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Abstract: We consider a model where a signal (discrete or continuous)
is observed with an additive Gaussian noise process. The signal is issued
from a linear combination of a finite but increasing number of translated
features. The features are continuously parameterized by their location and
depend on some scale parameter. First, we extend previous prediction re-
sults for off-the-grid estimators by taking into account here that the scale
parameter may vary. The prediction bounds are analogous, but we improve
the minimal distance between two consecutive features locations in order
to achieve these bounds.

Next, we propose a goodness-of-fit test for the model and give non-
asymptotic upper bounds of the testing risk and of the minimax separation
rate between two distinguishable signals. In particular, our test encom-
passes the signal detection framework. We deduce upper bounds on the
minimal energy, expressed as the `2-norm of the linear coefficients, to suc-
cessfully detect a signal in presence of noise. The general model considered
in this paper is a non-linear extension of the classical high-dimensional re-
gression model. It turns out that, in this framework, our upper bound on
the minimax separation rate matches (up to a logarithmic factor) the lower
bound on the minimax separation rate for signal detection in the high di-
mensional linear model associated to a fixed dictionary of features. We also
propose a procedure to test whether the features of the observed signal
belong to a given finite collection under the assumption that the linear co-
efficients may vary, but have prescribed signs under the null hypothesis. A
non-asymptotic upper bound on the testing risk is given.

We illustrate our results on the spikes deconvolution model with Gaus-
sian features on the real line and with the Dirichlet kernel, frequently used
in the compressed sensing literature, on the torus.

MSC2020 subject classifications: Primary 62G05, 62G10; secondary
62G08.
Keywords and phrases: Goodness-of-fit testing, Mixture model, Non-
linear regression model, Non-parametric hypotheses testing, Off-the-grid
methods, Spikes deconvolution.

1. Introduction

In many fields, a signal of interest can be described as a linear combination of
shifted source signals having the same shape. Thus, the source signal is supposed
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to belong to a parametric set of functions (for example, Gaussian, Cauchy or
sinusoidal-shaped functions) parameterized by its location parameter. The signal
is observed with an additive noise process in discrete or continuous time. We
assume that the noise and the observation space can vary with some parameter
T increasing with the quality of the observations.

For example, the chemical analysis of a material is done through spectroscopy
and each chemical component is represented by a spiked Gaussian-shaped signal
located at some prescribed frequency, see [5]. The final signal is a linear combi-
nation of such spikes. In multiple source detection, sound or image may present
a similar structure.

More general non-linear models (not necessarily location models) for the fea-
tures have been discussed in [6], and the particular case of location families has
been discussed in Section 8 therein. However, we allow here the features to de-
pend on a scale parameter which varies with T . This makes the proof technique
very different from the previous one.

We are interested in estimating both the coefficients of the linear combination
and the location parameters of the different features appearing in the signal.
We give sufficient conditions in order to obtain upper bounds for the quadratic
prediction risk of the same order as if the non-linear parameters were known.
We show that these sufficient conditions are milder than those in [6] without
loosing on the prediction risk bounds.

We are also interested in testing problems. First, we want to test whether
the observations are issued from a given linear combination of features. We
remark that it includes the case of signal detection. This test problem finds an
application in spectroscopy to detect the presence of a chemical compound in a
material. Finally, we are interested in testing whether the observed signal is a
linear combination of features located at a prescribed list of values with linear
coefficients having prescribed signs under the null hypothesis. This is of interest
in spectroscopy: in a material we expect a list of chemical components. This
test problem detects ageing or important damage to the material which can be
detected if unexpected chemical components are present.

1.1. Model

Let T ∈ N. We observe a random element y in the Hilbert space L2(λT ) of
square integrable functions with respect to the measure λT on the Borel σ-field
of some metric space. The observation is the sum of a deterministic signal and
a noise process wT in L2(λT ). We assume that the signal is an unknown linear
combination of a finite unknown number s of features belonging to a continu-
ously parameterized subfamily (ϕT (θ), θ ∈ Θ) of L2(λT ). We call this family a
continuous dictionary, the weights of the linear combination - the linear coeffi-
cients, and the parameters of the features - the non-linear parameters. Moreover,
we assume that the noise is a Gaussian random process. Thus, the general model
is fully specified by the choice of the Hilbert space of our observation, of the
continuous dictionary of features and of the noise process.
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The Hilbert space L2(λT ) is endowed with the natural scalar product noted
〈·, ·〉L2(λT ) and norm ‖·‖L2(λT ). Let us define the normalized function φT defined
on Θ by:

φT (θ) = ϕT (θ)/‖ϕT (θ)‖L2(λT ). (1)

We assume that the signal is a linear combination with unknown non-zero linear
coefficients β? = (β∗1 , . . . , β∗s ) in (R∗)s of an unknown number s ∈ N of active
features with unknown distinct non-linear parameters ϑ? = (θ?1 , . . . , θ?s) ∈ Θs.
We use the notation R∗ = R\{0}.

Thus, we observe y in the model:

y =
s∑

k=1
β?kΦT (θ?k) + wT in L2(λT ). (2)

Let us define the multivariate function ΦT on Θs by:

ΦT (ϑ) = (φT (θ1), . . . , φT (θs))> for ϑ = (θ1, . . . , θs) ∈ Θs.

Model (2) writes
y = β?ΦT (ϑ?) + wT in L2(λT ).

When s = 0, we set by convention that β?ΦT (ϑ?) = 0 as well as As = {0}
for any set A. We denote by Q? = {θ?` , 1 ≤ ` ≤ s} the set of the non-linear
parameters associated to active features.

In this paper we consider a dictionary given by a one dimensional location
model scaled with a given σT > 0:(

ϕT (θ) = h(θ − ·, σT ), θ ∈ Θ
)

(3)

where the set Θ is the real line R or the torus R/Z, the real-valued function h
is defined on Θ × S, smooth with respect to its first variable and normalized
so that ‖h(·, σT )‖L2(Leb) = 1, and σT is an element of the set S of admissible
positive scale parameter values. Note that ϕT depends on T only through the
argument σT . See Section 2.1 for examples of functions h including the Gaussian
scaled-spikes and the low-pass filter.

The process y is observed over the support of the measure λT . Therefore it is
legitimate to consider models whose location parameters belong to the smallest
interval covering the support of the measure λT . Hence, we introduce the set
ΘT , a compact interval of Θ (when Θ is the torus, then we can take ΘT = Θ),
and we shall assume that Q? is a subset of ΘT . We denote by |ΘT | the Euclidean
diameter of the set ΘT .

We consider a large variety of Gaussian noise processes. Indeed, we only
assume the following mild assumption on wT , where the decay rate ∆T > 0
controls the noise variance decay as the parameter T grows and σ > 0 is the
intrinsic noise level. A wide range of noise processes satisfy our assumptions, see
Section 2.2; they can be discrete or continuous, white or coloured under these
constraints.
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Assumption 1.1 (Admissible noise). Let T ∈ N. The Gaussian noise pro-
cess wT satisifies E

[
‖wT ‖4L2(λT )

]
< +∞, and there exist a noise level σ > 0

and a decay rate ∆T > 0 such that for all f ∈ L2(λT ), the random variable
〈f, wT 〉L2(λT ) is a centered Gaussian random variable satisfying:

Var
(
〈f, wT 〉L2(λT )

)
≤ σ2 ∆T ‖f‖2L2(λT ). (4)

We assume that the quantity E
[
‖wT ‖2L2(λT )

]
is known for the considered

models. Using Cauchy-Schwarz inequality, we get:

Var
(
〈f, wT 〉L2(λT )

)
≤ E

[
‖wT ‖2L2(λT )

]
‖f‖2L2(λT ), (5)

which is in some examples not as sharp as (4), see Section 2.2.2. We shall also
consider the finite variance of the squared norm of the noise:

ΞT = Var
(
‖wT ‖2L2(λT )

)
. (6)

To sum up, the quality of the information provided by our observation y
depends on the support of the measure λT and on the noise wT through ∆T .
It increases with the parameter T . Due to the particular form of the features,
we refer to our model as a Linear combination of translation features (LCTF-
model).

In this paper, we are interested both in building estimators β̂ and ϑ̂ of the
parameters β? and ϑ?, respectively, and in hypothesis testing problems concern-
ing our model. Our goal is two-fold: on the one hand, we attain best known non
asymptotic prediction bounds for the risk measure:

‖β̂ΦT (ϑ̂)− β?ΦT (ϑ?)‖L2(λT )

under less restrictive conditions than previous works. Moreover, we use the
certificate functions designed as tools in these proofs in order to build test pro-
cedures in our model that generalize the signal detection problem in a linear
regression model. On the other hand, we treat the goodness-of-fit test problem
and then, the more general problem of testing whether the signal in our obser-
vation presents only features included in a prescribed list, with associated linear
coefficients that may vary but cannot change signs.

1.2. Previous work

Estimating the linear coefficients and the parameters of model (2) from an
observation y has attracted a lot of attention over the past decade. A major
contribution in this field comes from the formulation of the BLasso problem
in [10]. This optimization problem on a space of measures allows to estimate
both linear coefficients and non-linear parameters without using a grid on the
parameter space. This off-the-grid method has successfully been used in [8] and
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[7] in the context of super-resolution as well as in [11] for spikes deconvolution.
High probability bounds for the prediction error have been given in [20], [19]
and [4] for the specific dictionary of complex exponential functions continuously
parameterized by their frequencies and more recently in [6] for a wide range
of dictionaries parameterized over a one-dimensional space. These results are
based on certificate functions whose existence have been proven in a very general
framework in [18] provided that the non-linear parameters of the mixture are
well-separated with respect to a Riemannian metric.

Goodness-of-fit tests are used to check whether observations are indeed de-
rived from a given statistical model. We refer to the monograph [14] for a com-
prehensive presentation of goodness-of-fit testing. When we consider a finite
dictionary of features (ϕT (θ), θ ∈ Q) with Q a known finite subset of Θ, the
model (2) can be rewritten as a linear regression model, possibly of high dimen-
sion depending on the size of the finite dictionary p := Card(Q). In this case,
testing the goodness-of-fit of the model amounts to testing whether the linear
coefficients in the mixture are equal to some given linear coefficients. When the
dictionary is known, the testing problem is homogeneous in the linear coeffi-
cients β and is therefore equivalent to testing β ≡ 0, which is a signal detection
problem.

Signal detection has raised a lot of interest over the past decades. It is well
known that the alternative hypothesis H1 (presence of signal) must be well sep-
arated from the null hypothsesis H0 (only noise) in order to have tests with
small risks. The separation can be seen as a minimal signal intensity allowing
the detection. Then, it is a matter of interest to evaluate the minimax sepa-
ration rate, i.e., the smallest separation that allows to distinguish the tested
hypotheses. In [12], asymptotic rates for the minimax separation in the frame-
work of signal detection are derived for the non-parametric Gaussian white noise
model. Non-asymptotic rates were then derived in [3] and later in [16] to tackle
the case of heterogeneous variances. We refer to the monograph [13] for an
overview of non-parametric hypotheses testing. Regarding the high dimensional
regression model where the observation is of dimension T and the dictionary is
fixed, known and of size p, the work of [15] established the following asymptotic
minimax separation rates under coherence assumptions on the dictionary:

1
T

1
4
∧
√
s

T
log(p) ∧ p

1
4
√
T
·

The signal intensity is expressed by the `2-norm of the linear coefficients. Their
lower bounds on the asymptotic minimax separation stand for both fixed and
random designs whereas their upper bounds stand for random designs. The
work of [2] does not tackle the high dimension but provides tests achieving
the minimax separation for fixed designs under coherence assumptions on the
dictionary. We note that the existing results do not apply to our context.

For the non-linear extension of linear regression models that we consider here,
goodness-of-fit testing does not reduce to signal detection as the mixture is not
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homogeneous with respect to the non-linear parameters. Therefore, we introduce
new testing procedures. We stress that one of the test statistics is not derived
from estimators of the linear coefficients. In fact, depending on the sparsity of
the signal, the dimension of the observation and the size of the dictionary, plug-
in methods using sparse estimators might not be the best way to proceed. They
do not always lead to the minimal separation. In this sense, testing is a very
different statistical problem from estimation.

1.3. Description of the results

The aim of this paper is twofold. First, we improve on [6] in the case of linear
combination of translated features by giving bounds on the prediction error
under milder separation constraints between the unknown non-linear parameters
in Q?. Indeed, the sufficient separation conditions between two neighboring non-
linear parameters are difficult to track explicitly. In all generality, they can be
rather restrictive and scale with a factor s for arbitrary dictionaries satisfying
the conditions. In the particular case of Gaussian-shaped features, more explicit
calculations are possible and the minimal separation reduces to some constant
value.

In this paper, due to the shape of our dictionary of features, i.e. a location
model scaled by some σT , we get more explicit sufficient separation conditions
which are less restrictive. This is achieved by taking the scale parameter of the
features σT into account. In particular, in the case of Gaussian-shaped features,
the minimal separation is of order σT . Intuitively, this is can be explained by
the fact that for peaked features (with small scaling parameter σT ) we may
distinguish spikes located at smaller (by a factor σT ) distance.

The second goal of this paper is to study hypotheses testing problems in
these models. We give procedures for the goodness-of-fit of the mixture model in
order to determine whether the unknown signal β?ΦT (ϑ?) is equal to a reference
signal β0ΦT (ϑ0) for some known vectors β0 ∈ (R∗)s0 and ϑ0 ∈ Θs0

T . Under our
assumptions, the model is identifiable, thus the null hypothesis is equivalent
to testing that β?, ϑ? coincide with β0, ϑ0 up to a permutation. This setup
includes the case of signal detection where the null hypothesis is β? ≡ 0, that
is s = 0 On this aspect, our minimal intensity rates allowing signal detection
are similar up to a log factor to the rates obtained in [15] for high dimensional
linear models. We propose a combined procedure based on differences between
the reference signal β0ΦT (ϑ0) and either the observation y or a reconstructed
signal obtained from estimators of the model parameters. In order to successfully
perform the test, we remove from the alternative hypothesis the signals whose
proximity to the reference signal β0ΦT (ϑ0) is below some separation parameter,
with respect to the norm ‖·‖L2(λT ). We give a non-asymptotic upper bound of
the testing risk and deduce an upper bound on the minimal separation needed to
distinguish two different signals. This upper bound yields two regimes according
to the test procedures that we define and study. In the case of signal detection,
the separation can be expressed as the `2-norm of the linear coefficients of the
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observed mixture. In particular, when the observation y is issued from a non-
linear extension of the classical high-dimensional regression model, our upper
bound matches (up to logarithmic factors) the asymptotic lower bound of the
minimal separation needed to distinguish two signals that are mixture of features
from a finite high-dimensional dictionary.

Moreover, we test the presence of at most s0 prescribed features in the mix-
ture with arbitrary linear coefficients of given sign. That is, we test whether for
each ε ∈ {+,−} the unknown set Q?,ε = {θ?k ∈ Q? : εβ?k > 0} is a subset of
Q0,ε, with Q0,+ and Q0,− being given disjoint finite subsets of ΘT . This setup is
issued from an application to spectroscopy (see [5]), where the presence of other
chemical components than the prescribed ones are indicating ageing or substan-
tial modifications of the analyzed material. To separate the null hypothesis from
the alternative hypothesis, we introduce a discrepancy that is 0 if and only if
the parameters (β?, ϑ?) belong to the null hypothesis. We give an upper bound
on the minimal separation to successfully perform our test. The test statistic
introduced and studied in this context makes explicit use of the construction of
certificates used in compressed sensing [9, 20, 18], super resolution [8], spikes
deconvolution [11], as well as in [6, 19, 4] for establishing the prediction rates
of the estimators of (β?, ϑ?). We stress the fact that the test statistic is not an
estimator of the discrepancy measure separating the null and the alternative
hypotheses, as is usually the case in non-parametric tests.

1.4. Roadmap of the paper

Section 2 gives several possible specific choices in our general model by show-
ing examples of dictionaries of features, of observation spaces and of Gaussian
processes (white or coloured under our assumptions). In Section 3, we start by
presenting the assumptions needed to perform a successful estimation of the lin-
ear coefficients and location parameters of our model. After giving a prediction
bound in Theorem 3.5, we show in Lemma 3.3 that the required assumptions
are sufficient conditions for the identifiability of the model. In Section 4, we
test whether the observation derives from a given mixture or from some other
mixture sufficiently separated from the latter. We give in Theorems 4.1 and 4.3
bounds of the testing risks associated to two different test procedures. We show
in Corollaries 4.2 and 4.5 that these two tests give two regimes for our upper
bound on the minimal separation to distinguish two different signals from an
observation contaminated by noise. We also provide a discussion on the com-
parison of our upper bounds with some existing lower bounds. In Section 5, we
propose a procedure to test whether the active features in the observed signal
belong to a given finite collection with linear coefficients of prescribed signs.
Both hypotheses of this test problem are composite and a new measure of the
separation between these hypotheses has been introduced. The proposed test
relies on the certificates used in the proof of the prediction bounds in an origi-
nal way. A bound of the testing risk is given in Theorem 5.2 and in Corollary
5.3, we provide an upper bound on the minimax separation rate. The examples
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of Gaussian scaled spikes deconvolution on R and low-pass filter on R/Z are
adressed in Sections 6 and 7. Some proofs can be found in Section 8.

2. Specific models covered by our general model

We consider a large variety of models: discrete models where the process y =
(y(t1), . . . , y(tT )) is observed on a finite grid t1 < . . . < tT or continuous models
where the process y = y(t) is observed on a continuous interval.

2.1. Examples of feature functions

Various continuous dictionaries of features can be considered under regularity
conditions required later on. They include many parametric families of functions
known in statistics and compressed sensing literature.

1. Gaussian scaled-spikes deconvolution. The noisy linear combination of
translated and re-scaled Gaussian features corresponds to:

h(t, σ) 7→ exp(−t2/2σ2)
π1/4σ1/2 on Θ×S = R× R∗+. (7)

The example of Gaussian spikes deconvolution is analyzed in full details
in [6, Section 8] when σT does not depend on T . We shall consider here
that the scale parameter σT may vary with T .

2. Multi-resolution approximation.We consider the normalized Shannon scal-
ing function:

h(t, σ) 7→
√
σ

sin(πt/σ)
πt

on Θ×S = R× R∗+.

The associated dictionary allows to recover functions whose Fourier trans-
form have their support in [−π/σ, π/σ] (see [17, Theorem 3.5]).

3. Low-pass filter. We consider the normalized Dirichlet kernel on the torus
for some cut-off frequency fc ∈ N∗ and T = 2fc + 1:

h(t, σ) = 1√
T

fc∑
k=−fc

e2iπkt = sin(Tπt)√
T sin(πt)

, (8)

with σ = 1/T , T ∈ 2N∗+1 and t ∈ Θ = R/Z. The example of the low-pass
filter is adressed in [11], where exact support recovery results are obtained
for the BLasso estimators. This dictionary is also used in [7] in the context
of super-resolution. Bounds on some prediction risks (different from those
considered in this paper) are established therein for estimators obtained
by solving the constrained formulation of the BLasso.

2.2. Examples of observation spaces and Gaussian noise processes

We consider both discrete-time and continuous-time processes in our general
model.
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2.2.1. Discrete-time process observed on a regular grid

Consider a real-valued process y observed over a regular grid t1 < . . . < tT of a
symmetric interval [−aT , aT ] ⊂ R, with T ≥ 1, tj = −aT + j∆T for j = 1, . . . , T
and grid step: ∆T = 2aT /T . We set:

λT = ∆T

T∑
j=1

δtj (9)

Then, we see y as an element of L2(λT ). We have for any function f ∈ L2(λT )
that ‖f‖L2(λT ) =

√
∆T ‖f‖`2 , where the right-hand side is understood as the

`2-norm (Euclidean norm) of the vector (f(t1), . . . , f(tT )).
We assume that (aT , T ≥ 2) is a sequence of positive numbers, such that:

limT→∞ aT = +∞ and limT→∞∆T = 0 so that the sequence of measures
(λT , T ≥ 1) converges with respect to the vague topology towards the Lebesgue
measure, noted Leb, on R. When Θ = R, it is therefore natural in this case, to
consider non-linear parameters within the support of the observations and take
ΘT = [−aT , aT ]. When T tends to infinity, in the limit model the observation
corresponds to a square integrable random process indexed on Θ = R. In the
case of periodic signals, we may take the sets Θ and ΘT to be the torus R/Z,
and the limit measure is then the Haar measure identified with the Lebesgue
measure.

In this formalism, the noise wT ∈ L2(λT ) is given by:

wT (t) =
T∑
j=1

Gj1{tj}(t), (10)

where 1A denotes the indicator function of an arbitrary set A and (G1, · · · , GT )
is a centered Gaussian random vector with independent entries of variance σ2.

In this case Assumption 1.1 holds with an equality in (4) and E[‖wT ‖4L2(λT )]
is finite. Notice that E[‖wT ‖2L2(λT )] = σ2∆T T , thus the Cauchy-Schwarz in-
equality (5) gives an upper bound larger by a factor T than the value given
by (4). We also have that ΞT = 2σ4∆2

T T .
Finally, the model writes:

yj := y (tj) =
s∑

k=1
β?k φT (θ?k, tj) +Gj , j = 1, . . . , T.

We stress that when the noises (Gj)1≤j≤T are independent the model encom-
passes the Gaussian sequence model where the mean vector is the sampling of
a linear combination of shifts of a known function.

2.2.2. Continuous-time processes

Assume we observe a real-valued process y on a topological state space. We note
λ = λT for a σ-finite measure on the state space. In this framework, y is an
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element of L2(λ). Let us assume that the noise is wT =
∑
k∈N
√
ξkGk ψk, where

(Gk, k ∈ N) are independent centered Gaussian random variables with variance
σ2, ψ = (ψk, k ∈ N) an orthonormal sequence of L2(λ), and ξ = (ξk, k ∈ N) a
summable sequence of non-negative real numbers. The sequences ψ and ξ may
depend on T . Let ‖ξ‖`p denote the usual `p-norm of the sequence ξ. We have:

Var(〈f, wT 〉L2(λ)) = σ2
∑
k∈N

ξk 〈f, ψk〉2L2(λ) ≤ σ
2 ∆T ‖f‖2L2(λ),

with ∆T = ‖ξ‖`∞ = supk∈N ξk. We also have E[‖wT ‖2L2(λ)] = σ2‖ξ‖`1 and
ΞT = Var(‖wT ‖2L2(λ)) = 2σ4‖ξ‖2`2 . In particular Assumption 1.1 holds.

We may consider different choices for ξ that lead to different values for ΞT ,
the variance of the squared norm of the noise. For instance, our framework en-
compasses the truncated white noise by taking for all k ∈ N, ξk = T−11{1≤k≤T}.
In this case, we have ‖ξ‖`∞ = 1/T and ‖ξ‖`1 = 1. In particular, we get that the
inequality (5) is not as sharp as (4) since ∆T = 1/T whereas E[‖wT ‖2L2(λ)] = σ2.

3. Assumptions and prediction bounds

We recall in this section assumptions and definitions from Sections 3-5 of [6]
in a simpler way adapted to our framework. In [6], the authors established
high probability bounds for prediction and estimation errors associated to some
estimators of β? and ϑ? tackling a wider range of dictionaries.

3.1. Regularity of the features

We gather in this section the hypotheses that will be required on the features
defined by (3).

Recall that the parameter space Θ is either R or the torus R/Z endowed with
the Lebesgue measure Leb. For convenience, we write |x− y| for the Euclidean
distance between x and y either on R or on the torus. Recall also that L2(λT )
and L2(Leb) are the sets of square integrable functions on Θ with respect to
the measures λT and Leb respectively. We denote S the set of scale parameter
values.

Assumption 3.1 (Smoothness of the features). Let h be a function defined on
Θ×S. Let T ∈ N and σT ∈ S. We assume that the function θ 7→ h(θ, σT ) is of
class C3 on Θ. We assume furthermore that ‖h(·, σT )‖L2(Leb) = 1, and that for
all θ ∈ Θ ‖h(θ − ·, σT )‖L2(λT ) > 0 and all i ∈ {0, · · · , 3}:∥∥∂iθh(·, σT )

∥∥
L2(Leb) < +∞ and

∥∥∂iθh(θ − ·, σT )
∥∥
L2(λT ) < +∞.

Recall the function ϕT defined by (3) and notice that Assumption 3.1 implies
‖ϕT (θ)‖L2(λT ) > 0 on Θ. We define the function:

gT (θ) = ‖∂θφT (θ)‖2L2(λT ), where φT (θ) = ϕT (θ)/‖ϕT (θ)‖L2(λT ). (11)
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Assumption 3.2 (Positivity of gT ). Assumption 3.1 holds and we have gT > 0
on Θ.

Let us mention that if for all θ ∈ Θ, ϕT (θ) and ∂θϕT (θ) are linearly indepen-
dent functions of L2(λT ) and ‖∂θϕT (θ)‖L2(λT ) > 0, then gT > 0 on Θ (see [6,
Lemma 3.1]).

3.2. Definition of the kernel and its approximation

3.2.1. Measuring the colinearity of the features

We define the symmetric kernel KT on Θ2 by:

KT (θ, θ′) = 〈φT (θ), φT (θ′)〉L2(λT ). (12)

The kernel KT measures the colinearity of two features belonging to the con-
tinuous dictionary. It does not a priori have a simple form. In the following, we
approximate this kernel by another kernel easier to handle.

As mentioned in the introduction, we consider in this paper a setting where
the sequence of measures (λT , T ≥ 1) converges in some sense towards the
Lebesgue measure Leb on Θ. In [6], the kernel KT was free of any scale parameter
σT and authors have considered a pointwise limit kernel K∞ = limT→∞KT
which is free of T and allows to continue the proofs under some assumptions.
However, due to our scale parameter σT which decreases towards zero with T ,
we show in the following example that the pointwise limit kernel is degenerate.
Example 3.1 (Degenerate limit kernel). Consider the discrete-time process pre-
sented in Section 2.2.1 with the measure λT from (9) and the Gaussian features
(7) from Section 2.1 scaled by the sequence (σT , T ≥ 1) that tends towards zero
when T grows to infinity so that limT→+∞∆T /σT = 0. In this case, the sequence
of measures (λT , T ≥ 1) converges with respect to the vague topology towards
the Lebesgue measure and it is easy to check that K∞, the pointwise limit of
the kernel KT , is equal to zero almost everywhere and to 1 on the diagonal.

Thus, instead of the pointwise limit kernel K∞, we shall approximate (for
finite large enough T ) the kernel KT by a kernel Kprox

T of the form:

Kprox
T : (θ, θ′) 7→ F (|θ − θ′|/σT ), (13)

where F is a real-valued function defined on R+ with F (0) = 1. (Recall that
|θ − θ′| is the Euclidean distance between θ and θ′ on Θ which is either R
or the torus R/Z.) Notice that if F is of class C2` with F (2i+1)(0) = 0 for
i ∈ {0, . . . , `− 1} for some integer ` ≥ 1 (which is the case if F can be extended
into an even function of class C2` on R ), then Kprox

T is of class C`,`. The choice
of the function F follows from the model given by h in (3), so that KT and
Kprox
T are close (see (iii) of Assumption 3.4 below). We refer to Sections 6 and 7

for examples with h given by (7) and (8), respectively. The introduction of the
kernel Kprox

T is significantly different from the approximation developed in [6].
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3.2.2. Covariant derivatives of the kernel

Let K be a symmetric kernel of class C2 such that the function gK defined on Θ
by:

gK(θ) = ∂2
x,yK(θ, θ), (14)

is positive, where ∂x (respectively ∂y) denotes the usual derivative with respect
to the first (respectively second) variable. Under Assumptions 3.1 and 3.2, the
definitions (11) and (14) coincide so that gT = gKT on Θ.

Similarly to [18], we introduce the covariant derivatives which reduce to el-
ementary expressions since the location parameters are one-dimensional. More
precisely following [6, Section 4], we set for a smooth function f defined on Θ,
D̃0;K[f ] = f , D̃1;K[f ] = g

−1/2
K f ′ and for i ≥ 2:

D̃i;K[f ] = D̃1;K[D̃i−1;K[f ]].

Let us assume that the kernel K has the form K(θ, θ′) = 〈f(θ), f(θ′)〉L2(λ) for
some function f of class C3 and some measure λ on Θ. We then define the
covariant derivatives (see (27) in [6]) of K for i, j ∈ {0, . . . , 3} and θ, θ′ ∈ Θ by:

K[i,j](θ, θ′) = 〈D̃i;K[f ](θ), D̃j;K[f ](θ′)〉L2(λ).

We also define the function hK on Θ by:

hK(θ) = K[3,3](θ, θ).

The previous notation will be used both for the kernel KT in (12), which
is determined by the particular choice of the features, but also for the kernel
Kprox
T in (13). The latter is determined by the function F and we derive next the

particular expressions of gKprox
T

and of the covariant derivatives of Kprox
T under

additional assumptions on F .
For a real valued function f defined on a setA, we write ‖f‖∞= supx∈A |f(x)|.

Assumption 3.3 (Properties of the function F ). Let F be a function defined
on R+ of class C6 with F (0) = 1 and F (2i+1)(0) = 0 for i ∈ {0, 1, 2}. We set:

g∞ = −F ′′(0). (15)

We assume that:
g∞ > 0, L6 := g−3

∞ |F (6)(0)| < +∞,

and Li := g−i/2∞

∥∥∥F (i)
∥∥∥
∞
< +∞ for all i ∈ {0, · · · , 4}.

(16)

We give the covariant derivatives of the kernel Kprox
T according to the defini-

tion given in [6, (27)]: for any θ, θ′ ∈ Θ and i, j ∈ {0, · · · , 3},

Kprox[i,j]
T (θ, θ′) = (−1)j

g
(i+j)/2
∞

F (i+j) (|θ − θ′|/σT ) . (17)

We notice that we have for any θ ∈ Θ:

gKprox
T

(θ) = g∞/σ
2
T . (18)
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3.2.3. Measuring the quality of the approximation

In this section, we quantify the proximity of the kernel KT and Kprox
T .

Following [18], we define the one-dimensional Riemannian metric dT (θ, θ′)
between θ, θ′ ∈ Θ by:

dT (θ, θ′) = |GT (θ)−GT (θ′)|, (19)

where GT is a primitive of the function √gT assumed positive on Θ thanks to
Assumption 3.2.

Recall that ΘT , introduced below the model (2), is a compact sub-interval
of Θ. Since ΘT is compact, under Assumptions 3.2 and 3.3, we deduce that the
constant CT below is positive and finite, where:

CT = max
(

sup
ΘT

√
gKprox

T

gT
, sup

ΘT

√
gT

gKprox
T

)
. (20)

Elementary calculations show that the metric dT defined in (19) is equivalent,
up to a factor σT , to the Euclidean metric on ΘT as for any θ, θ′ ∈ ΘT :

1
CT

√
g∞ σ−1

T |θ − θ
′| ≤ dT (θ, θ′) ≤ CT

√
g∞ σ−1

T |θ − θ
′|. (21)

In order to quantify the approximation of KT by Kprox
T , we set:

VT = max(V(1)
T ,V(2)

T ) (22)

with V(1)
T = max

i,j∈{0,1,2}
sup
Θ2
T

|K[i,j]
T −Kprox[i,j]

T | and V(2)
T = sup

ΘT
|hKT − hKprox

T
|.

3.3. Boundedness and local concavity on the diagonal of the
approximating kernel

Recall the definition of the kernel Kprox
T given by (13) using the function F .

We quantify the boundedness and local concavity on the diagonal of the kernel
Kprox
T using for r > 0:

ε(r) = 1− sup {|F (r′)|; r′ ≥ r} , (23)
ν(r) = − sup {F ′′(r′)/g∞; r′ ∈ [0, r]} . (24)

We also quantify the colinearity between s ∈ N features belonging to the
continuous dictionary, by setting for u > 0:

δ(u, s) = inf
{
δ > 0 : max

1≤`≤s

s∑
k=1,k 6=`

g
− i

2∞ |F (i)(x` − xk)| ≤ u,

for all i ∈ {0, 1, 2, 3} and (x1, · · · , xs) ∈ Rs(δ)
}
, (25)
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where for any subset A of R or R/Z and for any δ ≥ 0,

As(δ) =
{

(θ1, · · · , θs) ∈ As : |θ` − θk| > δ for all distinct k, ` ∈ {1, . . . , s}
}
.

(26)
with the conventions inf ∅ = +∞, and for s = 0, 1: A0(δ) = {0} and A1(δ) = A.

Following [6], we define quantities which depend only on the function F and
on a real parameter r > 0:

H(1)
∞ (r) = 1

2 ∧L2 ∧ L3 ∧ L4 ∧ L6 ∧
ν(2r)

10 ∧ ε(r/2)
10 ,

H(2)
∞ (r) = 1

6 ∧
8ε(r/2)

10(5 + 2L1) ∧
8ν(2r)

9(2L2 + 2L3 + 4) ,

where the constants Li are defined in (16).

3.4. Main assumption and identifiability of the model

We summarize here all assumptions that are needed for the following results.
They concern the features, the function F characterizing the proxy kernel Kprox

T ,
the proximity of the kernel KT defined by the original features to the prox kernel
Kprox
T and, last but not least, the assumption that two neighbouring non-linear

parameters θ and θ′ are at least separated by some constant multiplied by σT .
This is the most important improvement on the sufficient conditions in [6], as
the scaling parameter σT can be chosen small in some models.

Assumption 3.4. Let T ∈ N, s ∈ N, r ∈
(
0, 1/
√

2 g∞ L2
)
, η ∈ (0, 1) and a

subset Q ⊂ ΘT of cardinal s.

(i) Regularity of the dictionary ϕT : The dictionary function ϕT satisfies
the smoothness conditions of Assumption 3.1. The function gT defined in
(11), satisfies the positivity condition of Assumption 3.2.

(ii) Properties of the function F : Assumption 3.3 holds and we have
ε(r/2) > 0 and ν(2r) > 0.

(iii) Proximity to the limit setting: The kernel KT defined from the dic-
tionary, see (12), is sufficiently close to the kernel Kprox

T in the sense that
we have:

CT ≤ 2

and if s ≥ 1, we have in addition:

VT ≤ H(1)
∞ (r) and (s− 1)VT ≤ (1− η)H(2)

∞ (r).

(iv) Separation of the non-linear parameters: If s ≥ 1, we have:

δ(ηH(2)
∞ (r), s) < +∞ and for any θ 6= θ′ ∈ Q, |θ − θ′| > σT Σ(η, r, s),

where,
Σ(η, r, s) = 4 max

(
rg−1/2
∞ , 2 δ(ηH(2)

∞ (r), s)
)
.
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Remark 3.2 (On the separation condition). The separation condition corre-
sponds to the minimal distance between any pair of nonlinear parameters en-
suring that a coherence function remains bounded from above by a specified
constant dependent on the dictionary. This condition is mathematically repre-
sented in (25) and expressed with the following coherence function:

max
1≤`≤s

s∑
k=1,k 6=`

g
− i

2∞ |F (i)(x` − xk)|,

where {x1, · · · , xs} is a set of nonlinear parameters. This function is quite sim-
ilar to the Babel function introduced in [21], which measures the maximum
total coherence between a fixed atom and a collection of other atoms in a fi-
nite dictionary. In linear cases (when the dictionary consists of a finite number
of atoms), keeping the Babel function below a certain threshold allows for the
derivation of results on the recovery of sparse signals. We stress that similar
separation conditions to Assumption 3.4 are common in super-resolution, com-
pressed sensing and spikes deconvolution for recovering signals derived from
continuous dictionaries, see [8, 11, 18] among many other references.

In Sections 6 and 7 we give simplified expressions of the quantities involved
in the previous assumption for the particular models in hand.

Under Assumption 3.4, we shall build consistent estimators for β? and ϑ? of
the model (2) and test statistics. The following lemma gives an identifiability
result for the considered model under the previous assumptions. Its proof relies
on the construction of certificates from [6] and is based on ideas developed in
[10] for exact reconstruction of measures, see Lemma 1.1 therein. We recall that
by convention β?ΦT (ϑ?) = 0 when s = 0.

Lemma 3.3 (Sufficient conditions for identifiability). Let T ∈ N and let r ∈(
0, 1/
√

2 g∞ L2
)
, η ∈ (0, 1). Suppose that Assumption 3.4 holds for the set Q? =

{θ?1 , · · · , θ?s} ⊂ ΘT of cardinal s ∈ N and for the set Q0 = {θ0
1, · · · , θ0

s0} ⊂ ΘT

of cardinal s0 ∈ N. Then, for any vectors β? ∈ (R∗)s, β0 ∈ (R∗)s0 , we have that,
up to the same permutation on the components of β? and ϑ?:

β?ΦT (ϑ?) = β0ΦT (ϑ0) in L2(λT ), implies that s = s0, β? = β0, ϑ? = ϑ0.
(27)

The proof is in Section 8.1.
Remark 3.4. Recall that if s ≥ 1, then β? is a s-dimensional vector with non-zero
entries. Under the assumptions of Lemma 3.3 we have that:

β?ΦT (ϑ?) = 0 if and only if s = 0.

3.5. Prediction error bound

We define the estimators β̂ and ϑ̂ of β? and ϑ? as the solution to the following
regularized optimization problem with a real tuning parameter κ > 0 and a
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bound K on the unknown number s of active features in the observed mixture:

(β̂, ϑ̂) ∈ argmin
β∈RK ,ϑ∈ΘKT

1
2‖y − βΦT (ϑ)‖2L2(λT ) + κ‖β‖`1 , (28)

where ‖·‖`1 corresponds to the usual `1 norm. Since the interval ΘT on which the
optimization of the non-linear parameters is performed is a compact interval and
the function ΦT is continuous, the existence of at least a solution is guaranteed.
The bound K on the number s of features in the mixture from model (2) allows
to formulate an optimization problem. It can be arbitrarily large. In particular,
it is not involved in the bounds on estimation and prediction risks given in [6]
with high probability (see Remark 2.4 therein). We stress that the constants in
[6] appearing in those bounds may a priori depend on T when the features are
scaled by σT . We show below that, in fact, those bounds still hold with constants
free of T . The results in [6] as well as the proof of Theorem 3.5 below rely on the
existence of certificate functions. In [6], sufficient conditions for the certificate
functions to exist are given, see Proposition 7.4 and 7.5 therein. Those conditions
require the non-linear parameters in Q? to satisfy the separation condition (32).
In our framework where the scaling σT decreases to zero, it turns out that this
separation is in general increasing with s and decreasing with T . However, for
some dictionary composed of translated spikes that vanish quickly, it converges
to zero when both s and T grow to infinity. We refer to Section 6 in this direction.

Recall the definitions of g∞ and L2 given by (15) and (16). The following
theorem is a variation of [6, Theorem 2.1].

Theorem 3.5. Let T ∈ N, s ∈ N∗, K ∈ N∗, η ∈ (0, 1), r ∈
(
0, 1/
√

2 g∞ L2
)
. As-

sume we observe the random element y of L2(λT ) under the regression model (2)
with unknown parameters β? ∈ (R∗)s and ϑ? = (θ?1 , · · · , θ?s) a vector with dis-
tinct entries in ΘT , a compact interval of Θ, such that Assumption 3.4 holds for
Q? = {θ?1 , · · · , θ?s} ⊂ ΘT . Assume that the unknown number of active features
s is bounded by K. Suppose also that the noise process wT satisfies Assumption
1.1 for a noise level σ > 0 and a decay rate for the noise variance ∆T > 0.

Then, there exist finite positive constants Ci, for i = 0, . . . , 3, depending on
the function F and on r such that for any τ > 1 and a tuning parameter:

κ ≥ C1σ
√

∆T log(τ), (29)

we have the prediction error bound of the estimators β̂ and ϑ̂ defined in (28)
given by: ∥∥∥β̂ΦT (ϑ̂)− β?ΦT (ϑ?)

∥∥∥
L2(λT )

≤ C0
√
s κ, (30)

with probability larger than 1−C2
(

|ΘT |
σT τ
√

log(τ)
∨ 1
τ

)
where |ΘT | is the Euclidean

length of ΘT . Moreover, with the same probability, the difference of the `1-norms
of β̂ and β? is bounded by:∣∣∣‖ β̂‖`1 − ‖ β?‖`1∣∣∣ ≤ C3 κ s. (31)
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Proof. The proof is similar to the proof of [6, Theorem 2.1] where one replaces
the limit kernel noted K∞ therein by the approximating kernel Kprox

T defined
in (13). The main difference is in checking condition (v) in Theorem 2.1 on the
existence of certificate functions. This is done by using Propositions 7.4 and
7.5 therein, and by noticing that the special form of the approximating kernel
Kprox
T implies that the constants involved do not depend on the scale parameter

σT . Indeed Equation (17) clearly entails that they do not depend on the scale
parameter. The details of the proof are left to the interested reader.

Remark 3.6 (On the separation). We perform the estimation of β? and ϑ? =
(θ?1 , · · · , θ?s) from model (2) under the separation condition:

|θ?k − θ?` | ≥ σT Σ(η, r, s), for all 1 ≤ k, ` ≤ s, k 6= `, (32)

with Σ(η, r, s) given in (iv) of Assumption 3.4. Taking into account the sepa-
ration condition, the number of admissible features which can be used for the
prediction is at most of order |ΘT |/σT ; this provides a natural upper bound
on s. As η is usually fixed, we highlight that the least separation bound tends
towards zero when the scaling σT goes down to zero.

4. Goodness-of-fit for the LCTF model

In this section, we build a test procedure to decide if the observation y derives
from a given linear combination of translated features. We build a test Ψ, i.e.
a measurable function of the observation y taking value in {0, 1}, in order to
distinguish a null hypothesis H0 against an alternative H1(ρ) depending on a
nonnegative separation parameter ρ. We recall that the maximal type I and II
error probabilities are sup(β?,ϑ?)∈H0 E(β?,ϑ?)[Ψ] and sup(β?,ϑ?)∈H1(ρ) E(β?,ϑ?)[1−
Ψ], respectively, where Ψ is a function of y which is equal to β?ΦT (ϑ?) + wT
under E(β?,ϑ?). The maximal testing risk is the sum of the former quantities,
that is:

Rρ(Ψ) = sup
(β?,ϑ?)∈H0

E(β?,ϑ?)[Ψ] + sup
(β?,ϑ?)∈H1(ρ)

E(β?,ϑ?)[1−Ψ],

and the minimax testing risk is:

R?ρ = inf
Ψ
Rρ(Ψ), (33)

where the infinimum is taken over all the measurable functions from L2(λT )
to {0, 1}. The minimax separation rate of the test problem is defined for any
α ∈ (0, 1) as:

ρ?(α) = inf{ρ > 0 : R?ρ ≤ α}. (34)



Butucea, Delmas, Dutfoy, Hardy/Off-the-grid prediction and testing 18

4.1. Test problem

Let s0 ∈ N and consider the set Θs0

T (δ0) ⊂ Θs0

T of vectors whose components are
pairwise separated by a distance δ0 ≥ 0 (recall the definition (26)). Consider
the vectors β0 ∈ (R∗)s0 and ϑ0 = (θ0

1, · · · , θ0
s0) ∈ Θs0

T (δ0). By convention, we
have for s0 = 0 that β0 = 0, ϑ0 = 0 and β0ΦT (ϑ0) = 0.

We build a test procedure based on the observation y to decide, for some
δ? ≥ 0, whether:{
H0 : (β?, ϑ?) ∈ (R∗)s ×Θs

T (δ?) s.t. β?ΦT (ϑ?) = β0ΦT (ϑ0),
H1(ρ) : (β?, ϑ?) ∈ (R∗)s ×Θs

T (δ?) s.t
∥∥β?ΦT (ϑ?)− β0ΦT (ϑ0)

∥∥
L2(λT ) ≥ ρ,

(35)
where ρ is a nonnegative separation parameter. When Assumption 3.4 holds for
the sets Q? = {θ?1 , · · · , θ?s} and Q0 = {θ0

1, · · · , θ0
s0}, by Lemma 3.3, the null

hypothesis implies that (β?, ϑ?) = (β0, ϑ0) (up to the same permutation on
the components of β? and ϑ?). We remark that the separation condition from
Point (iv) of Assumption 3.4 required between the elements of Q? (resp. Q0) is
automatically satisfied when δ? ≥ σT Σ(η, r, s) (resp. δ0 ≥ σT Σ(η, r, s0)).

We shall denote the distribution under the null hypothesis as associated to
the parameters (β0, ϑ0) and see that the maximal type I error probability writes
in this case E(β0,ϑ0)[Ψ] for E(β?,ϑ?)[Ψ]. Furthermore, when s0 = 0, under As-
sumption 3.4 for the set Q?, Lemma 3.3 implies that the null hypothesis reduces
to H0 : s = 0.

4.2. Main results

We consider the test procedure ΨTest(t) associated to a real valued statistic Test
(measurable function of the observation y) and a threshold t > 0 (defining a
critical region) given by:

ΨTest(t) = 1{|Test|>t}. (36)

We recall that for a test Ψ, we accept H0 when Ψ = 0 and reject it when Ψ = 1.
It is now well-known that several test statistics may be combined to cover

for several regimes in the set of parameters. Our test statistics will be produced
by estimating in two different ways

∥∥β?ΦT (ϑ?)− β0ΦT (ϑ0)
∥∥2
L2(λT ), the squared

L2(λT ) distance separating the null and the alternative hypothesis. On the one
hand, we plug-in the estimators from the previous section into this distance and,
on the other hand, we use the observed process y as a proxy for the unknown sig-
nal, in which case it is necessary to remove the known bias term E

[
‖wT ‖2L2(λT )

]
as follows.

Let s0 ∈ N and consider known linear coefficients and location parameters
β0 ∈ (R∗)s0 and ϑ0 = (θ0

1, · · · , θ0
s0) ∈ Θs0

T , respectively. We define two statistics
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Test1 and Test2 by:

Test1 =
∥∥y − β0ΦT (ϑ0)

∥∥2
L2(λT ) − E

[
‖wT ‖2L2(λT )

]
,

Test2 =
∥∥∥β̂ΦT (ϑ̂)− β0ΦT (ϑ0)

∥∥∥2

L2(λT )
,

(37)

where β̂ and ϑ̂ denote the estimators obtained from (28) for a given value of the
tuning parameter κ and a bound K on the unknown number s ∈ N of active
features in the observed signal.

Recall the definition (6) of ΞT , the variance of the squared L2(λT )-norm
of the noise wT . The following theorem gives an upper bound of the maximal
testing risk associated to the test ΨTest1(t) for some positive threshold t and
positive separation ρ. Its proof can be found in Section 8.2.

Theorem 4.1. Let T ∈ N and s0 ∈ N. Let:

δ? ≥ 0 and δ0 ≥ 0.

Assume that we observe the random element y of L2(λT ) under the regression
model (2) with unknown parameters s ∈ N, β? ∈ (R∗)s and ϑ? ∈ Θs

T (δ?). Let
β0 ∈ (R∗)s0 and ϑ0 ∈ Θs0

T (δ0). Suppose that Assumption 3.1 on the smoothness
of the features holds. Suppose that Assumption 1.1 holds for a noise level σ > 0
and a decay rate for the noise variance ∆T > 0.

Then, the test ΨTest1 in (36) using Test1 in (37) satisfies:

Rρ (ΨTest1(t)) ≤ ΞT
t2

+ 4 ΞT
(ρ2 − t)2 + e−(ρ2−t)2/(32σ2∆T ρ

2), (38)

for any threshold t and any separation ρ such that ρ2 > t > 0.

We deduce from Theorem 4.1 upper bounds on the minimax separation ρ?

defined in (34) for the goodness-of-fit test problem (35).

Corollary 4.2. Under the framework and the assumptions of Theorem 4.1, the
minimax separation rate for the test problem (35) verifies for any α ∈ (0, 1):

ρ?(α) ≤ ρ(1)(α) with ρ(1)(α) := max
((

40ΞT
α

)1/4
, 8σ

√
2∆T log

(
2
α

))
.

(39)

Proof of Corollary 4.2. This result is a direct consequence of Theorem 4.1 by
taking the threshold t of the test therein equal to ρ2/2. Then, we have that for
ρ > 0:

R?ρ ≤ Rρ
(
ΨTest1(ρ2/2)

)
≤ 4ΞT

ρ4 +16 ΞT
ρ4 +e−ρ

2/(128σ2∆T ) = 20 ΞT
ρ4 +e−ρ

2/(128σ2∆T ) .

We deduce that R?ρ ≤ α for any α ∈ (0, 1) whenever the separation ρ satisfies:

ρ ≥
(

40ΞT
α

) 1
4

∨ σ

√
128 ∆T log

(
2
α

)
. (40)
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This implies (39).

In the following theorem, we give a bound of the maximal testing risk as-
sociated to the test ΨTest2(t) using Test2 in (37) for solving the test problem
(35). The statistic Test2 is defined using estimators of the model parameters
(β?, ϑ?). In view of recovering the latter, we assume that the minimal distance
δ? (resp. δ0) is large enough so that Point (iv) of Assumption 3.4 is satisfied for
the components of ϑ? (resp. ϑ0).

Recall the definitions of g∞ and L2 given by (15) and (16), that |ΘT | denotes
the Euclidean length of the compact set ΘT and Σ defined in (iv) of Assumption
3.4.

Theorem 4.3. Let T ∈ N, s0 ∈ N and choose K ∈ N such that s0 ≤ K. Let
also η ∈ (0, 1) and r ∈

(
0, 1/
√

2 g∞ L2
)
. Let

δ? ≥ σT Σ(η, r, s) and δ0 ≥ σT Σ(η, r, s0). (41)

Assume we observe the random element y of L2(λT ) under the regression model
(2) with unknown parameters s ∈ N such that s ≤ K, β? ∈ (R∗)s and ϑ? =
(θ?1 , · · · , θ?s) ∈ Θs

T (δ?). Let β0 ∈ (R∗)s0 and ϑ0 = (θ0
1, · · · , θ0

s0) ∈ Θs0

T (δ0).
Suppose that Assumption 3.4 holds for the sets Q? = {θ?1 , · · · , θ?s} ⊂ ΘT of
cardinal s and Q0 = {θ0

1, · · · , θ0
s0} ⊂ ΘT of cardinal s0. Suppose also that the

noise process wT satisfies Assumption 1.1 for a noise level σ > 0 and a decay
rate for the noise variance ∆T > 0.

Then, there exist finite positive constants C0, C1, C2, depending on r and on
the function F , such that for the tuning parameter κ:

κ ≥ C1σ
√

∆T log(τ), for some τ > 1, (42)

the test ΨTest2 using Test2 in (37) satisfies:

Rρ (ΨTest2(t)) ≤ 2 C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
, (43)

for any threshold t and any separation ρ satisfying:

0 < t, C0
√
s0 κ ≤

√
t < ρ and

√
t+ C0

√
s κ ≤ ρ. (44)

The proof can be found in Section 8.3.
Remark 4.4 (On the bound K). The bound K on s is assumed to be known. It
is needed to formulate the optimization problem (28) whose solutions are the
estimators of β? and ϑ?. However, we stress that the constants C0, C1, C2 and
the bound on the maximal testing risk do not depend on K. Thus, K can be
taken arbitrarily large.

In the next Corollary, we obtain an additionnal upper bound on the minimax
separation rate.
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Corollary 4.5. Under the framework and the assumptions of Theorem 4.3 and
provided that |ΘT |/σT ≥ 1, there exist finite positive constants c and C, depend-
ing on r and the function F , such that the minimax separation rate for the test
problem (35) verifies for any α ∈ (0, 1):

ρ? (α) ≤ ρ(2)(α), ρ(2)(α) := C σ

√
(s ∨ s0 ∨ 1)∆T log

(
c |ΘT |
ασT

)
. (45)

Remark 4.6 (On the condition |ΘT |/σT ≥ 1). We recall that the set ΘT is a
compact subset of Θ. In the case where Θ is the torus R/Z, ΘT = Θ and the
scale parameter σT tends towards 0 when T grows to infinity, the condition
|ΘT |/σT ≥ 1 is satisfied for T large enough. This condition also holds for T
large enough in the Gaussian spikes deconvolution example, with the particular
choices for ΘT and σT from Section 6, where Θ = R, limT→+∞ ΘT = Θ and
limT→+∞ σT = 0.

Proof of Corollary 4.5. Notice that all the assumptions of Theorem 4.3 are in
force. The result is a direct consequence of Theorem 4.3. We fix the tuning
parameter κ = C1σ

√
∆T log(τ) by taking the equality in (42). Then, for

ρ ≥ C0
√
s ∨ 1κ+

√
t and t = C2

0 (s0 ∨ 1)κ2, (46)

we have (44) (in particular 0 < t < ρ) and by Theorem 4.3 for τ > 1:

R?ρ ≤ Rρ (ΨTest2(t)) ≤ 2C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
,

where the finite positive constants C0, C1, C2, from Theorem 4.3 depend on r
and F .

Then, taking τ = c|ΘT |/(ασT ) with c = (2C2)∨ e and using that by assump-
tion |ΘT |/σT ≥ 1, we get for ρ ≥

√
2C0C1σ

√
(s+ s0) ∨ 2

√
∆T log(c|ΘT |/(ασT ))

and α ∈ (0, 1) that R?ρ ≤ α. We readily deduce (45) with C = 2C0C1.

Remark 4.7 (Combining the upper bounds of Corollaries 4.2 and 4.5). Let
α ∈ (0, 1). Suppose that the assumptions of Corollaries 4.2 and 4.5 hold. Pre-
vious results show that each procedure may perform better than the other one
in convenient regimes of the parameters, involving the unknown parameter s.
In order to aggregate the two procedures into an automatic one, we take the
maximum of the two test procedures. This aggregated test procedure rejects as
soon as at least one of the procedures rejects, and accepts otherwise.

More precisely, let ρ(1)(α/2) be defined by (39) with α replaced by α/2
and set t(1) = (ρ(1)(α/2))2/2; and let ρ(2)(α/2) be defined in (45) and t(2)

be given by (46) with α replaced by α/2. Then, Corollaries 4.2 and 4.5 imply
that Rρ(1)

(
ΨTest1(t(1))

)
≤ α/2 and Rρ(2)

(
ΨTest2(t(2))

)
≤ α/2. We define the

test:
Ψmax = max(ΨTest1(t(1)),ΨTest2(t(2))).
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It is straightforward to see that the type I error probability satisfies:

sup
(β?,ϑ?)∈H0

E(β?,ϑ?)[Ψmax] ≤ α.

Moreover, we have for ρmin(α) = ρ(1)(α/2) ∧ ρ(2)(α/2) the following bound on
the type II error probability:

sup
(β?,ϑ?)∈H1(ρmin)

E(β?,ϑ?)[1−Ψmax] ≤ α/2.

Therefore, we deduce an upper bound on ρ?(α) of order ρmin(α), that is:

ρmin(α) = min
((

80ΞT
α

)1/4
, Cσ

√
(s ∨ s0 ∨ 1)∆T log

(
2 c |ΘT |
ασT

))
, (47)

for a positive constant c ≥ 2. We identify two regimes depending on whether
the number of features of the observed signal is sufficiently small or not. Indeed,
we notice that when α is fixed and:

s ∨ s0 ∨ 1�
(

ΞT
α

)1/2
·
(
σ2∆T log

(
2 c |ΘT |
ασT

))−1
,

Corollary 4.5 yields a sharper upper bound on the separation rate than Corollary
4.2.

4.3. Minimax separation rates for signal detection

We illustrate our results on a simple model motivated by [15] for sparse linear
regression. We consider a discrete-time process y over a regular grid t1 < · · · < tT
on Θ = R/Z with grid step ∆T = 1/T . We set λT and wT as in (9) and (10)
from Section 2.2.1. We recall that ΞT = 2σ4∆2

TT where σ > 0 is the noise level.
In the following, we assume without any loss of generality that σ = 1.

Let us consider the framework of signal detection when s0 = 0. Under the
assumptions of Corollary 4.5, the test problem (35) reduces to:{

H0 : β? = 0,
H1(ρ) : (β?, ϑ?) ∈ (R∗)s ×Θs

T (δ?) s.t. ‖β?ΦT (ϑ?)‖L2(λT ) ≥ ρ.
(48)

Moreover, under the assumptions of Corollary 4.5 (which in particular gives a
lower bound on δ?, see (41)) and with the same arguments used to establish
(69) in the proof of Lemma 3.3, we can show that:

5/6 ≤ Cmin := min
β

‖βΦT (ϑ?)‖L2(λT )

‖β‖`2
, Cmax := max

β

‖βΦT (ϑ?)‖L2(λT )

‖β‖`2
≤ 7/6.

(49)
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Therefore, the separation in the alternative hypothesis H1(ρ) can be formulated
as a lower bound on ‖β?‖`2 since we have:

Cmin‖β?‖`2 ≤ ‖β
?ΦT (ϑ?)‖L2(λT ) ≤ Cmax‖β?‖`2 .

We set ΘT = Θ and thus |ΘT | = 1. We get from (47) the following upper
bound on ρ?(α) for any α ∈ (0, 1):

ρ(α) = C min
(

1
(αT ) 1

4
,

√
s

T
log
(

c

α σT

))
, (50)

with C a finite positive constant. Let (αT , T ≥ 1) be a (0, 1)-valued sequence
which converges to zero when T grows to infinity. We deduce that:

lim
s,T→+∞

R?ρ(αT ) = 0.

By letting the sequence (αT , T ≥ 1) converge towards 0 as slow as we want, we
deduce that for a sequence of separations (ρs,T , T ≥ 1, s ≥ 1) such that:

lim
s,T→+∞

ρs,T

1
T

1
4
∧
√

s
T log

(
c
σT

) = +∞, (51)

we have ρs,T ≥ ρ(αT ) and thus:

lim
s,T→+∞

R?ρs,T = 0.

Hence, we have obtained an asymptotic upper bound of the minimax separation
associated to the detection of a finite linear combination of features issued from
a continuous dictionary.

We now compare this upper bound to the asymptotic lower bound obtained
in the case where the dictionary contains a finite number of features instead of a
continuum. Assume that the dictionary is fixed, known and contains p features
parametrized by the parameters in the known and fixed set Q0 = {θ0

1, · · · , θ0
p} ⊂

ΘT . We consider the high dimensional linear regression model:

y = β?ΦT (ϑ0) + wT in L2(λT ),

with ϑ0 = (θ0
1, · · · , θ0

p) ∈ Θp
T and where β? ∈ Rp is a s-sparse vector. Notice that

in this model the entries of β? can take the value 0. The high dimension comes
from the fact that p can be much larger than T . Under coherence assumptions
on the finite dictionary and for a sequence of separations (ρs,T , T ≥ 1, s ≥ 1)
such that:

lim
s,T→+∞

ρs,T

1
T

1
4
∧
√

s
T log(p) ∧ p

1
4√
T

= 0, (52)
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the authors of [15] showed for different hypotheses on the design matrix ΦT (ϑ0)
that:

lim
s,T→+∞

R?ρs,T = 1.

It means that the hypotheses (48) cannot be distinguished asymptotically when
the separation converges to zero faster than the rate given by (52).
Remark 4.8 (Comparison between the rates obtained for finite and continu-
ous dictionaries). In the high-dimensional linear case (i.e., T ≤ p), given that
1/T 1/4 ≤ p1/4/

√
T , the asymptotic minimal intensity allowing signal detection

given by (52) becomes:
1
T

1
4
∧
√
s

T
log(p).

This rate matches, up to a logarithmic factor, the rate given by (51) for our more
general model. There are two distinct regimes: the sparse case (s ≤

√
T/ log(p))

and the non-sparse case. Additionally, the magnitude of the size p of the finite
dictionary plays an analogous role as the quantity 1/σT that appears in the
logarithmic terms. The term 1/σT is of the order of the maximal number of
shifted elements permissible in our mixture, considering a separation condition
of order σT and shift parameters within a compact set possibly growing with T .

5. Goodness-of-fit of the dictionary

In spectroscopy, a prescribed material has known chemical components and a
list of s0 corresponding location parameters of the features is provided. From
a sampled material we want to decide whether its chemical components are in-
cluded in the prescribed list. The linear coefficients are non-negative in this case
and they are not given, which makes the null hypothesis composite, that is, fixed
location parameters and varying positive linear coefficients. We generalize this
setup to real valued linear coefficients. Under the null hypothesis the location
parameters are still fixed, but the linear coefficients vary with fixed sign.

More precisely, let s0 ∈ N and let Q0 = {θ0
1, · · · , θ0

s0} ⊂ ΘT be a set of
known location parameters pairwise separated by a distance δ0 ≥ 0 so that the
model is identifiable, see Lemma 3.3. We set the vector ϑ0 = (θ0

1, · · · , θ0
s0). We

include in the null hypothesis all linear combinations:

s0∑
j=1

β?jϕT (θ0
j )

with β?j being either 0 or with the same sign as β0
j , for all j from 1 to s0. Thus we

split the set Q0 into Q0,+ and Q0,−, those parameters θ0
k associated to β0

k > 0
and to β0

k < 0, respectively:

Q0,ε = {θ0
k ∈ Q0 : εβ0

k > 0}, ε ∈ {+,−}.
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Let s ∈ N∗. Assume that we observe a random element y issued from the
model (2) with linear coefficients β? ∈ (R∗)s and non-linear parameters ϑ? =
(θ?1 , · · · , θ?s) ∈ Θs

T . We test whether the unknown set:

Q?,ε = {θ?k ∈ Q? : εβ?k > 0} is a subset of Q0,ε for each ε ∈ {+,−}.

If s0 = 0, this amounts to testing that Q? is empty, which corresponds to the
signal detection framework presented in Section 4 in the case s0 = 0. Hence, we
shall assume in this section that s0 ≥ 1.

For example, in spectroscopy, Q0,− is empty because all linear parameters
are positive and this amounts to testing that the present chemical elements
are in the prescribed list Q0 but they may appear with various positive linear
coefficients (amplitudes). Under the alternative, other chemical components are
present (located at unknown frequencies not in the prescribed list).

5.1. A measure of discrepancy between dictionaries

We define the closed balls centered at θ ∈ ΘT with radius r by:

BT (θ, r) = {θ′ ∈ ΘT : dT (θ, θ′) ≤ r} ⊆ ΘT .

Let us define for ε ∈ {+,−} the set of indices Iε = {k ∈ {1, . . . , s0}, εβ0
k > 0}.

We introduce for r > 0, ε ∈ {+,−} and k ∈ Iε, the set Sεk(r) gathering the
indices of the elements of Q?,ε that are close to the element θ0

k of Q0,ε:

Sεk(r) =
{
` ∈ {1, · · · , s} : θ?` ∈ BT (θ0

k, r) and sgn(β?` ) = 1
}
. (53)

Notice that the sets Sεk(r) can be empty. Furthermore, we assume that r <
min` 6=k dT (θ0

` , θ
0
k)/2 so that the sets Sεk(r) with ε ∈ {+,−} and k ∈ Iε are

pairwise disjoint. We also set:

S(r) =
⋃

ε∈{+,−}

Sε(r) with Sε(r) =
⋃
k ∈Iε

Sεk(r).

We now define a discrepancy measure between the model and any approxi-
mation by a linear combination of features having their non-linear parameters
in Q0 and the linear parameters with the same signs, for r > 0:

DT,r(β?, ϑ?, v0, ϑ0) =
∑

ε∈{+,−}

∑
k∈Iε

∑
`∈Sεk(r)

|β?` | dT (θ?` , θ0
k)2 +

∑
k∈S(r)c

|β?k |,

where S(r)c denotes the complementary set of S(r) in {1, . . . , s} and v0 =
(v0

1 , . . . , v
0
s0) contains the signs of all linear coefficients β0, v0

j = sgn(β0
j ). Notice

that DT,r(β?, ϑ?, v0, ϑ0) = 0 if and only if Q?,+ ⊆ Q0,+ and Q?,− ⊆ Q0,−.
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5.2. The testing hypotheses

We shall test the following hypotheses:{
H0 : (β?, ϑ?) ∈ (R∗)s ×Θs

T (δ?), Q?,+ ⊆ Q0,+ and Q?,− ⊆ Q0,−,

H1(ρ) : (β?, ϑ?) ∈ (R∗)s ×Θs
T (δ?) and DT,r(β?, ϑ?, v0, ϑ0) ≥ ρ,

(54)
where ρ and δ? are separation parameters depending a priori on T , s and s0

that need to be evaluated. Notice that the null hypothesis is also composite.
We recall the definitions (33) and (34) of the minimax testing risk R?ρ and the
minimax separation ρ?. In the following, we give upper bounds on the testing
risk and on the minimax separation ρ?(α) for any α ∈ (0, 1).

5.3. Main result

In this section, we build a test for (54). Under Assumptions 3.1 and 3.2, we
define the element of L2(λT ):

p0 =
s0∑
k=1

αkφT (θ0
k) +

s0∑
k=1

ξk D̃1,T [φT ](θ0
k), (55)

where α, ξ ∈ Rs0 solve the system:〈
φT (θ0

k), p0
〉
L2(λT ) = sgn(β0

k) and
〈
∂θφT (θ0

k), p0
〉
L2(λT ) = 0, ∀k ∈ {1, · · · , s0}.

(56)
Remark 5.1. The element p0 of L2(λT ) coincides with the vanishing derivative
pre-certificate which appears in [11, Section 4] and is the solution of (56) with
minimal norm ‖p0‖L2(λT ). We state in Lemma 8.1 the existence of such function
and prove its further properties used in the following result.

Using the estimator β̂ from (28) for a given value of the tuning parameter κ,
we define the test statistic:

Test3 =
∥∥∥β̂∥∥∥

`1
− 〈y, p0〉L2(λT ) . (57)

and the corresponding test ΨTest3(t) = 1{|Test3|>t}. Thus we use the certificate
function as a filter of the signal and note that E 〈y, p0〉L2(λT ) = ‖β?‖`1 under
the null hypothesis.

Theorem 5.2. Let T ∈ N, s0 ∈ N∗ and choose K ∈ N such that s0 ≤ K. Let
also η ∈ (0, 1) and r ∈

(
0, 1/
√

2 g∞ L2
)
. Let:

δ? ≥ σT Σ(η, r, s) and δ0 ≥ σT Σ(η, r, s0).

Assume we observe the random element y of L2(λT ) under the regression model
(2) with unknown parameters s ∈ N∗ such that s ≤ K, β? ∈ (R∗)s and
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ϑ? = (θ?1 , · · · , θ?s) ∈ Θs
T (δ?). Let v0 ∈ {−1, 1}s0 be a sign vector and let

ϑ0 = (θ0
1, · · · , θ0

s0) ∈ Θs0

T (δ0). Suppose that Assumption 3.4 holds for the sets
Q? = {θ?1 , · · · , θ?s} ⊂ ΘT of cardinal s and Q0 = {θ0

1, · · · , θ0
s0} ⊂ ΘT of cardinal

s0. Suppose also that the noise process wT satisfies Assumption 1.1 for a noise
level σ > 0 and a decay rate for the noise variance ∆T > 0.

Then, the test statistic Test3 is uniquely defined and there exist finite positive
constants, a and Ci with i = 1, · · · , 5, (depending on r and on the function F )
such that for any τ > 1 and any tuning parameter κ:

κ ≥ C1σ
√

∆T log(τ), (58)

the test ΨTest3 satisfies:

Rρ (ΨTest3(t)) ≤ 2 C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
+ 2
τa s0

, (59)

for any threshold t > 0 and any separation ρ > 0 satisfying:

t ≥ 2 C3 s0 κ and ρ ≥ C4 s κ+ C5 t. (60)

The proof is given in Section 8.4.

5.4. Separation rates

We give in this section an upper bound on the minimax separation ρ? to test
the goodness-of-fit of the dictionary, that is to distinguish the assumptions H0
and H1(ρ) presented in Section 5.

Corollary 5.3. Under the framework and the assumptions of Theorem 5.2,
there exist finite positive constants c and C (depending on r and the function
F ) such that provided that |ΘT |/σT ≥ 1, we have for any α ∈ (0, 1):

ρ?(α) ≤ C σ (s ∨ s0)

√
∆T log

(
c |ΘT |
ασT

)
. (61)

Proof. The result is a direct consequence of Theorem 5.2. We fix the tuning
parameter κ = C1σ

√
∆T log(τ) by taking the equality in (58). Then, for ρ ≥

C4 s κ+C5 t and t = 2 C3 s0κ we have by Theorem 5.2 for τ > 1 and since s0 ≥ 1:

R?ρ ≤ Rρ (ΨTest3(t)) ≤ 2C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
+ 2
τa
,

where the finite positive constants a, Ci with i ∈ {1, · · · , 5}, from Theorem 5.2
depend on r and the function F .

Hence, by taking τ = c′/(σTα/(2|ΘT |))c
′′ with c′′ = 1∨(1/a) and c′ = (2C2)∨

e∨21/a, we get for ρ ≥ 2C1((2 C3 C5)∨C4)σ(s∨s0)
√

∆T log(c′/(σTα/(2|ΘT |))c′′)
and α ∈ (0, 1) that R?ρ ≤ α

2 + α
2 = α. We then deduce (61) with c = 2c′(1/c′′).
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6. Gaussian scaled-spikes deconvolution

In this section, we consider the discrete time process observed on a regular grid
of R given in Section 2.2.1. We recall that Assumption 1.1 holds with:

λT = ∆T

T∑
j=1

δtj with tj = −aT + j∆T and ∆T = 2aT
T

,

and wT given by (10), where T ∈ N∗. We consider the scaled Gaussian features
associated to the function:

h(t, σ) 7→ exp(−t2/2σ2)
π1/4σ1/2 defined on Θ×S = R× R∗+.

We shall see below that the natural choice for the function F appearing in (13)
is given by:

F = h0 ∗ h0 = π1/4h0(·/
√

2) with h0(·) = h(·, 1).

In the following, we check that Assumption 3.4 holds. Then, using Theorem
3.5 on a particular example, we provide a prediction bound for the estimator of
(β?, ϑ?) solution of the optimization problem (28).

6.1. Choice of the approximating kernel

We denote the unscaled feature ϕ0 on θ ∈ Θ by:

ϕ0(θ) = h(θ − ·, 1) = h0(θ − ·).

We define the mapping fT : Θ → Θ by fT (θ) = θ/σT for any θ ∈ Θ and the
(pushforward) measure λ0

T = λT ◦ f−1
T so that for any g ∈ L1(λ0

T ):∫
g(θ/σT )λT (dθ) =

∫
g(θ)λ0

T (dθ).

The Hilbert space L2(λ0
T ) is endowed with its natural scalar product 〈·, ·〉L2(λ0

T )
and norm ‖·‖L2(λ0

T ). We define on Θ2 the kernel:

K0
T (θ, θ′) = 〈φ0

T (θ), φ0
T (θ′)〉L2(λ0

T ) with φ0
T (θ) = ϕ0(θ)/

∥∥ϕ0(θ)
∥∥
L2(λ0

T ).

The kernel KT can be seen as a scaled kernel derived from K0
T as for θ, θ′ ∈ Θ:

KT (θ, θ′) = K0
T (θ/σT , θ′/σT ).

When the measure λ0
T converges in some sense, as T goes to infinity, towards

the Lebesgue measure Leb on R, it is natural to consider the approximation K0
∞

of K0
T on Θ2 by:

K0
∞(θ, θ′) =

〈
φ0
∞(θ), φ0

∞(θ′)
〉
L2(Leb) with φ0

∞(θ) = ϕ0(θ)/
∥∥ϕ0(θ)

∥∥
L2(Leb).
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Thanks to the definition of F , we also have on Θ2 that:

F (θ − θ′) = K0
∞(θ, θ′).

The approximating kernel Kprox
T is then given by (13) on Θ2, that is, Kprox

T (·, ·) =
K0
∞(·/σT , ·/σT ).

6.2. Checking Assumption 3.4

6.2.1. Regularity of the dictionary

We refer to [6, Section 8] to check that Assumption 3.4 (i) holds for the feature
ϕT defined by (3) and any scale parameter σT ∈ S = R∗+.

6.2.2. Boundedness and local concavity on the diagonal

Elementary calculations show that g∞ = −F ′′(0) = 1/2. By definition of F , we
directly deduce that Assumption 3.3 holds. We also get that for r ∈ (0,

√
2):

ε(r) = 1− e−r
2/4 > 0 and ν(r) =

(
1− r2

2

)
e−r

2/4 .

We fix r ∈ (0, 1/2). We readily check that Assumption 3.4 (ii) is verified.

6.2.3. Proximity to the approximating kernel

In order for the kernel Kprox
T to be a good approximation of KT in the sense of

Assumption 3.4 (iii), we shall consider the set ΘT over which the optimization
is performed:

ΘT = [−(1− ξ)aT , (1− ξ)aT ] ⊂ [−aT , aT ],

with a given shrinkage parameter ξ ∈ (0, 1). Intuitively, one does not expect
the estimation of the location parameter to perform well near the lower and
upper bounds of the observation grid (given by the support of λT ). Following
[6, Section 8], we set:

γT = 2∆T σ
−1
T +

√
π e−ξ

2a2
T /2σ

2
T . (62)

Recall VT and CT defined by (20) and (22). Using Lemma [6, Lemma 8.1],
there exist finite positive universal constants c0, c1 and c2, such that γT < c0
implies:

VT ≤ c1γT and |1− CT | ≤ c2γT . (63)

Assume that (aT , T ≥ 2) and (σT , T ≥ 2) are sequences of positive numbers,
such that:

lim
T→∞

aT = +∞, lim
T→∞

σT = 0 and lim
T→∞

∆T σ
−1
T = 0. (64)
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Therefore, we have limT→+∞ VT = 0 and limT→+∞ CT = 1.

Let η ∈ (0, 1) be fixed. We deduce that under (64), Assumption 3.4 (iii) is
satified provided that T is larger than some constant depending on η, r, the
sparsity s and the sequences (aT , T ≥ 2) and (σT , T ≥ 2).

6.2.4. Separation of the non-linear parameters

We remark that limr′′→∞ sup|r′|≥r′′ |F (i)(r′)| = 0 for all i ∈ {0, . . . , 3}. Thus, we
deduce from the definition (25) of δ that δ(u, s) is finite for all s ∈ N∗ and u > 0.
Let us stress that sups∈N∗ δ(u, s) ≤ M/u for some universal finite constant M ,
see [6, Remark 8.2]. Therefore, the quantity Σ(η, r, s) is bounded by a constant
depending only on η and r.

So Assumption 3.4 (iv) is verified as soon as |θ− θ′| > σT Σ(η, r, s) for all for
all θ 6= θ′ ∈ Q?. (Notice this happens for the scaling parameter σT small enough
depending on Q?.)

6.3. Prediction error bound in a particular case

Recall the shrinkage parameter ξ ∈ (0, 1) in (62). Let us assume that:

aT = log(T ) and σT = 1/
√
ξ log(T ).

In particular, condition (64) holds. In this case, there exists a finite positive
constant c depending on r, η and ξ such that for T ≥ c log(T )3/2 s, Assumption
3.4 holds (notice that the separation condition (32) of the location parameters
in Q? is also verified for T large enough, depending on Q?, as limT→+∞ σT = 0).
By Theorem 3.5 with τ = T and κ given by the equality in (29), we get that:

1√
T

∥∥∥β̂ΦT (ϑ̂)− β?ΦT (ϑ?)
∥∥∥
`2
≤ C0 C1 σ

√
s log(T )

T
,

with probability larger than 1−C2
(

2
√
ξ log(T )
T ∨ 1

T

)
, where the constants C0, C1

and C2 do not depend on T .

7. Low-pass filter

In this section, we consider the continuous-time process described in Section 2.2.2
on the torus Θ = R/Z with λT the Haar measure on Θ, which is identified with
the Lebesgue measure Leb, and the noise:

wT =
∑
k∈N

√
ξkGk ψk,
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where (Gk, k ∈ N) are independent centered Gaussian random variables with
variance σ2, ψ = (ψk, k ∈ N) is an o.n.b. of L2(Leb) on Θ and ξ = (ξk, k ∈ N) is
a summable sequence of non-negative real numbers. The sequences ψ and ξ may
depend on T . Recall from Section 2.2.2 that the noise satisfies Assumption 1.1
for a positive noise level σ and a decay on the noise variance ∆T = supk∈N ξk.

We consider the normalized Dirichlet kernel, see (8), on Θ:

h(t, σ) = sin(Tπt)√
T sin(πt)

for t ∈ Θ = R/Z and σ = 1
T
, T ∈ 2N∗ + 1. (65)

The parameter T is related to the so-called cut-off frequency fc ∈ N∗ by T =
2fc+ 1. We shall see below that the natural choice for the function F appearing
in (13) is given by:

F (t) = sin(πt)
πt

for t ∈ R. (66)

We get from the definition (15) that g∞ = −F ′′(0) = π2/3.
Remark 7.1. Note that, if we consider the Shannon scaling function from multi-
resolution approximation in Section 2.1 with σT = 1/T , then its kernel KT
(see (12)) is exactly equal to Kprox

T (see (13)) with F from (66). Therefore there
is no approximation in this case. This example can be treated similarly to the
low-pass filter.

In the following, we check that Assumption 3.4 hold. Then, using Theorem
3.5, we provide a prediction bound for the estimator of (β?, ϑ?) solution of the
optimization problem (28).

7.1. The approximating kernel

We define the features ϕT using (3) with σT = 1/T . Elementary calculations
give that for θ, θ′ ∈ Θ:

KT (θ, θ′) = sin(Tπ(θ − θ′))
T sin(π(θ − θ′)) ·

Recall that by convention |θ − θ′| is the Euclidean distance between θ and
θ′ in Θ, and in particular it belongs to [0, 1/2]. We define the approximating
kernel Kprox

T on Θ by:

Kprox
T (θ, θ′) = F (T |θ − θ′|) with |θ − θ′| ∈ [0, 1/2].

Since F is even, we get also that F (T |θ−θ′|) = F (T (θ−θ′)) where, for θ, θ′ ∈ Θ,
their representers in R are chosen so that θ − θ′ belongs to [−1/2, 1/2].

7.2. Checking Assumption 3.4

7.2.1. Regularity of the dictionary

It is elementary to check that gT is a constant function on Θ equal to (T 2−1) g∞
and that Assumption 3.4 (i) on the regularity of the dictionary holds.
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7.2.2. Boundedness and local concavity on the diagonal

There exists R > 0 such that for any r ∈ (0, R):

ε(r) = 1− sin(πr)
πr

> 0 and ν(r) = −
(

6
π3r3 −

3
π r

)
sin(πr) + 6 cos(πr)

π2r2 > 0.

We fix r ∈ (0, (1/
√

2g∞L2) ∧ (R/2)). This and the fact that F is C∞ with
bounded derivatives implies that Assumption 3.4 (ii) on the boundedness and
the local concavity of the approximating kernel holds.

7.2.3. Proximity to the approximating kernel

We set ΘT = Θ. The proof of the next lemma on the uniform approximation of
KT by Kprox

T on the torus is postponed to Section 8.5.

Lemma 7.2. There exists a universal positive finite constant c3 such that for
any T ∈ 2N∗ + 1:

VT ≤
c3
T

and |1− CT | ≤
1

2(T 2 − 1) · (67)

Let η ∈ (0, 1) be fixed. We deduce from (67) that Assumption 3.4 (iii) is
satified provided that T is larger than some constant depending on η, r, and
the sparsity s.

7.2.4. Separation of the non-linear parameters

Notice that limr′′→∞ sup|r′|≥r′′ |F (i)(r′)| = 0 for all i ∈ {0, · · · , 3}. Thus, we
deduce from the definition (25) of δ that δ(u, s) is finite for all s ∈ N∗ and
u > 0.

So Assumption 3.4 (iv) is verified as soon as |θ − θ′| > σT Σ(η, r, s) for all
θ 6= θ′ ∈ Q?. (Notice this happens for T large enough depending on Q? as
σT = 1/T .)

7.3. Prediction error bound

There exists a constant c depending on η and r such that for any T ∈ 2N∗ + 1
such that T ≥ c s, and provided that (32) is satisfied, Assumption 3.4 holds.
Using Theorem 3.5 with κ given by an equality in (29) with τ > 1, we obtain
the prediction bound:∥∥∥β̂ΦT (ϑ̂)− β?ΦT (ϑ?)

∥∥∥
L2(Leb)

≤ C0 C1 σ
√
s∆T log(τ),

with probability larger than 1− C2
(

T

τ
√

log(τ)
∨ 1
τ

)
, where the constants C0, C1

and C2 do not depend on T .
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Remark 7.3. Exact support recovery results were obtained in [11]. The authors
considered a small noise regime, that is:

‖wT ‖L2(Leb) ≤ Cκ, (68)

for some finite constant C. They assumed that the location parameters satisfy
for any distinct k, ` ∈ {1, · · · , s}, the separation condition |θ?k − θ?` | ≥ C/fc for
T = 2fc + 1, for some positive constant C and with fc ≥ s (s being the number
of active features in the mixture). They showed that there exist finite constants
C ′ and C ′′ such that for all k ∈ {1, · · · , s}:

|θ̃k − θ?k| ≤ C ′‖wT ‖L2(Leb) and |β̃k − β?k | ≤ C ′′‖wT ‖L2(Leb),

for some estimators (β̃, ϑ̃ = (θ̃1, · · · , θ̃s)) obtained by solving the BLasso prob-
lem.

However the small noise regime assumption is restrictive as it does not en-
compass the example of Section 2.2.2 where for all k ∈ N, ξk = T−11{1≤k≤T}
and thus ∆T = 1/T and E[‖wT ‖L2(Leb)] is of order 1. So taking κ given by (29)
with an equality and τ = T , we deduce that (68) does not hold for T large.
Recall that in (31) we obtain that our estimators satisfy:∣∣∣‖ β̂‖`1 − ‖β?‖`1∣∣∣ ≤ C s√log(T )√

T

for some constant C > 0 with high probability. Thus our prediction and estima-
tion rates are smaller by a factor

√
log(T )/

√
T due to the probabilistic bounds

on linear functionals of the noise process that we used in the proof, and this
holds under an analogous separation condition on any θ?k and θ?` , for k 6= ` in
{1, ..., s}.

8. Technical proofs

8.1. Proof of Lemma 3.3

First, for s ≥ 1 and ϑ? = (θ?1 , · · · , θ?s) such that Assumption 3.4 stands for the
set Q?, we show that the application β 7→ βΦT (ϑ?) defined from Rs to L2(λT )
is injective.

We have that ‖βΦT (ϑ?)‖L2(λT ) = βΓβ>, where Γ ∈ Rs×s is the symmetric
matrix defined by Γk,` = KT (θ?k, θ?` ). Let λmin be the smallest eigenvalue of Γ.
Using Gershgorin’s theorem and the definition of VT given by (22), we have
that:

λmin ≥ 1− max
1≤`≤s

s∑
k=1,k 6=`

|KT (θ?` , θ?k)|

≥ 1− max
1≤`≤s

s∑
k=1,k 6=`

∣∣∣∣F ( |θ?` − θ?k|σT

)∣∣∣∣− (s− 1)VT .



Butucea, Delmas, Dutfoy, Hardy/Off-the-grid prediction and testing 34

The separation condition from Point (iv) of Assumption 3.4 implies that for
all k, ` ∈ {1, · · · , s} such that k 6= ` we have |θ?k − θ?` | ≥ σTΣ(η, r, s) ≥
8σT δ(ηH(2)

∞ (r), s). Recall the definition of δ(u, s) given by (25). We deduce
that:

max
1≤`≤s

s∑
k=1,k 6=`

∣∣∣∣F ( |θ?` − θ?k|σT

)∣∣∣∣ ≤ ηH(2)
∞ (r).

By Point (iii) of Assumption 3.4, we have (s − 1)VT ≤ (1 − η)H(2)
∞ (r) and

H
(2)
∞ (r) ≤ 1/6. Thus, we get:

λmin ≥ 5/6. (69)

Hence, the symmetric matrix Γ is positive-definite. This proves that the appli-
cation β 7→ βΦT (ϑ?) is injective from Rs to L2(λT ). By symmetry, we obtain
for s0 ≥ 1 that the application β 7→ βΦT (ϑ0) is injective from Rs0 to L2(λT ).

If s = 0, we have β?ΦT (ϑ?) = 0. For s0 ≥ 1, we have β0 ∈ (R∗)s0 and
since β 7→ βΦT (ϑ0) is injective, we deduce that β0ΦT (ϑ0) 6= 0. Thus, s = 0
and β?ΦT (ϑ?) = β0ΦT (ϑ0) implies that s0 = 0. By symmetry, s0 = 0 and
β?ΦT (ϑ?) = β0ΦT (ϑ0) implies also that s = 0.

Assume from now on that s, s0 ∈ N∗ and that β?ΦT (ϑ?) = β0ΦT (ϑ0). Let us
consider the application v : Q? 7→ {−1, 1} defined by: v(θ?k) = sgn(β?k) for any
k ∈ {1, · · · , s}. According to Lemma 8.1, there exists p? ∈ L2(λT ) such that:

‖β?‖`1 =
s∑

k=1
β?k 〈φT (θ?k), p?〉L2(λT ) = 〈β?ΦT (ϑ?), p?〉L2(λT ) .

Using the fact that β?ΦT (ϑ?) = β0ΦT (ϑ0) and Properties (i) and (ii) of p? in
Lemma 8.1, we get:

‖β?‖`1 =
s0∑
k=1

β0
k

〈
φT (θ0

k), p?
〉
L2(λT ) ≤

∥∥β0∥∥
`1
. (70)

The role of (β?, ϑ?) and (β0, ϑ0) being symmetric, we also get
∥∥β0

∥∥
`1
≤ ‖β?‖`1 .

Hence, we have
∥∥β0

∥∥
`1

= ‖β?‖`1 and sgn(β0
k) =

〈
φT (θ0

k), p?
〉
L2(λT ) for k ∈

{1, · · · , s0}. Using Properties (i) and (ii) of p? in Lemma 8.1, we remark that
for any θ /∈ Q? ∣∣∣〈φT (θ), p?〉L2(λT )

∣∣∣ < 1.

Thus, we deduce from (70) that Q0 ⊆ Q? and by symmetry Q0 = Q?. Hence,
we obtain ϑ? = ϑ0 (up to a permutation on the components of ϑ?) and s = s0.
Then use the injectivity of the function β 7→ βΦT (ϑ?) to get that β? = β0 (up
to the same permutation). This finishes the proof of the Lemma.
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8.2. Proof of Theorem 4.1

We give a bound of the type I error probability. Using that under H0 we have
y = β0ΦT (ϑ0) + wT , we get:

E(β0, ϑ0)[ΨTest1(t)] = P
(∣∣∣ ‖wT ‖2L2(λT ) − E

[
‖wT ‖2L2(λT )

]∣∣∣ > t
)
.

Using Chebyshev’s inequality, we obtain:

E(β0, ϑ0)[ΨTest1(t)] ≤ ΞT
t2
· (71)

We now give a bound of the type II error probability. We set:

R =
∥∥β0ΦT (ϑ0)− β?ΦT (ϑ?)

∥∥
L2(λT ),

where (β?, ϑ?) ∈ (R∗)s ×Θs
T (δ?). Using the decomposition of y from the model

(2) and the triangle inequality, we have:

|Test1| ≥ R2 −
∣∣∣‖wT ‖2L2(λT ) − E[‖wT ‖2L2(λT )]

∣∣∣
− 2

∣∣∣〈β0ΦT (ϑ0)− β?ΦT (ϑ?), wT
〉
L2(λT )

∣∣∣ .
Notice that by Assumption 1.1, the random variable〈

β0ΦT (ϑ0)− β?ΦT (ϑ?), wT
〉
L2(λT ) ,

is Gaussian with zero mean and variance bounded by σ2 ∆T R
2. Hence, using

that under H1(ρ) we have R ≥ ρ, we obtain:

E(β?, ϑ?)[1−ΨTest1(t)] ≤P
(

(ρ2 − t)/2 ≤
∣∣∣‖wT ‖2L2(λT ) − E[‖wT ‖2L2(λT )]

∣∣∣)
+ P

(
(R2 − t)/2 ≤ 2σ

√
∆T R |G|

)
,

(72)

where G is a standard Gaussian random variable. On the one hand, for t < ρ2,
using Chebyshev’s inequality we get:

P
(

(ρ2 − t)/2 ≤
∣∣∣‖wT ‖2L2(λT ) − E[‖wT ‖2L2(λT )]

∣∣∣) ≤ 4 ΞT
(ρ2 − t)2 · (73)

On the other hand, we have:

P
(

(R2 − t)/2 ≤ 2σ
√

∆T R |G|
)
≤P

(
ρ2 − t

4σ
√

∆T ρ
≤ |G|

)
≤ e−(ρ2−t)2/(32σ2∆T ρ

2) .

(74)
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where we used that ρ ≤ R and the tail bound (see [1, Formula 7.1.13]):

1√
2π

∫ +∞

u

e−t
2/2 dt ≤ 1

2 e−u
2/2, for u > 0. (75)

By combining (72) with (73) and (74), we get the following bound on the type
II error probability:

E(β?, ϑ?)[1−ΨTest1(t)] ≤ 4 ΞT
(ρ2 − t)2 + e−(ρ2−t)2/(32σ2∆T ρ

2) . (76)

Then, by putting together (71) and (76), we obtain (38).

8.3. Proof of Theorem 4.3

Case s > 0. Let (β?, ϑ?) ∈ (R∗)s × Θs
T (δ?). We consider the estimators (β̂, ϑ̂)

defined in (28). Notice that the hypotheses of Theorem 3.5 are in force. We use
the constants C0, C1, C2 defined therein. Under H0, we have s = s0. Thus, for√
t ≥ C0

√
s κ, we get the following bound on the type I error probability:

E(β0, ϑ0)[ΨTest2(t)] ≤ P
(∥∥∥β̂ΦT (ϑ̂)− β?ΦT (ϑ?)

∥∥∥
L2(λT )

> C0
√
s κ

)
≤ C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
,

(77)

where we used that β0ΦT (ϑ0) = β?ΦT (ϑ?) and that
√
t ≥ C0

√
s κ for the first

inequality and Theorem 3.5 for the second.

We now bound the type II error probability. Under H1(ρ), since∥∥β?ΦT (ϑ?)− β0ΦT (ϑ0)
∥∥
L2(λT ) ≥ ρ,

we obtain that:

E(β?, ϑ?)[1−ΨTest2(t)] ≤ P
(
ρ−
√
t ≤

∥∥∥β̂ΦT (ϑ̂)− β?ΦT (ϑ?)
∥∥∥
L2(λT )

)
≤ C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
,

(78)

where we used the triangle inequality for the first inequality and Theorem 3.5
as well as ρ−

√
t ≥ C0

√
s κ for the second.

Case s = 0. Since s = 0, we have y = wT according to (2). Let us first bound
the type I error probability E(β0, ϑ0)[ΨTest2(t)]. Assume that the hypothesis H0
holds so that s = s0 = 0. By definition we have:

E(β0, ϑ0)[ΨTest2(t)] = P
(∥∥∥β̂ΦT (ϑ̂)

∥∥∥2

L2(λT )
> t

)
.
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We get from the definition of the estimators β̂ and ϑ̂ from (28) that:
1
2

∥∥∥wT − β̂ΦT (ϑ̂)
∥∥∥2

L2(λT )
+ κ
∥∥∥β̂∥∥∥

`1
≤ 1

2‖wT ‖
2
L2(λT ).

By rearranging some terms in the equation above, we get:
1
2

∥∥∥β̂ΦT (ϑ̂)
∥∥∥2

L2(λT )
≤
〈
β̂ΦT (ϑ̂), wT

〉
L2(λT )

− κ
∥∥∥β̂∥∥∥

`1

≤
∥∥∥β̂∥∥∥

`1

(
sup
ΘT
| 〈φT (θ), wT 〉L2(λT ) | − κ

)
.

(79)

Let us define the event:

A = { sup
θ∈ΘT

| 〈φT (θ), wT 〉L2(λT ) | < κ}. (80)

We deduce from (79) that on the event A we have
∥∥∥β̂ΦT (ϑ̂)

∥∥∥
L2(λT )

= 0. There-
fore we get:

E(β0, ϑ0)[ΨTest2(t)] ≤ P
(∥∥∥β̂ΦT (ϑ̂)

∥∥∥
L2(λT )

> 0
)
≤ P(Ac). (81)

We shall bound later P(Ac), see (83).

We now consider the type II error probability. We asume H1, that is∥∥β0ΦT (ϑ0)
∥∥
L2(λT ) ≥ ρ.

We obtain:

E(β?, ϑ?)[1−ΨTest2(t)] = P
(∥∥∥β̂ΦT (ϑ̂)− β0ΦT (ϑ0)

∥∥∥
L2(λT )

≤
√
t

)
≤ P

(
ρ−
√
t ≤

∥∥∥β̂ΦT (ϑ̂))
∥∥∥
L2(λT )

)
≤ P(Ac).

(82)

where we used the definition of Test2 and the triangle inequality for the first
inequality, the second inequality of (81) as well as ρ−

√
t > 0 for the second.

We shall apply [6, Lemma A.1] to bound P(Ac). It amounts to controling the
supremum of the Gaussian process θ 7→ 〈φT (θ), wT 〉L2(λT ). Recall that Assump-
tions 3.1 and 3.2 hold. The function φT is of class C1 from the interval ΘT to
L2(λT ), with ΘT a sub-interval of Θ. We have also, with φ[1]

T = D̃1;KT [φT ], that:

‖φT (θ)‖L2(λT ) = 1 and
∥∥∥φ[1]

T (θ)
∥∥∥2

L2(λT )
= K[1,1]

T (θ, θ) = 1.

Since Assumption 1.1 on the noise wT holds, the hypotheses of [6, Lemma A.1]
hold and we deduce from [6, Lemma A.1] (with C1 = C2 = 1 therein) that:

P(Ac) = P
(

sup
θ∈ΘT

| 〈φT (θ), wT 〉L2(λT ) | ≥ κ
)

≤ 3 ·
(

2σ√g∞|ΘT |
√

∆T

σTκ
∨ 1
)

e−κ
2/(4σ2∆T ),
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where the diameter |ΘT |dT of the set ΘT with respect to the metric dT is
bounded by 2√g∞|ΘT |/σT using (21) and the fact that CT ≤ 2. By taking
κ ≥ 2σ

√
∆T log(τ), we get:

P(Ac) = P
(

sup
θ∈ΘT

| 〈φT (θ), wT 〉L2(λT ) | ≥ κ
)
≤ 3 ·

( √
g∞|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
. (83)

Notice that the constant C2 from Theorem 3.5 is equal to 2√g∞ C′2 where C′2
is given by [6, C2 from Eq. (84) therein] and is greater than 3. The constant
C2 depends only on r and the function F . Finally, by putting together (77),
(78), (81) and (82), we obtain for κ ≥ C1σ

√
∆T log(τ) (where the constant C1

is defined in [6, Proof of Theorem 2.1 (p.32)] and is superior to 4) the bound on
the maximal testing risk from Theorem 4.3. This finishes the proof.

8.4. Proof of Theorem 5.2

This proof is based on the certificate function. Following [6], we give the existence
and properties of the interpolating certificate function.

Lemma 8.1 (Interpolating certificate). Let T ∈ N, s ∈ N∗, η ∈ (0, 1), r ∈(
0, 1/
√

2 g∞ L2
)
and Q = {θ1, · · · , θs} ⊂ ΘT . Suppose that Assumption 3.4

holds.
Then, there exist finite positive constants CN , CF , CB with CF < 1, depend-

ing on r and the function F , such that for any application v : Q 7→ {−1, 1},
there exist unique α, ξ ∈ Rs such that p ∈ L2(λT ) uniquely defined by: p =

s∑
k=1

αkφT (θk) +
s∑

k=1
ξk D̃1,T [φT ](θk),

〈φT (θ), p〉L2(λT ) = v(θ) and 〈∂θφT (θ), p〉L2(λT ) = 0, for all θ ∈ Q,
(84)

satisfies:

(i) For all θ ∈ Q and θ′ ∈ BT (θ, r), we have:

|〈φT (θ′), p〉L2(λT )| ≤ 1− CN dT (θ, θ′)2.

(ii) For all θ in ΘT , θ /∈
⋃
θ′∈Q

BT (θ′, r) (far region), we have:

|〈φT (θ), p〉L2(λT )| ≤ 1− CF .

(iii) We have ‖p‖L2(λT ) ≤
√
sCB.

Proof. Using similar arguments as those developed in the proof of Theorem 3.5,
we get that all the hypotheses of [6, Proposition, 7.4] are satisfied. The existence
and uniqueness of p is then guaranteed by [6, Lemma, 10.1]. The properties
satisfied by p are direct consequences of [6, Proposition, 7.4].
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Recall the test problem given by (54). Assumption 3.4 holds for the set Q0.
Thanks to Lemma 8.1, the element p0 of L2(λT ) is uniquely defined by v0, (55)
and (56). Hence, the test statistic Test3 from (57) is well-defined.

We first bound the type I error probability. Let us fix (β?, ϑ?) ∈ (R∗)s ×
Θs
T (δ?) such that H0 holds. Using that y = β?ΦT (ϑ?) + wT and the triangle

inequality, we obtain:

|Test3| =
∣∣∣∣∥∥∥β̂∥∥∥

`1
− ‖β?‖`1 + ‖β?‖`1 − 〈β

?ΦT (ϑ?), p0〉L2(λT ) − 〈wT , p0〉L2(λT )

∣∣∣∣
(85)

≤
∣∣∣∣∥∥∥β̂∥∥∥

`1
− ‖β?‖`1

∣∣∣∣+ |B|+
∣∣∣〈wT , p0〉L2(λT )

∣∣∣ ,
where:

B = ‖β?‖`1 − 〈β
?ΦT (ϑ?), p0〉L2(λT ) . (86)

Since Q?,+ ⊆ Q0,+, Q?,− ⊆ Q0,−, we have for all k ∈ {1, · · · , s}:

|β?k | − 〈β?kφT (θ?k), p0〉L2(λT ) = 0,

we deduce that B = 0 under H0. Hence, we have that:

E(β?, ϑ?)[ΨTest3(t)] ≤ P
(∣∣∣∣∥∥∥β̂∥∥∥

`1
− ‖β?‖`1

∣∣∣∣ > t/2
)

+P
(∣∣∣〈wT , p0〉L2(λT )

∣∣∣ > t/2
)
.

(87)
Recall that under H0, we have s ≤ s0. Therefore, since C3 κ s0 ≤ t/2, we have
C3 κ s ≤ t/2. We get from Theorem 3.5 that:

P
(∣∣∣∣∥∥∥β̂∥∥∥`1 − ‖β?‖`1

∣∣∣∣ > t/2
)
≤ C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
. (88)

Then, thanks to Assumptions 1.1 and Lemma 8.1, the quantity 〈wT , p0〉L2(λT ) is
a centered Gaussian random variable of variance bounded by σ2C2

B∆T s0 where
CB is the finite positive constant from Lemma 8.1. Hence we have, provided
that t ≥ 2C3 κ s0 with κ ≥ C1σ

√
∆T log(τ), that is, t2 ≥ (2C1C3σs0)2∆T log(τ):

P
(
〈wT , p0〉L2(λT ) > t/2

)
≤
∫ +∞

t/2

e−x2/(2σ2∆TC
2
Bs0)√

2πσ2∆TC2
Bs0

dx

≤ 1
2 e
− t2

8(σ2∆TC2
Bs0) ≤ 1

2τas0 ,

with a = (C1C3/CB)2/2 and where we used the tail bound (75). It gives by
symmetry that:

P
(
| 〈wT , p0〉L2(λT ) | > t/2

)
≤ 1
τa s0

. (89)
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Plugging (88) and (89) in (87), we get:

sup
(β?, ϑ?)∈H0

E(β?, ϑ?) [ΨTest3(t)] ≤ C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
+ 1
τa s0

· (90)

We now bound the type II error probability. Assume that H1 holds, that
is DT,r(β?, ϑ?, v0, ϑ0) ≥ ρ. We have, using the first equality of (85) and the
triangle inequality, that:

|Test3| ≥ |B| −
∣∣∣〈wT , p0〉L2(λT )

∣∣∣− ∣∣∣∣∥∥∥β̂∥∥∥
`1
− ‖β?‖`1

∣∣∣∣ ,
with B defined in (86). Using the definitions (53) of S(r) and Sεk(r) with ε ∈
{+,−} and k ∈ Iε, we get:

B =
∑

ε∈{+,−}
k∈Iε, `∈Sεk(r)

|β?` |
(

1− sgn(β?` ) 〈φT (θ?` ), p0〉L2(λT )

)

+
∑

k∈S(r)c
|β?k |

(
1− sgn(β?k) 〈φT (θ?k), p0〉L2(λT )

)
.

Thanks to Lemma 8.1 (i)-(ii) of , we obtain:

B ≥
∑

ε∈{+,−}
k∈Iε, `∈Sεk(r)

CN |β?` |dT (θ?` , θ0
k)2 +

∑
k∈S(r)c

CF |β?k |

≥ (CN ∧ CF )DT,r(β?, ϑ?, v0, ϑ0) ≥ (CN ∧ CF )ρ,

where the constants CN and CF are defined in Lemma 8.1 and depend on r and
on the function F . Therefore, we have with at = (CN ∧ CF )ρ− t:

E(β?,ϑ?) [1−ΨTest3(t)] ≤ P
(∣∣∣〈wT , p0〉L2(λT )

∣∣∣+
∣∣∣∣‖β?‖`1 − ∥∥∥β̂∥∥∥`1

∣∣∣∣ ≥ at)
≤ P

(∣∣∣〈wT , p0〉L2(λT )

∣∣∣ ≥ at/2)
+ P

(∣∣∣∣‖β?‖`1 − ∥∥∥β̂∥∥∥`1
∣∣∣∣ ≥ at/2) .

Provided that ρ ≥ C4 s κ+ C5 t with C4 = 2 C3/(CN ∧CF ) and C5 = 2/(CN ∧CF )
we have at/2 ≥ (C3κs) ∨ (t/2). By using (88) and (89), we obtain:

sup
(β?, ϑ?)∈H1(ρ)

E(β?, ϑ?) [1−ΨTest3(t)] ≤ C2

(
|ΘT |

σT τ
√

log(τ)
∨ 1
τ

)
+ 1
τas0

. (91)

Finally, by adding both sides of (90) and (91), we get (59). This concludes the
proof.
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8.5. Proof of Lemma 7.2

It is easy to check that the functions gT and gKprox
T

are constant functions with:

gT = g∞ (T 2 − 1) and gKprox
T

= g∞ T 2. (92)

Thus, we easily deduce the second inequality of (67) from the definition (20) of
CT .

We now consider the bound on VT . For i, j ∈ {0, · · · , 3} and ` = i + j, we
have with αT = 1− 1/T 2:

sup
Θ2
|K[i,j]
T −Kprox[i,j]

T | = g−`/2∞ (T 2αT )−`/2A`,T , (93)

where
A`,T = sup

t∈[− 1
2 ,

1
2 ]

∣∣∣∣∂`t [DT (t) +
(

1− α`/2T

) sin(Tπt)
Tπt

]∣∣∣∣ ,
and, for t ∈ [−1/2, 1/2] and the convention J(0) = 0:

DT (t) = sin(Tπt)
T

J(t) and J(t) = 1
sin(πt) −

1
πt
·

It is easy to check that the function J can be expanded as a power series at 0
with positive convergence radius, and thus is of class C∞ on [−1/2, 1/2]. Thus
the following constant is finite:

M = sup
0≤`≤6

sup
[−1/2,1/2]

|J (`)| < +∞.

Using the Leibniz rule, we have that for ` ∈ {1, · · · , 6} and t ∈ [−1/2, 1/2]:

|∂`tDT (t)| = 1
T

∣∣∣∣∣∣
∑̀
j=0

(
`

j

)
(Tπ)j sin(j)(Tπt) J (`−j)(t)

∣∣∣∣∣∣ ≤M (Tπ + 1)`

T
·

We deduce from (93) that for i, j ∈ {0, · · · , 3} and ` = i+ j:

sup
Θ2
|K[i,j]
T −Kprox[i,j]

T | ≤ g−`/2∞ (T 2αT )−`/2
(
M

(Tπ + 1)`

T
+ (1− α`/2T )

)
≤M3` T−1,

where we used that T ≥ 3 and g∞αT ≥ 1, and that 1 − α`/2T = 0 for ` = 0.
Recall the definition (22) of VT to get VT ≤M3` T−1. This finishes the proof.
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