)
H(S,t,ﬂj‘,y) = b(87$) : amﬁ(87t7x7y)'

Note that the proxy p(s,t,x,-) is the density at time ¢ > s of the solution to

{d)?f’m =dz, tels T B4)

X% =z e RY,

and H is the associated parametrix kernel. We also defined the space-time convolution operator between to
functions f and g by

t
F@gs ta,y) = / F(s,r 2, 2)g(r 2, y) d= dr, (B.5)
s JR4

when it is well-defined. The space-time convolution iterates H* of H are defined recursively by H' := H and
HEL = H @ H*. By convention f ® HC is equal to f. Finally, we denote by ® the solution to the following
Volterra integral equation

¢(87 t? x? y) = H(S7 t? x? y) + IH ® ¢(87 t? x? y)7

which is given by the uniform convergent series

stazyzz (s, t,z,y). (B.6)
k=
Let us also define, for & > —a the function p* by
Yt >0,z € RY pF(t, ) =t a (14t a|z]) "4k, (B.7)

Theorem 5. For any s € [0,7), s <t <T and z € R?, the distribution of X" has a density with respect to
the Lebesgue measure denoted by p(s,t,x,-) and given by the absolutely convergent parametrix series

p(s,t,x,y) = (s, t,x,y) +Zp®7—lk(sta;y)
k=1

=p(s,t,2,y) +p @ (s, t,2,y). (B.8)
For any t € (0,7] and y € R?, p(-,t,-,y) is of class C' on [0, t) xR% and p(-, t, -, %), Osp(-, t,-,y) and O,p(-,t,-, %)

are continuous on [0,t) x R?. The function p(-,t,-,7) is solution to the following backward Kolmogorov PDE

{asms,t,x,y) 4 b(s,2) - Dup(s, £, ) + LD(s, s y)(@) = 0, V(s ) € [0,4) x R,

p(S,t,.’I’,‘) — 6:07 (Bg)
s—t—

where p(s,t,z,-) — 6, means that for all function f : R* — R bounded and uniformly continuous, one has
s—t—

fWp(s,t,x,y)dy — f(x)| — 0.

R4 st~

sup
r€R

Moreover, p satisfies the following estimates.



PROPAGATION OF CHAOS FOR STABLE-DRIVEN MCKEAN-VLASOV SDES 89

e There exists C' > 0 such that for all j € {0,1}, 0< s <t < T and z,y € R?

109p(s,t,2,9)| < C(t—s)_%/ﬂ(t—s,y—a:). (B.10)

|0sp(s,t, 2, y)| < C(t— )1 (t — s,y — ). (B.11)

e For all j € {0,1} and v € (0,1] with v € (0,(2a —2) A (n + a — 1)) if n = 1, there exists C' > 0 such
that for all 0 < s < t < T and 1, 9,y € R?

0p(s,t,x1,y) — Bp(s,t,w2,y)| < C(t— )" a oy —aal? [P (t — s,y — 1) +pI(t— s,y —a2)] . (B.12)
Before proving Theorem 5, we recall some properties satisfied by the functions p*.
Lemma 10. e For all k > —a and 7 € [0,1] with k — v > —a, we have for all ¢ > 0 and = € R?
x|t pF (t ) < PP, ). (B.13)

e Let us fix —a < k1 < ko. Then, for all function y : (0, +00) — R? such that ¢ € (0, +o0) +> t‘iy(t) is
bounded, there exists C' > 0 such that for all ¢ > 0 and z € R?

P2 (t, @ +y(1)) < Cpti(t, ). (B.14)
e For all k > —a and R > 0, there exists C' such that for all t > 0, y € R? and = € R? with |z| < R
Pty + ) < (1+ct™ 7 RYHOTFH(L, ). (B.15)

e For all ki, ko > —a, there exists C' > 0 such that for all s >0, ¢t > s and y € R?

/]Rd PRt — s,y — 2)p*2 (s, 2) dz < CpF72(t, ). (B.16)

The following lemma gathers the properties that we need on the proxy p.

Lemma 11. For all t € (0,7], y € R?, p(-,t,-,9) is of class C"> on [0,t) x R%. Moreover, it satisfies the
following gradient estimates.

e For all j € N, there exists C' > 0 such that for all ¢ € (0,7], s € [0,1), =,y € R?, we have
04(s. 1, 2,9)| < C(t = ) =0 (1 = s,y — ). (B.17)

e There exists a constant C' > 0 such that for all j € {0,1}, ¢t € (0,T), s € [0,t), z,y € R?
10,02p(s,t,x,y)| < C(t — s)_l_ipj(t — 8,y —x). (B.18)
e For all j € N, there exists C' > 0 such that for all v € (0,1], t € (0,T], s € [0,t), 1,22,y € R?, we have
09B(s, t21,y) — DIp(s.t,xa,y)| < C(t — )75 |a1 — o' [P(t — s,y — 1) + p(t— s,y —x2)] . (B.1Y)
e For all j € {0,1}, there exists C' > 0 such that for all v € (0,1], t € (0,7}, s1,s2 € [0,1), z,y € R, we

have
|05P(s1,t, 2, y) — Dp(s2,t,2,y))|

51 — So|” ; 51— s2|7 ;
Sl iy nsay— )+ — vy -0 (B20)
(t A 82)74_5 (t -5V SQ)AH—E

<C
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Proof. Notice that (B.17) and (B.19) are quite standard since p(s,t,z,y) = q(t — s,y — =), where ¢(t — s,-) is
the density of the a-stable random variable Z;_¢ and (Z;); is a rotationally invariant stable process. We prove
(B.18). We remark that the auto-similarity of the a-stable process Z implies that

Pls,tia,y) = q(t s,y — ) = (t—5) =g (1, ﬁ) — (= 5) AR(0, 1, (t — ) ha, (t — 5)"By).

This yields

_d_q

0ups,t,,9) = 26— ) A B0, 1, (¢ — 5)Fa, (1 — ) ) (B-21)

=) 8001, =) bl =)0 (G- e )

Using (B.17), we obtain that

~ _ _ _1 _1
10550, 5, 2y)| < Ot = 5) 7t = s,y —2) + C(t = 5) 7 (¢ = 5) "= |z —y)p' (1, (t = 5) "= (y — 2)).
The space-time inequality (B.13) finally yields
|8S]/9\(7 S,t,ﬂj‘y)| < C(t - s)_lpo(t —5Y— $)

By differentiating (B.21) with respect to z, one has

8xasﬁ(87t7x7y) = g(t - S)_%(t - S)_g_lamﬁ(ov L, (t - 8)_%3), (t - 3)_éy) (B22)
=) 50 = 8) OO0, (= 5) Fa - 5 F0) (2 0) 5 o)
1

+ E(t —s) A (t— 8)"88,p(0,1, (t — s)"ww, (t — s)"ay).

As previously, it follows from (B.17) and the space-time inequality (B.13) that

105055, 1,2, y)| < C(t — )" pl(t — 5,y — ).

We now use (B.18) to prove (B.20). We fix j € {0,1}, v € (0, 1] and we start with the case |s;—s2| > t—s1V 9.
In this case, using (B.17), we deduce that for some constant C' > 0, one has

’a:{ﬁ(sl7taxay) - a:{ﬁ(827taxay)’

<C _(t—sl\/SQ)_%pj(t—sl\/SQ,y—:E)+(t—81ASg)_ipj(t—sl/\.Sg,y—:E)]

51 — sol7 . s1— 8|7+ [t —s1Vso|T
<C | | ij(t—Sl\/827y_33)+| i 7 |p7(t—31/\32,y—x)
|t — 51V 89| @ [t = s1 /A sy["Ta

s1 — $o|7 . 51 — Sa|” j
<C | | =0 (t—s1V 82,y —x) + | | TP (t—s1Ahsny—a)|.
||t —s1 Vs Ta [t —s1As["Ta
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We now focus on the case |s1 — so| <t — 51V s2. For A € [0,1], we set sy := As; + (1 — A)s2. We can thus
write thanks to (B.18)

|0)p(s1,t,m,y) — OLp(s2, t,2,y)]
/ |00 p (sa, t,z,9)| |s1 — s2| dA
1 ;o
SC!sl—SQI/ (t —sx)"Tapi(t — sy, y — x) dA
0
! - itd 1 —d—a—j
< Cs1 — s9f (t—s,\) a (14 (t—sy) oy —z|) Jd\
<C]31—32]“’(t—31\/32)1 T(t—s1Vs2)” 1-5= [(1+(t—sl\/32) \y—az\)_d_a_j

1 .
+(1 4 (t—s1As2) aly— x|)_d_°‘_]

Since |s1 — s3] <t — 51V 89, we easily check that (t — s1 V s9)7! < 2(t — s1 A s9)7 L. It follows that

|8:%1/)\(817t7x7y) 8Jp(827t T y)|
< Cls1 — 2|7 [(t % 32)_7_%(1 +(t—s51V 32)—§|y _ $|)—d—a—j
+(t—s1 A 32)_V_j%i(1 4 (t —s1 A 82)_5@ _ x‘)—d—a—j}

|51 — s2|” |s1 — s2|”

<C —p(t—s1 N s2,y —x) +

(t — 81 A\ 82)’\/—'— (t -5V 82)74_

p](t—sl\/SQ,y—:E)] .

This concludes the proof.

Recall that the Beta function B is defined, for all x,y > 0 by

I'(z)l'(y)

1
- _ p\lHe—1t+y g
B(z,y) = /0 (1—-1) t dt Tty

where I' is the Gamma function.

The next proposition gathers the controls we need on the parametrix kernel H and the solution de the
Volterra integral equation ®.

Proposition 8. e There exists C' > 0 such that forall k> 1, 0<s<t<T and z,y € RA
k—1 1 1
k k —Lik-1)(1-1) 1
t < C%(t — B 1-—),1—— t— —x). B.23
(5, t,0,9)| < CH(t = 9) ' ((1-3)a-2)de-sp-a. @2

e For v € (0,n] such that v < a — 1, there exists C' > 0 depending on ~ such that for all & > 1,
0<s<t<Tand x,z9,y € RY

’Hk(‘s?taxlay) - Hk(‘s?tax%y)’ < Ck(t - S) 7+1+(k 2 (1__)"%1 - ‘TQP H B <_1 +‘7 <1 B é) ’1 o l)

[0
7j=1

[p'(t—s,y—a1) +p (t — s,y —22)] . (B.24)
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e There exists C' > 0 such that forall k > 1,0 < s <t < T and z,y € R?

k
1 1
P @ H (s, t,x,y)| < CFFL(t k(1-3) H < +j <1 — E) , 1= a) POt — s,y — ). (B.25)

e The series (B.6) defining ® is absolutely convergent and there exists C' > 0 such that for all 0 < s <
t <T and z,y € R?

|D(s,t,z,y)]| SC(t—s)_épl(t—s,y—a:). (B.26)
e For v € (0,7n] such that v < o — 1, there exists C' > 0 depending on ~ such that for all 0 < s <t <T
and x1, 22,y € RY

_atl
1B(s,t,21,y) — (s, t,29,y)| < C(t — s) "o |z1 — @o|" [,ol(t —s,y—x1) + pt(t — s,y — z2)] . (B.27)

Proof. Proof of (B.23). We reason by induction on k. The base case k = 1 is clear since b is bounded and by

Lemma 11. We assume now that (B.23) holds for #* and we want to prove it for H**!. We have thanks to
Lemma 10

[ HEH (5,8, 2,y)| = ’H (5,72, 2)HF (r,t, 2, y) dz dr

S/ C“—S)‘épl(r—s,z—x>0k<t—r>-é+<k—l><1—é>
s JRd

HB( <1——>,1—é>pl(t—r,y—z)dzdr
gc’f“/:(r—s)—é(t—r)—i drHB( <1—_>,1_1>p1(t_s,y_x).

(07

Changing variables in r = s + A(t — s) yields

K (s, t, 2, y)| < CFFL(¢ — s)~ath(1-3) / A (1= ) "atE=D-3) gy

HB( <1——> a),) (t—s,y—2)
< Okt —g)mat (1—)13’(1@(1—1) 1—é>lﬁ8< (1—l>,1—é>pl(t—s,y—x).

j=1
Proof of (B.24). We start with the case k = 1. We write
|H(s,t,x1,y) — H(s, t,x2,y)| = |b(s,z1) - 0xD(8,t, x1,y) — b(s,x2) - OP(s,t,x2,Y)]
< |b(s,x1)||0xD(s, t, 21, y) — OxP(S,t, 2, Y)]
+ |0.D(s, t, 22, y)| [b(s,x1) — b(s,22)]
=11 + Is.
Using that b is bounded and Lemma 11, we deduce that

_ 14y
I <Ot —s) " |or — o] [pH(t — s,y — a1) + pH(t — 5,9 — 22)] -

Since b is uniformly n-Holder continuous and bounded, and thus uniformly y-Hélder continuous because v < n,
one has by Lemma 11

I, <C(t— s)_é\xl — x| (t — 8,y — 2).
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We now prove that (B.24) holds for #**1, with k& > 1. Using the case k = 1, (B.23) and Lemma 10, we obtain
that

’Hk+l(37taxlay) - Hk—‘rl(‘s?tax%y)’

H(s,ma1,2) — His,r, w9, 2))H (1, t, 2, y) dz dr

R4

t
<[] €97 =l [ = s,z = )+ 9 = 2 )] O - ) THHD0)
s JR

IIB< < -) 1—$>ﬁa—ny—@duh
< OFHL(t — 5~ (-3 <k (1_é> 1 1Z’Y> f[25’<j <1_é>’1_é>

We conclude noting that

(s (1- ) Y fa (o (- 1) ) - SR e e

CTk-D)r(1-1) ra -y
Cr(1-r(- L)) TRE-F)
- ra-
_r(1—1fTV+k:(1—§)>

G LE+ia-d)ra-d
I ha )

Proof of (B.25). It follows from the control of p given by Lemma 11 and from (B.23). Indeed, one has
thanks to Lemma 10

P @ H (s, t,z,y)|

gC/st/deo(r—s,z—x)C’f(t et (1-F) HB< <1——>,1—é>p1(t—7‘,y—z)dzd7’
C’k“ 1___1i[ <<1—l>,1—é>p0(t—s,y—x)

We conclude noting that
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Finally, the proof of (B.26) and (B.27) follows directly from (B.23) and (B.24) using the asymptotic expansion

of the Beta function.
O

Proof of Theorem 5. The existence of the density and its representation (B.8) is a consequence of (B.17), (B.25)
and (B.26). Indeed, using the asymptotic expansion of the Beta function, we obtain that the series (B.8) is ab-
solutely convergent, locally uniformly with respect to (s, ) € [0,t) x R%. The permutation of the series and the
convolution in the representation is clearly justified by the dominated convergence theorem (B.8). The regular-
ity of the density p with respect to x and the controls (B.10) and (B.12) follow from Lemma 11 for the proxy, i.e.
the first term of the parametrix series (B.8). We now prove that they also hold for the other term p®® of (B.8).

Proof of (B.10) for j = 1. We use (B.26) and Lemma 11 to deduce that

t
.50 0 ta)| <C [ [ (097 sz )t - )l g - ) dedr
s JRd

Then, Lemma 10 yields

|00 ® D(s,t,x,y)|
< C/t(r - s)_i(t - r)_é drpt(t — s,y — x)
<C(t—8)__1 apl(t—s,y—x).
Proof of (B.12) for j = 0. We use again the control of p given by Lemma 11 and (B.26). Thanks to
Lemma 10, we obtain
|p®<I> s,t,x1,y) —p® D(s,t,xa,y)|

S r,x1,z 1/)\(377‘7 33‘2,2))@(7’,1‘5, Z7y) dz dr

Rd
_x 1.0 0 -1
SC//(T—S) ol — x|V [pP(r — s,z — @) + p°(r — s,z —m2)| (t =) Tap'(t —r,y — 2)dzdr
s JRd

_a _1
<C(t—s) i |z — x|V [0t — 5,y — 1) + POt — 5,y — 22)] .
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Proof of (B.12) for j = 1. We use the following decomposition

a5 ® B(s, b, 01, y) — 0P ® B(s, t, 9,y / / Dub(s, 7,21, 2) — a5, 9, 2)) B (1, 2, y) d= dr
Rd

= / / (0:p(8,7,21,2) — OpD(8, 7, 22, 2))P(1, t, 2,y) dz dr
Dy JRd
+/ / (8:,%?(8,7",331, Z) - 8%1/)\(377‘7 x2, Z))q)(rvt7 Z7y) dz dr
Dy JRE
=: 11 + I,

where Dy = {r € (s,t), |v1 — z2| > (r — s)é} and Dy := {r € (s,t), |z1 — z2] < (r — s)i} For I, one can
write

Il — / / 6m]/9\(877'7$17 Z)(q)(rvt7 Z7y) - @(T‘,t,$1,y)) dz dr
Dy JRE
—/ / 0uD(8, 7,29, 2)(P(1,t, 2,y) — ®(r,t,29,y)) dz dr,
D1 JRd

=111+ 112,

since [pq 0up(s,7,®,2)dz = 0 for all z € R%. Since o € (1,2) and v < (2a — 2) A (y + o — 1), we can pick
5 € (0,(a — 1) Am) such that v < § + @ — 1. Then, we can use Lemma 11 and (B.27) with § which yields

|11,1|§C/ /(r—s)_;pl(r—s,z—:nl)(t—r) 6il|z—x1| [ (t—r,y—z)—l—pl(t—r,y—:nl)] dzdr.
D, JRA

Using the space-time inequality (B.13) in Lemma 10, we deduce that

] < C/ /d(r - s)%pl_‘s(r — 8,2 — x1)(t — 7‘)_6+1 [p (t—ry—2)+p" (t—r,y—a1)] dzdr.
Dy JR

Note that fRd p'=0(r — s,z — 1) dz is a constant independent of 7, s, zy, that if r € (s,t)

Pt —ry—z1) < (t—r)"a(l+ (t—s) aly—a|) ¢!

and that if r € Dy, (r — S) < |x1 — x2]7. Applying Lemma 10, we get that

—1—x

t
I éc[ [ =" =) ke =l = sy — )
S

t S_1
/ (r—s) a (t—r)"" % drley —wo| (1 + (t —8)aly —ay[) !
S

gC(t—) +1"|$1 xa|”

Similarly, we obtain

Pt — s,y — x1).

iy g1 —
[hal O = )" s 0 lar — 2ol p' 0 (t — 5,y — w2).
This proves (B.12) for I;. We now focus on Is. One can write

12 = / / (amﬁ(s,r,xl,z) - am]/)\(S,’f', $27Z))q)(r7t7 Z7y) dz dr
Do JRA

= / /d(axﬁ(s,r,xl,z) — 0xD(s, 1,22, 2))(P(r,t, 2,y) — (1, t, z2,y)) dz dr.
Doy JR
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Note that if r € Do, we have

~ —~ _2
|8xp(8,7",3§‘1,2«') - 8xp(8,7", $2,Z)| < C(?" - 8) * |$1 - $2| [p2(7" — 52— 33‘1) + p2(,r, — 87— 331)]
<C(r-— S)_%ﬂ |21 — 22| % (r — 5,2 — x3),
since |21 — 2| < (r — s)é and by (B.14). Using (B.27) with 6 € (0, (&« — 1) A ) such that v < 6 + o« — 1 and
the space-time inequality (B.13) we get
|I2| < C/ / (r—2s) ”Il |21 — 20|V (r — 5,2 — ) (t — 1)~ E o |z — )
Dy JRA
[Iol(t -y - Z) + Iol(t -y - 33‘2)] dzdr
<C/ / r—s) _%H xl—azgﬂpz_é(r—s,z—azg)(t—r)_%
Dy JRY
[pH(t =7y —2)+p'(t —r,y — x2)] dzdr.

As done previously to deal with I; 1, Lemma 10 yields

L] < C(t—s) "o T [pH(t—ry — 1) + p (t — 1,y — )] -

It concludes the proof of (B.12) for j = 1.

Proof of (B.9). Let us now prove that p(-,t,-,y) is a fundamental solution to (B.9). We fix 0 <s <t <T
and z,y € R?. From the Markov property satisfied by the SDE (B.1), stemming from the well-posedness of
the related martingale problem, one has for all A > 0 such that s — h >0

p(s - h7 t? x? y) = E(p(s7 t? X::_h7x’y))‘

Applying It6’s formula to the function p(s, ¢, -, y) which belongs to CI}JW(RCZ; R) for v > a— 1, we obtain that
p(s,t, X5 y) = p(s, t,2,y) / b(r, X57%) - 0,p(s, t, X5~" y) dr
/ / 56, X)7M 4 z,y) — pls,t, X7, y) N(dr, d2)
s—h JRd

+ / / P(s, 8, XM 4 2y — pls, b, XETMT ) — 0,p(s, 6, X700 ) 2 du(z) dr
s—h JRA

We can take the expectation in the preceding formula using (B.10), (B.12). It yields

p(s —h.t,z,y) = p(s,t,2,y) +/ E(b(r, X;7"%) - Oup(s, t, X377, y)) dr
s—h

+/ / E(p(s,t, X5 + 2,y) — p(s,t, XM ) — Opp(s,t, X5 y) - 2) dv(z) dr
s—h JRd

Let us prove that

1 S
E/ E(b(r, X5~ . 8,p(s,t, X702 4)) dr — b(s,z) - D,p(s, t,,y). (B.28)
s—h

h—0
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We can write

S
T

E(b(r, X27) - 0up(s, £, X3, y)) dr — b(s, ) - Oap(s, ., y>'

h
1 B s—h,x s—h,x s—h,x s—h,x
< E E(b(rv XT’ ’ ) : aiﬂp(sv t, Xr ' 7y)) - E(b(rv Xs ’ ) : aiﬂp(sv t, Xs ' 7y)) dr
s—h
1 s
+ 'E / E(b(r, X;™"7) - Oap(s, 1, X3, y)) = (b(r, x) - up(s.t, 2, y)) dr
s—h
1 s
+ E / (b(T, x) : 895]7(3, t, z, y)) - b(37 LZ') : a:(:p(37 t, z, y) dr
s—h

=11 + I+ Is.

It is clear that I3 converges to 0 as h tends to 0 since b is continuous. Let us deal with I, which we decompose
in the following way

1
I, < —

P BB X Ol t X3 ) = () - e )
s—h

1 s
<z E[b(r, X5~")] 0xp(s, t, X5, y) — Oup(s, t,x, y)| dr
s—h

1 S
+ E/ E’b(ran_hx) —b(r,a;)] ’axp(37taxay)’dr
s—h
=:1p1 + Iz3.
Since b is bounded and by the Holder control (B.12), we obtain that for some constant v € (0,1)

Iy < Cyy BIXSThe — g
o
< Cs,t,'yha .

The same reasoning based on the Hdélder regularity of b proves that Is h—>0 0.
—
Finally, we decompose I in the following way

s
< [ X (st X2 ) - Dup(s b X2 ) dr
s—h

+ 7 / E|b(r, Xf,_h’x) — b(r, Xss_h’x)\ \8xp(s,t,X§_h’x,y)] dr
s—h
=111+ 112

Note that for all v € (0, 1], there exists Cs;~ > 0 such that for all r € [s — h, s]

E’Xf—h,x i Xs—hw”Y < Cs,t,’y(s _ 7’)%

)

The same reasoning as done for I can be applied since b and 9,p(s,t,-,y) are globally bounded and b is
uniformly Hélder continuous. It yields Iy h—g 0.
_>

Let us now show that

1 S
n / /d E(p(s,t, X5 7" + z,y) — p(s, t, X3 y) — Oup(s, t, X77™" ) - 2) dv(2) dr
s—h JR

— L%(s,t,y)(x). (B.29)
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One can write

1 s
‘E / /d E(p(s7t7Xi_h’w + z,y) _p(s7t7X7§_h’x7y) - &cp(s,t,Xf_h’x,y) . Z) dl/(Z) d’f’ — Eap(s,ta 7y)(x)
s—h JR

1 S
= /dﬁ/ E(p(s,t, X3 "% + 2,9) — p(s,t, X, y) — Oup(s, t, X377, y) - 2) dr dv(2)
R

-~ / E(p(s,t, X5 + 2,y) — p(s,t, X5 y) — Oup(s,t, X", y) - 2) dv(z)
Rd

+

/ E(p(87t7X§_h7x + z,y) _p(s7t7X§_h’x7y) - amp(87t7X§_h7x7y) : Z) dl/(Z) - ,Cap(S,t, 7y)($)
R4

=:J; + Jo.

For Ji, we obtain that

Jy < / / / Oup(s,t, X5 4 Az,y) — Oup(s, t, X577, y)
Rd h s—h
—(0up(s,t, X3+ A2y y) = Oup(s, 8, X310, y)) | |2] ddr du(2)
We are going to use the dominated convergence theorem in the integral with respect to v. By the Holder

control (B.12) on 0,p, we deduce that for some v > a — 1, there exists a constant Cs;~ > 0 such that for all
re€ls—h,s], z€R?

. / / Dup (5,1, X7 4 Az, y) — Dap(s, t, X2, y)
s—h

—(Dep(s,t, XM 4 Xz ) — Bup(s, t, X7 )| |2 dhdr

1 S
< Cutny [ B X ar
—h
1 Ss ¥
<Cutoy [ (=9 drl
s—h
< Cyymhalz.

The right-hand side term tends to 0 when h — 0. We start by justifying the domination on the ball B;. In
this case, we use again the Holder continuity of d,p with respect to x, which yields

. / / Dup(s,t, X377 4 Az, y) — Dup(s, t, X2, )
s—h

—(0xp(s, t, Xﬁ_h’x + Az,y) — O.p(s,t, Xj_h’x, y))| |z] d\dr
S Csvtvﬂylz‘l—‘rfy'

Since v > o — 1, 2 € By + |2|'™ belongs to L*(By,v). The domination on BY is clear since 0,0:p(s,t,-,¥)
is globally bounded by (B.10) and z € B ~ |z| belongs to L'(B§,v).

We now deal with Jo. Thanks to the dominated convergence theorem, Js converges to 0 as h tends to 0. The
Hélder control (B.12) of 0,p ensures that for some constant v > a — 1, there exists Cs;, > 0 such that

Elp(s, t, X57" + 2,y) — p(s,t, XS, y) — 0up(s,t, XS y) - 2| < Cyp4]2[MT.

This proves the domination on the ball B;. The domination on Bf is a consequence of (B.10), and the fact
that a € (1,2).
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We have thus proved that the map s € [0,t) — p(s,t,x,y) is left-differentiable by (B.28) and (B.29).
Moreover, since the map (s, z) € [0,t) x R? — b(s, z) - 0.p(s,t,z,y) + L (s, t,-,y)(z) is continuous, we deduce
that the map s € [0,t) — p(s,t,z,y) is of class C! and that it solves

Osp(s,t,2,y) + b(s,x) - Op(s,t,x,y) + LD(s,t,,y)(x) =0, V(s,z) € [0,¢) x R

Let us now fix f : R - R a bounded and uniformly continuous function. We fix € > 0. There exists § > 0
such that for all ,y € R? with |z — y| < §, we have |f(z) — f(y)| < e. Using (B.10), we obtain that

/]Rd(f(y) - f(x))p(37 t7 x, y) dy

sup f(y)p(37t7x7y) dy - f(.’,l') = sup
zeRd |JR4 eRY
d 1
§€—|—C||f||oo/ (75—3)_5(1—I—(t—s)—a|y|)—d—a dy
ly|>6
:€+C||f||oo/ ) (1+|Z|)_d_adz.
2> (t—5) &5

We conclude taking the limsup when s — ¢ in the preceding inequality that p(s,t,z,-) — 0,.
s—t—

Proof of (B.11). Note that we only need to prove that
‘ﬁap(37 by y)(l’)‘ < C(t - S)_lpo(t —S8Y— x),
using the PDE (B.9) and the fact that b is bounded and (B.10). Note that by symmetry, we have

1 dz
Eap(87t7 7y)(‘r) = 5 /de(37tax + Z7y) —I—p(s,t,x - Z7y) - 2p(37taxay) W

We decompose it in the following way

dz
|£ap(87t7'7y)($)| §/||<( )1 |p(8,t,x—|—z,y)+p(s,t,:17—z,y)—2p(8,t,x,y)|‘2’m
z|<(t—s)a
dz
+/|| t )l ]p(s,t,x—l—z,y)—i—p(s,t,x—z,y)—2p(s,t,x,y)\|z|m
z|>(t—s)

1
/ (amp(s7ta$ + Az,y) - 8xp(8,t,$ - AZ,y)) <z dA %
0

__/LE@—ﬁé

dz
+/ ]p(s,t,x—l—z,y)—i—p(s,t,x—z,y)—2p(s,t,x,y)\ T, ld+a
|2|>(t—s) ||

We start with I;. Using the Holder control (B.12), we obtain that for some v € (0, (2a —2) A (n+« — 1)) with
v > a — 1, there exists a constant C' > 0 such that

1ty dz

1
11§C’(t—s)_T/ . / (PH(t = s,y =2 = A2) + p'(t — 5,y — 2+ A2)) dA 2| —=.
#<(t=s)@ Jo 2|

Since |z] < (t — s)i, the space-time inequality (B.13) ensures that

14y dz
BeCt-9"F [ Pl sy-a)
o< (t—s) |2+
<Ct—s) ot —s,y—x). (B.30)
For I, we have with (B.10)
0 0 0 dz
L <C () Pt—s,y—z—2)+p"(t—s,y—z+2)+p(t—sy—1)] [Z|a
z|>(t—s)
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We distinguish two cases. Firstly, assume that |y —z| < 2(t — S)é Then, using that for all s < t and y € R?
POt —s,2) <Ot — s)_g, we get that

d dz
L <Ot —s)a /
2> (t—s)& |2]4F

<C(t-s)ta (B.31)
<C(t—s)"'pl(t—s,y— ),

since |y — x| < 2(t — s)é Finally, if |y — x| > 2(t — s)é, we write

d
L<C ) [po(t—s,y—x—z)+p0(t—s,y—x+z)—i—po(t—s,y—x)]%
(t-s)a <|z|< 2! 2|
dz
+C psle [Pt —s,y—z—2)+p(t —s,y—z+2)+p°(t — s,y — 2)] e
2>
= [271 + [272.
Then, the reverse triangle inequality yields
y—a dz
asc [,o°<t—s,y—x>+p°<t—s,—> &
(t—s) 7 <|o|< 23 2 7] Ja|tte
dz
SCpO(t—s,y—x)/ e
(t—s) & <[5 |2]7F
<C@t—s)1pt — s,y — ). (B.32)
For I 9, we have
Iy < C’|y—:n|_d_°‘/dp0(t—s,y—x —2) 4+ Pt — s,y — x4 2)dz
R
dz
ot [
jol> 25l [2] e
SOt =) < (=)= ly =)™+ OOt — sy — e~y
<C(t—s)"a ((t—s)wly—a)) O Ot —8) 0t — s,y - 2).
Since 1 < %(t — s)_é ly — x|, we deduce that for some constant C' > 0, one has
_1 —d- _1 i
((t=s)"=ly —a)) """ < C(L+(t—s) w |y —af)~
It follows that
Lo <Ot —s8) 1t — s,y — ). (B.33)

Combining (B.30), (B.31), (B.32) and (B.33), we have proved that (B.11) holds true.
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