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OFF-THE-GRID PREDICTION AND TESTING FOR MIXTURES OF TRANSLATED

FEATURES

CRISTINA BUTUCEA, JEAN-FRANÇOIS DELMAS, ANNE DUTFOY, AND CLÉMENT HARDY

Abstract. We consider a model where a signal (discrete or continuous) is observed with an additive Gauss-
ian noise process. The signal is issued from a linear combination of a finite but increasing number of trans-
lated features. The features are continuously parameterized by their location and depend on some scale
parameter. First, we extend previous prediction results for off-the-grid estimators by taking into account
here that the scale parameter may vary. The prediction bounds are analogous, but we improve the minimal
distance between two consecutive features locations in order to achieve these bounds.

Next, we propose a goodness-of-fit test for the model and give non-asymptotic upper bounds of the
testing risk and of the minimax separation rate between two distinguishable signals. In particular, our test
encompasses the signal detection framework. We deduce upper bounds on the minimal energy, expressed as
the ℓ2-norm of the linear coefficients, to successfully detect a signal in presence of noise. The general model
considered in this paper is a non-linear extension of the classical high-dimensional regression model. It turns
out that, in this framework, our upper bound on the minimax separation rate matches (up to a logarithmic
factor) the lower bound on the minimax separation rate for signal detection in the high dimensional linear
model associated to a fixed dictionary of features. We also propose a procedure to test whether the features
of the observed signal belong to a given finite collection under the assumption that the linear coefficients
may vary, but do not change to opposite signs under the null hypothesis. A non-asymptotic upper bound
on the testing risk is given.

We illustrate our results on the spikes deconvolution model with Gaussian features on the real line and
with the Dirichlet kernel, frequently used in the compressed sensing literature, on the torus.

1. Introduction

1.1. Model. This paper is motivated by the study of the spikes deconvolution model [10] with applications
in spectroscopy ([6]). In this model, a linear combination (or mixture) of spikes continuously parameterized
is observed with an additive Gaussian noise process. We assume that the spikes are parameterized by a
location parameter, that the noise and the observation space can vary with some parameter T increasing
with the quality of the observations. More general non-linear models for the spikes have been discussed in
[5], and the particular case of location families has been discussed in Section 8 of that paper. However, we
allow here the scale of the spikes to vary with T , which makes the approach very different from the previous
one.

We are also interested in goodness-of-fit testing, that is we want to test whether the observations are
issued from a given linear combination of spikes. We remark that it includes the case of signal detection.
This test problem finds an application in spectroscopy to detect the presence of a chemical compound in
a material. In addition, we are interested in testing whether the observed signal is a linear combination of
spikes located at a prescribed list of locations with linear coefficients having prescribed signs under the null
hypothesis.

Let T ∈ N. We observe a random element y in the Hilbert space L2(λT ) of square integrable functions
with respect to the measure λT on the Borel σ-field of some metric space Θ. The observation is the sum of
a deterministic signal and a Gaussian random process wT in L2(λT ). We shall assume that the signal is an
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unknown finite mixture of s features belonging to a continuously parametrized subfamily (ϕT (θ), θ ∈ Θ) of
L2(λT ). We call this family a continuous dictionary, the weights of the mixture - the linear coefficients, and
the parameters of the features - the non-linear parameters.

The quality of the information provided by the observations depends on the support of the measure λT
and on the noise wT . It increases with the parameter T . For example, we will consider the case where the
sequence of measures (λT , T ∈ N) converges towards the Lebesgue measure, noted Leb, on Θ, so that in the
limit model the observation corresponds to a square integrable random process indexed on Θ. We consider
the cases where Θ = R and the limit measure is the Lebesgue measure on R as well as the case where Θ is
the torus R/Z and the limit measure is the Lebesgue measure on this manifold.

We consider in this paper a dictionary given by the location model:

(1)
(

ϕT (θ) = h(θ − ·, σT ), θ ∈ Θ
)

where h is a real-valued function defined on Θ×S, smooth with respect to its first variable and normalized so
that ‖h(·, σT )‖L2(Leb) = 1, and where σT is an element of the set S of admissible positive scale parameters.

See Section 2.2 for examples of functions h including the Gaussian spike and the low-pass filter. Even
though the location model considered here is a restriction when compared to general non-linear dictionnaries
of features considered by e.g. [5], the scaling σT introduced here makes this dictionnary different. Indeed,
this scaling is allowed to depend on T and may improve previous results in the sense that the sufficient
conditions on the non-linear parameters in the mixture in order to obtain the prediction and estimation
bounds are milder. The least separation distance between the location parameters in this model is allowed
to be smaller when compared to unscaled dictionnaries, see Remark 2.2.

The Hilbert space L2(λT ) is endowed with the natural scalar product noted 〈·, ·〉L2(λT ) and norm ‖·‖L2(λT ).

Let us define the normalized function φT defined on Θ by:

(2) φT (θ) = ϕT (θ)/‖ϕT (θ)‖L2(λT ),

and the multivariate function ΦT on Θs by:

ΦT (ϑ) = (φT (θ1), . . . , φT (θs))
⊤ for ϑ = (θ1, · · · , θs) ∈ Θs.

We assume that the signal contains an unknown number s ∈ N of active features. We consider the model with
unknown non-zero linear coefficients β⋆ in (R∗)s and unknown distinct parameters ϑ⋆ = (θ⋆1 , · · · , θ⋆s ) ∈ Θs:

(3) y = β⋆ΦT (ϑ
⋆) + wT in L2(λT ),

where when s = 0, we set by convention that β⋆ΦT (ϑ
⋆) = 0 as well as As = {0} for any set A. We denote

by Q⋆ = {θ⋆ℓ , 1 ≤ ℓ ≤ s} the set of the non-linear parameters associated to an active feature. The process y
is observed over the support of the measure λT . Therefore it is legimate to consider models whose location
parameters belong to the smallest interval covering the support of the measure λT . Hence, we introduce the
set ΘT , a compact interval of Θ, and we shall assume that Q⋆ is a subset of ΘT . We denote by |ΘT | the
Euclidean diameter of the set ΘT .

We consider a large variety of Gaussian noise processes. Indeed, we only assume the following mild
assumption on wT , where the decay rate ∆T > 0 controls the noise variance decay as the parameter T grows
and σ > 0 is the intrinsic noise level. A wide range of noise processes satisfy our assumptions, see [5]; they
can be discrete or continuous, white or coloured under these constraints.

Assumption 1.1 (Admissible noise). Let T ∈ N. The Gaussian noise process wT satisifies E
[

‖wT ‖4L2(λT )

]

<

+∞, and there exist a noise level σ > 0 and a decay rate ∆T > 0 such that for all f ∈ L2(λT ), the random
variable 〈f, wT 〉L2(λT ) is a centered Gaussian random variable satisfying:

Var
(

〈f, wT 〉L2(λT )

)

≤ σ2 ∆T ‖f‖2L2(λT ).
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We assume that the quantity E

[

‖wT ‖2L2(λT )

]

is known for the considered models. We consider the variance

of the squared norm of the noise:

(4) ΞT = Var
(

‖wT ‖2L2(λT )

)

.

1.2. Examples of Gaussian noise processes. We consider a large variety of models: discrete models
where the process y is observed on a grid or continuous models where the process is observed on an interval.

1.2.1. Discrete-time process observed on a regular grid. Consider a real-valued process y observed over a
regular grid t1 < · · · < tT of a symmetric interval [aT , bT ] ⊂ R, with T ≥ 1, aT = −bT < 0, tj = aT + j∆T

for j = 1, . . . , T and grid step: ∆T = (bT − aT )/T . We set λT = ∆T

∑T
j=1 δtj and see y as an element of

L2(λT ). We assume that (bT , T ≥ 2) is a sequence of positive numbers, such that: limT→∞ bT = +∞ and
limT→∞ ∆T = 0 so that the sequence of measures (λT , T ≥ 1) converges with respect to the vague topology
towards the Lebesgue measure. In this formalism, the noise wT ∈ L2(λT ) is given by:

(5) wT (t) =

T
∑

j=1

Gj1{tj}(t),

where 1A denotes the indicator function of an arbitrary set A and (G1, · · · , GT ) is a centered Gaussian

random vector with independent entries of variance σ2. In this case, E[‖wT ‖4L2(λT )] = σ4∆2
TT (T + 2) and

Assumption 1.1 holds with an equality. We readily obtain that ΞT = 2σ4∆2
TT .

Notice that in this particular example we have for any function f ∈ L2(λT ) that ‖f‖L2(λT ) =
√
∆T ‖f‖ℓ2 ,

where the right-hand side is understood as the ℓ2-norm (Euclidean norm) of the vector (f(t1), . . . , f(tT )).

1.2.2. Continuous-time processes. Assume we observe a process y on an interval. We note λT for a σ-finite
measure on R or on R/Z. In this framework, y is an element of L2(λT ). Let us assume that the noise
is wT =

∑

k∈N

√
ξk Gk ψk, where (Gk, k ∈ N) are independent centered Gaussian random variables with

variance σ2, (ψk, k ∈ N) is an o.n.b. of L2(λT ) on R or on R/Z, and that ξ = (ξk, k ∈ N) is a square

summable sequence of non-negative real numbers. We remark that Assumption 1.1 holds as E[‖wT ‖4T ] =
3σ4

∑

k∈N
ξ2k + σ4

∑

k,ℓ∈N,k 6=ℓ ξkξℓ is finite and Var(‖wT ‖2L2(λT )) = 2σ4
∑

k∈N
ξ2k. Moreover, we have:

Var(〈f, wT 〉L2(λT )) = σ2
∑

k∈N

ξk 〈f, ψk〉2L2(λT ) ≤ σ2 ∆T ‖f‖2L2(λT ) with ∆T = sup
k∈N

ξk.

In this example the noise wT depends on the parameter T only if ξ, and thus ∆T , depend on T . We may
consider different choices for ξ that lead to different values for ΞT , the variance of the squared norm of
the noise. For instance, our framework encompasses the truncated white noise by taking for all k ∈ N,
ξk = T−11{1≤k≤T}. In this case, elementary calculations give ∆T = 1/T and ΞT = 2σ4/T .

1.3. Description of the results. The aim of this paper is twofold. First, we improve on [5] in the case
of linear combination of translated spikes by giving bounds on the prediction error under milder separation
constraints between the non-linear parameters in Q⋆. This is achieved by taking the scale parameter of the
features σT into account. In particular, in the case of Gaussian spikes deconvolution, the separation is of
order σT .

Then, test problems are studied. We give procedures for the goodness-of-fit of the mixture model in
order to determine whether the unknown signal β⋆ΦT (ϑ

⋆) is equal to a reference signal β0ΦT (ϑ
0) for some

known vectors β0 ∈ (R∗)s
0

and ϑ0 ∈ Θs0

T . This setup includes the case of signal detection where the null
hypothesis is β⋆ ≡ 0, that is s = 0. We propose a combined procedure based on differences between the
reference signal β0ΦT (ϑ

0) and either the observation y or a reconstructed signal obtained from estimators of
the model parameters. In order to successfully perform the test, we remove from the alternative hypothesis
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the signals whose proximity with the reference signal β0ΦT (ϑ
0) with respect to the norm ‖·‖L2(λT ) is below

some separation parameter. We give a non-asymptotic upper bound of the testing risk and deduce an upper
bound on the minimal separation needed to distinguish two different signals. This upper bound yields two
regimes depending on whether the observed signal and the reference signal are sparse or not. In the case
of signal detection, the separation can be expressed as the ℓ2-norm of the linear coefficients of the observed
mixture. In particular, when the observation y is issued from a non-linear extension of the classical high-
dimensional regression model, our upper bound matches (up to logarithmic factors) the asymptotic lower
bound of the minimal separation needed to distinguish two signals that are mixture of features from a finite
high-dimensional dictionary.

We also test the presence of at most s0 prescribed features in the mixture with arbitrary linear coefficients
of given sign. That is, we test whether for each ǫ = ±1 the unknown set Q⋆,ǫ = {θ⋆k ∈ Q⋆ : ǫβ⋆

k > 0} is a
subset ofQ0,ǫ, withQ0,+ andQ0,− being disjoint finite subsets of ΘT . This setup is issued from an application
to spectroscopy (see [6]), where the presence of other chemical components than the prescribed ones are
indicating aging or substantial modifications of the analyzed material. To separate the null hypothesis from
the alternative hypothesis, we introduce a discrepancy that is 0 under all parameters (β⋆, ϑ⋆) belonging to
the null hypothesis. We give an upper bound on the minimal separation to successfully perform our test.
The test statistic introduced and studied in this context makes explicit use of the certificates used in [5] for
establishing the prediction rates of the estimators of (β⋆, ϑ⋆). We stress the fact that the test statistic is not
an estimator of the discrepancy measure separating the null and the alternative hypotheses, as is usually the
case in non-parametric tests.

1.4. Previous work. Estimating the linear coefficients and the parameters of model (3) from an observation
y has attracted a lot of attention over the past decade. A major contribution in this field comes from the
formulation of the BLasso problem in [9]. This optimization problem on a space of measures allows to
estimate both linear coefficients and non-linear parameters without using a grid on the parameter space.
This off-the-grid method has succesfully been used in [8] and [7] in the context of super-resolution as well
as in [10] for spikes deconvolution. High probability bounds for the prediction error have been given in [18]
and [4] for the specific dictionary of complex exponentials continuously paremetrized by their frequencies
and more recently in [5] for a wide range of dictionnaries parametrized over a one-dimensional space. These
results are based on certificate functions whose existence have been proven in a very general framework in
[17] provided that the non-linear parameters of the mixture are well-separated with respect to a Riemannian
metric.

Goodness-of-fit tests are used to check whether observations are indeed derived from a given statistical
model. We refer to the monograph [13] for a comprehensive presentation of goodness-of-fit testing. When
we consider a finite dictionary of features (ϕT (θ), θ ∈ Q) with Q a known finite subset of Θ, the model (3)
can be rewritten as a linear regression model, possibly of high dimension depending on the size of the finite
dictionary p := Card(Q). In this case, testing the goodness-of-fit of the model amounts to testing whether
the linear coefficients in the mixture are equal to some given linear coefficients. When the dictionary is
known, the testing problem is homogeneous in the linear coefficients β and is therefore equivalent to testing
β ≡ 0, which is a signal detection problem.

Signal detection has raised a lot of interest over the past decades. It is well known that the alternative
hypothesis H1 (presence of signal) must be well separated from the null hypothsesis H0 (only noise) in
order to have tests with small risks. The separation can be seen as a minimal signal intensity allowing
the detection. Then, it is a matter of interest to evaluate the minimax separation rate, i.e., the smallest
separation that allows to distinguish the tested hypotheses. In [11], asymptotic rates for the minimax
separation in the framework of signal detection are derived for the non-parametric Gaussian white noise
model. Non-asymptotic rates were then derived in [3] and later in [15] to tackle the case of heterogeneous
variances. We refer to the monograph [12] for an overview of non-parametric hypotheses testing. Regarding
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the high dimensional regression model where the observation is of dimension T and the dictionary is fixed,
known and of size p, the work of [14] established the following asymptotic minimax separation rates under
coherence assumptions on the dictionary:

1

T
1
4

∧
√

s

T
log(p) ∧ p

1
4√
T
·

The signal intensity is expressed by the ℓ2-norm of the linear coefficients. Their lower bounds on the
asymptotic minimax separation stand for both fixed and random designs whereas their upper bounds stand
for random designs. The work of [2] does not tackle the high dimension but provides tests achieving the
minimax separation for fixed designs under coherence assumptions on the dictionary.

In this paper we shall consider that our features come from a continuous dictionary and have unknown
location parameters. Hence, the existing results do not apply. Furthermore, for the considered non-linear
extension of linear regression models, goodness-of-fit testing does not reduce to signal detection. Therefore,
we introduce new testing procedures. We stress that one of the test statistics is not derived from estimators
of the linear coefficients. In fact, depending on the sparsity of the signal, the dimension of the observation
and the size of the dictionary, plug-in methods using sparse estimators might not be the best way to proceed.
They do not always lead to the minimal separation. In this sense, testing is a very different statistical problem
from estimation.

1.5. Roadmap of the paper. In Section 2, we start by presenting the assumptions needed to perform a
successful estimation of the linear coefficients and location parameters of our model. After giving a prediction
bound in Theorem 2.3, we show in Lemma 2.4 that the required assumptions are sufficient conditions for
the identifiability of the model. In Section 3, we test whether the observation derives from a given mixture
or from some other mixture sufficiently separated from the latter. We give in Theorems 3.1 and 3.3 bounds
of the testing risks associated to two different test procedures. We show in Corollaries 3.2 and 3.5 that
these two tests give two regimes for our upper bound on the minimal separation to distinguish two different
signals from an observation contaminated by noise. We also provide a discussion on the comparison of our
upper bounds with some existing lower bounds. In Section 4, we propose a procedure to test whether the
active features in the observed signal belong to a given finite collection with linear coefficients of prescribed
signs. Both hypotheses of this test problem are composite and a new measure of the separation between
these hypotheses has been introduced. The proposed test makes use of the certificates used in the proof
of the prediction bounds in an original way. A bound of the testing risk is given in Theorem 4.3 and in
Corollary 4.4, we give an upper bound on the minimax separation rate. The examples of Gaussian scaled
spikes deconvolution on R and low-pass filter on R/Z are adressed in Sections 5 and 6.

2. Assumptions and prediction bounds

We recall in this section assumptions and definitions from Sections 3-5 of [5] in a simpler way adapted to
our framework. In [5], the authors established high probability bounds for prediction and estimation errors
associated to some estimators of β⋆ and ϑ⋆ tackling a wider range of dictionaries.

2.1. Regularity of the features. We gather in this section the hypotheses that will be required on the
features defined by (1).

Recall that the parameter space Θ is either R or the torus R/Z endowed with the Lebesgue measure Leb.
For convenience, we write |x − y| for the Euclidean distance between x and y either on R or on the torus.
Recall also that L2(λT ) and L2(Leb) are the sets of square integrable functions on Θ with respect to the
measures λT and Leb respectively. We denote S the set of scale parameters.
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Assumption 2.1 (Smoothness of the features). Let h be a function defined on Θ × S. Let T ∈ N

and σT ∈ S. We assume that the function θ 7→ h(θ, σT ) is of class C3 on Θ. We assume further-
more that ‖h(·, σT )‖L2(Leb) = 1, and that for all θ ∈ Θ ‖h(θ − ·, σT )‖L2(λT ) > 0 and all i ∈ {0, · · · , 3}
∥

∥∂iθh(·, σT )
∥

∥

L2(Leb)
< +∞ and

∥

∥∂iθh(θ − ·, σT )
∥

∥

L2(λT )
< +∞.

Recall the function ϕT defined by (1) and notice that Assumption 2.1 implies ‖ϕT (θ)‖L2(λT ) > 0 on Θ.

We define the function:

(6) gT (θ) = ‖∂θφT (θ)‖2L2(λT ), where φT (θ) = ϕT (θ)/‖ϕT (θ)‖L2(λT ).

Assumption 2.2 (Positivity of gT ). Assumption 2.1 holds and we have gT > 0 on Θ.

Let us mention that if for all θ ∈ Θ, ϕT (θ) and ∂θϕT (θ) are linearly independent functions of L2(λT ) and
‖∂θϕT (θ)‖L2(λT ) > 0, then gT (θ) > 0 for all θ ∈ Θ (see [5, Lemma 3.1]).

2.2. Examples of feature functions. We provide some examples from the literature.

(i) Spike deconvolution. The noisy mixture of translated and scaled Gaussian features corresponds to:

(7) h(t, σ) 7→ exp(−t2/2σ2)

π1/4σ1/2
on Θ×S = R× R

∗
+.

The example of Gaussian spikes deconvolution is analyzed in full details in [5, Section 8] when σT
does not depend on T . We shall consider here that the scale parameter σT may vary with T .

(ii) Multi-resolution approximation. We consider the normalized Shannon scaling function:

h(t, σ) 7→ √
σ
sin(πt/σ)

πt
on Θ×S = R× R

∗
+.

The associated dictionary allows to recover functions whose Fourier transform have their support in
[−π/σ, π/σ] (see [16, Theorem 3.5]).

(iii) Low-pass filter. We consider the normalized Dirichlet kernel on the torus for some cut-off frequency
fc ∈ N

∗ and T = 2fc + 1:

(8) h(t, σ) =
1√
T

fc
∑

k=−fc

e2iπkt =
sin(Tπt)√
T sin(πt)

, with σ =
1

T
, T ∈ 2N∗ + 1 and t ∈ Θ = R/Z.

The example of the low-pass filter is adressed in [10], where exact support recovery results are
obtained for the BLasso estimators. This dictionary is also used in [7] in the context of super-
resolution. Bounds on some prediction risks (different from those considered in this paper) are
established therein for estimators obtained by solving the constrained formulation of the BLasso.

2.3. Definition of the kernel and its approximation.

2.3.1. Measuring the colinearity of the features. We define the symmetric kernel KT on Θ2 by:

(9) KT (θ, θ
′) = 〈φT (θ), φT (θ′)〉L2(λT ).

The kernel KT measures the colinearity of two features belonging to the continuous dictionary. It does not
a priori have a simple form. In the following, we approximate this kernel by another kernel easier to handle.

As mentionned in the introduction, we consider in this paper a setting where the sequence of measures
(λT , T ≥ 1) converges towards the Lebesgue measure Leb on Θ. However, since σT may drop towards zero,
it is often pointless to follow [5] by taking the pointwise limit kernel of the sequence of kernels (KT , T ≥ 1)
as an approximation of the kernel KT . Indeed, in the next example this pointwise limit kernel is degenerate.
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Example 2.1 (Degenerate limit kernel). Consider the discrete-time process presented in Section 1.2.1 and the
Gaussian features (7) from Section 2.2 scaled by the sequence (σT , T ≥ 1) that tends towards zero when T
grows to infinity so that limT→+∞ ∆T /σT = 0. In this case, the sequence of measures (λT , T ≥ 1) converges
with respect to the vague topology towards the Lebesgue measure and it is easy to check that the pointwise
limit of the kernel KT is equal to zero almost everywhere.

In what follows, we shall approximate the kernel KT by a kernel Kprox
T of the form:

(10) Kprox
T : (θ, θ′) 7→ F (|θ − θ′|/σT ),

where F is a real-valued even function defined on R with F (0) = 1. Since F is even, notice that if it is of
class C2ℓ then Kprox

T is of class Cℓ,ℓ. The choice of the function F follows from the model given by h, so
that KT and Kprox

T are close (see (iii) of Assumption 2.4). We refer to Sections 5 and 6 for examples with h
given by (7) and (8). The introduction of the kernel Kprox

T is significantly different from the approximation
developed in [5].

2.3.2. Covariant derivatives of the kernel. Let K be a symmetric kernel of class C2 such that the function
gK defined on Θ by:

(11) gK(θ) = ∂2x,yK(θ, θ),

is positive and locally bounded, where ∂x (respectively ∂y) denotes the usual derivative with respect to the
first (respectively second) variable. Under Assumptions 2.1 and 2.2, the definitions (6) and (11) coincide so
that gT = gKT

on Θ.
Similarly to [17], we introduce the covariant derivatives which reduce to elementary expressions since

the location parameters are one-dimensional. More precisely following [5, Section 4], we set for a smooth

function f defined on Θ, D̃0;K[f ] = f , D̃1;K[f ] = g
−1/2
K f ′ and for i ≥ 2:

(12) D̃i;K[f ] = D̃1;K[D̃i−1;K[f ]].

Let us assume that the kernel K has the form K(θ, θ′) = 〈f(θ), f(θ′)〉L2(λ) for some function f of class C3

and some measure λ on Θ. We then define the covariant derivatives of K for i, j ∈ {0, . . . , 3} and θ, θ′ ∈ Θ
by:

(13) K[i,j](θ, θ′) = 〈D̃i;K[f ](θ), D̃j;K[f ](θ
′)〉L2(λ).

We also define the function hK on Θ by:

(14) hK(θ) = K[3,3](θ, θ).

Before stating technical assumptions on the function F , we set:

(15) g∞ = −F ′′(0).

For a real valued function f defined on a set A, we write ‖f‖∞ = supx∈A |f(x)|.
Assumption 2.3 (Properties of the function F ). We assume that the function F is of class C6 and that we
have:

(16) g∞ > 0, L6 := g−3
∞ |F (6)(0)| < +∞, and Li := g−i/2

∞

∥

∥

∥
F (i)

∥

∥

∥

∞
< +∞ for all i ∈ {0, · · · , 4}.

We give the covariant derivatives of the kernel Kprox
T according to the definition given in [5, (27)]. This

definition coincides with (13) when Kprox
T (θ, θ′) = 〈f(θ), f(θ′)〉L2(λ) on Θ2 for some smooth function f and

some measure λ on Θ, see [5, Lemma 4.3]. We get for any θ, θ′ ∈ Θ and i, j ∈ {0, · · · , 3}:

(17) Kprox[i,j]
T (θ, θ′) =

(−1)j

g
(i+j)/2
∞

F (i+j) (|θ − θ′|/σT ) .
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We notice that we have for any θ ∈ Θ:

(18) gKprox
T

(θ) = g∞/σ
2
T .

2.3.3. Measuring the quality of the approximation. In this section, we quantify the proximity of the kernel
KT and Kprox

T .
Following [17], we define the one-dimensional Riemannian metric dT (θ, θ

′) between θ, θ′ ∈ Θ by:

(19) dT (θ, θ
′) = |GT (θ) −GT (θ

′)|,
where GT is a primitive of the function

√
gT assumed positive on Θ thanks to Assumption 2.2.

Recall that ΘT , introduced below the model (3), is a compact sub-interval of Θ. Since ΘT is compact,
under Assumptions 2.2 and 2.3, we deduce that the constant CT below is positive and finite, where:

(20) CT = max



sup
ΘT

√

gKprox
T

gT
, sup
ΘT

√

gT
gKprox

T



 .

Elementary calculations show that the metric dT defined in (19) is equivalent, up to a factor σT , to the
Euclidean metric on Θ2

T as for any θ, θ′ ∈ ΘT :

(21)
1

CT

√
g∞ σ−1

T |θ − θ′| ≤ dT (θ, θ
′) ≤ CT

√
g∞ σ−1

T |θ − θ′|.

In order to quantify the approximation of KT by Kprox
T , we set:

(22) VT = max(V(1)
T ,V(2)

T ) with V(1)
T = max

i,j∈{0,1,2}
sup
Θ2

T

|K[i,j]
T −Kprox[i,j]

T | and V(2)
T = sup

ΘT

|hKT
−hKprox

T
|.

2.4. Boundedness and local concavity on the diagonal of the approximating kernel. Recall the
definition of the kernel Kprox

T given by (10) using the even function F . We quantify the boundedness and
local concavity on the diagonal of the kernel Kprox

T using for r > 0:

ε(r) = 1− sup {|F (r′)|; r′ ≥ r} ,(23)

ν(r) = − sup {F ′′(r′)/g∞; r′ ∈ [0, r]} .(24)

We also quantify the colinearity between s ∈ N features belonging to the continuous dictionary, by setting
for u > 0:

(25) δ(u, s) = inf
{

δ > 0 : max
1≤ℓ≤s

s
∑

k=1,k 6=ℓ

g
− i

2∞ |F (i)(xℓ − xk)| ≤ u,

for all i ∈ {0, 1, 2, 3} and (x1, · · · , xs) ∈ R
s(δ)

}

,

where for any subset A of R or R/Z and for any δ ≥ 0,

(26) As(δ) =
{

(θ1, · · · , θs) ∈ As : |θℓ − θk| > δ for all distinct k, ℓ ∈ {1, . . . , s}
}

.

with the conventions inf ∅ = +∞, and for s = 0, 1: A0(δ) = {0} and A1(δ) = A.
Following [5], we define quantities which depend only on the function F and on a real parameter r > 0:

H(1)
∞ (r) =

1

2
∧L2 ∧ L3 ∧ L4 ∧ L6 ∧

ν(2r)

10
∧ ε(r/2)

10
,

H(2)
∞ (r) =

1

6
∧ 8ε(r/2)

10(5 + 2L1)
∧ 8ν(2r)

9(2L2 + 2L3 + 4)
,

where the constants Li are defined in (16).
Under Assumption 2.4 defined below, we shall build consistent estimators for β⋆ and ϑ⋆ of the model (3).
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Assumption 2.4. Let T ∈ N, s ∈ N, r ∈
(

0, 1/
√
2 g∞L2

)

, η ∈ (0, 1) and a subset Q ⊂ ΘT of cardinal s.

(i) Regularity of the dictionary ϕT : The dictionary function ϕT satisfies the smoothness conditions
of Assumption 2.1. The function gT defined in (6), satisfies the positivity condition of Assump-
tion 2.2.

(ii) Properties of the function F : Assumption 2.3 holds and we have ε(r/2) > 0 and ν(2r) > 0.
(iii) Proximity to the limit setting: The kernel KT defined from the dictionary, see (9), is sufficiently

close to the kernel Kprox

T in the sense that we have:

CT ≤ 2

and if s ≥ 1, we have in addition:

VT ≤ H(1)
∞ (r) and (s− 1)VT ≤ (1− η)H(2)

∞ (r).

(iv) Separation of the non-linear parameters: If s ≥ 1, we have:

δ(ηH(2)
∞ (r), s) < +∞ and for any θ 6= θ′ ∈ Q, |θ − θ′| > σT Σ(η, r, s),

where,

Σ(η, r, s) = 4 max
(

rg−1/2
∞ , 2 δ(ηH(2)

∞ (r), s)
)

.

Remark 2.2 (On the separation). We shall perfom the estimation of β⋆ and ϑ⋆ = (θ⋆1 , · · · , θ⋆s ) from model
(3) under the separation condition:

(27) |θ⋆k − θ⋆ℓ | ≥ σT Σ(η, r, s), for all 1 ≤ k, ℓ ≤ s, k 6= ℓ,

with Σ(η, r, s) given in (iv) of Assumption 2.4. Taking into account the separation condition, the number of
admissible features which can be used for the prediction is at most of order |ΘT |/σT ; this provides a natural
upper bound on s. As η is usually fixed, we highlight that the least separation bound tends towards zero
when the scaling σT goes down to zero.

2.5. Prediction error bound. We define the estimators β̂ and ϑ̂ of β⋆ and ϑ⋆ as the solution to the
following regularized optimization problem with a real tuning parameter κ > 0 and a bound K on the
unknown number s of active features in the observed mixture:

(28) (β̂, ϑ̂) ∈ argmin
β∈RK ,ϑ∈ΘK

T

1

2
‖y − βΦT (ϑ)‖2L2(λT ) + κ‖β‖ℓ1 ,

where ‖·‖ℓ1 corresponds to the usual ℓ1 norm. Since the interval ΘT on which the optimization of the non-
linear parameters is performed is a compact interval and the function ΦT is continuous, the existence of at
least a solution is guaranteed. The bound K on the number s of features in the mixture from model (3)
allows to formulate an optimization problem. It can be arbitrarily large. In particular, it is not involved in
the bounds on estimation and prediction risks given in [5] with high probability (see Remark 2.4 therein).
We stress that the constants in [5] appearing in those bounds may a priori depend on T when the features
are scaled by σT . We show below that, in fact, those bounds still hold with constants free of T . The
results in [5] as well as the proof of Theorem 2.3 below rely on the existence of certificate functions. In
[5], sufficient conditions for the certificate functions to exist are given, see Proposition 7.4 and 7.5 therein.
Those conditions require the non-linear parameters in Q⋆ to satisfy the separation condition (27). In our
framework where the scaling σT decreases to zero, it turns out that this separation is in general increasing
with s and decreasing with T . However, for some dictionary composed of translated spikes that vanish
quickly, it converges to zero when both s and T grow to infinity. We refer to Section 5 in this direction.

Recall the definitions of g∞ and L2 given by (15) and (16). The following theorem is a variation of [5,
Theorem 2.1].
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Theorem 2.3. Let T ∈ N, s ∈ N
∗, K ∈ N

∗, η ∈ (0, 1), r ∈
(

0, 1/
√
2 g∞ L2

)

. Assume we observe the

random element y of L2(λT ) under the regression model (3) with unknown parameters β⋆ ∈ (R∗)s and
ϑ⋆ = (θ⋆1 , · · · , θ⋆s) a vector with distinct entries in ΘT , a compact interval of Θ, such that Assumption 2.4
holds for Q⋆ = {θ⋆1 , · · · , θ⋆s} ⊂ ΘT . Assume that the unknown number of active features s is bounded by K.
Suppose also that the noise process wT satisfies Assumption 1.1 for a noise level σ > 0 and a decay rate for
the noise variance ∆T > 0.

Then, there exist finite positive constants Ci, for i = 0, . . . , 3, depending on the function F and on r such
that for any τ > 1 and a tuning parameter:

(29) κ ≥ C1σ
√

∆T log(τ),

we have the prediction error bound of the estimators β̂ and ϑ̂ defined in (28) given by:

(30)

∥

∥

∥β̂ΦT (ϑ̂)− β⋆ΦT (ϑ
⋆)
∥

∥

∥

L2(λT )
≤ C0

√
s κ,

with probability larger than 1 − C2
(

|ΘT |
σT τ

√
log(τ)

∨ 1
τ

)

where |ΘT | is the Euclidean length of ΘT . Moreover,

with the same probability, the difference of the ℓ1-norms of β̂ and β⋆ is bounded by:

(31)
∣

∣

∣‖ β̂‖ℓ1 − ‖ β⋆‖ℓ1
∣

∣

∣ ≤ C3 κ s.

Proof. The proof is similar to the proof of [5, Theorem 2.1] where one replaces the limit kernel noted K∞
therein by the approximating kernel Kprox

T defined in (10). The main difference is in checking condition (v) in
Theorem 2.1 on the existence of certificate functions. This is done by using Propositions 7.4 and 7.5 therein,
and by noticing that the special form of the approximating kernel Kprox

T implies that the constants involved
do not depend on the scale parameter σT . Indeed Equation (17) clearly entails that they do not depend on
the scale parameter. The details of the proof are left to the interested reader. Details are given in Section
A. �

Notice that even if the constants Ci, for i = 0, . . . , 3, depend only the function F and on r, Assump-
tion 2.4 (iii) implies that F is chosen according to the function h. The estimation risks on β⋆ and ϑ⋆ can
be further deduced as in [5, Equations (9-10)].

The following lemma gives an identifiability result for the considered model. It relies on the construction
of certificates from [5] and is based on ideas developed in [9] for exact reconstruction of measures, see Lemma
1.1 therein. We recall that by convention β⋆ΦT (ϑ

⋆) = 0 when s = 0.

Lemma 2.4 (Sufficient conditions for identifiability). Let T ∈ N, r ∈
(

0, 1/
√
2 g∞L2

)

, η ∈ (0, 1). Suppose

that Assumption 2.4 holds for the set Q⋆ = {θ⋆1 , · · · , θ⋆s} ⊂ ΘT of cardinal s ∈ N and for the set Q0 =

{θ01, · · · , θ0s0} ⊂ ΘT of cardinal s0 ∈ N. Then, for any vectors β⋆ ∈ (R∗)s, β0 ∈ (R∗)s
0

, we have that, up to
the same permutation on the components of β⋆ and ϑ⋆:

(32) β⋆ΦT (ϑ
⋆) = β0ΦT (ϑ

0) in L2(λT ), implies that s = s0, β⋆ = β0 and ϑ⋆ = ϑ0.

Remark 2.5. Recall that if s ≥ 1, then β⋆ is a s-dimensional vector with non-zero entries. Under the
assumptions of Lemma 2.4 we have that:

β⋆ΦT (ϑ
⋆) = 0 if and only if s = 0.

Remark 2.6. Notice that β⋆ΦT (ϑ
⋆) = β0ΦT (ϑ

0) can be re-written as β̃ΦT (ϑ̃) = 0 for some (β̃, ϑ̃) ∈ R
s̃ ×Θs̃

T

where the components of ϑ̃ are the elements of Q⋆ ∪ Q0, s̃ = Card(Q⋆ ∪ Q0) and the entries of β̃ are up
to a sign those of β⋆ or β0. In fact, one could show Lemma 2.4 by supposing that Assumption 2.4 stands
for the set Q⋆ ∪ Q0. However, as Assumption 2.4 requires pairwise separations between the considered
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location parameters (see (iv) of Assumption 2.4), we remark that this condition would be much stronger
than requiring that the sets Q⋆ and Q0 verify Assumption 2.4 separately.

Proof of Lemma 2.4. First, for s ≥ 1 and ϑ⋆ = (θ⋆1 , · · · , θ⋆s) such that Assumption 2.4 stands for the set Q⋆,
we show that the application β 7→ βΦT (ϑ

⋆) defined from R
s to L2(λT ) is injective.

We have that ‖βΦT (ϑ
⋆)‖L2(λT ) = βΓβ⊤, where Γ ∈ R

s×s is the symmetric matrix defined by Γk,ℓ =

KT (θ
⋆
k, θ

⋆
ℓ ). Let λmin be the smallest eigenvalue of Γ. Using Gershgorin’s theorem and the definition of VT

given by (22), we have that:

λmin ≥ 1− max
1≤ℓ≤s

s
∑

k=1,k 6=ℓ

|KT (θ
⋆
ℓ , θ

⋆
k)| ≥ 1− max

1≤ℓ≤s

s
∑

k=1,k 6=ℓ

∣

∣

∣

∣

F

( |θ⋆ℓ − θ⋆k|
σT

)∣

∣

∣

∣

− (s− 1)VT .

The separation condition from Point (iv) of Assumption 2.4 implies that for all k, ℓ ∈ {1, · · · , s} such that

k 6= ℓ we have |θ⋆k − θ⋆ℓ | ≥ σTΣ(η, r, s) ≥ 8 σT δ(ηH
(2)
∞ (r), s). Recall the definition of δ(u, s) given by (25).

We deduce that:

max
1≤ℓ≤s

s
∑

k=1,k 6=ℓ

∣

∣

∣

∣

F

( |θ⋆ℓ − θ⋆k|
σT

)∣

∣

∣

∣

≤ ηH(2)
∞ (r).

By Point (iii) of Assumption 2.4, we have (s− 1)VT ≤ (1 − η)H
(2)
∞ (r) and H

(2)
∞ (r) ≤ 1/6. Thus, we get:

(33) λmin ≥ 5/6.

Hence, the symmetric matrix Γ is positive-definite. This proves that the application β 7→ βΦT (ϑ
⋆) is injective

from R
s to L2(λT ). By symmetry, we obtain for s0 ≥ 1 that the application β 7→ βΦT (ϑ

0) is injective from

R
s0 to L2(λT ).

If s = 0, we have β⋆ΦT (ϑ
⋆) = 0. For s0 ≥ 1, we have β0 ∈ (R∗)s

0

and since β 7→ βΦT (ϑ
0) is injective,

we deduce that β0ΦT (ϑ
0) 6= 0. Thus, s = 0 and β⋆ΦT (ϑ

⋆) = β0ΦT (ϑ
0) implies that s0 = 0. By symmetry,

s0 = 0 and β⋆ΦT (ϑ
⋆) = β0ΦT (ϑ

0) implies also that s = 0.
Assume from now on that s, s0 ∈ N

∗ and that β⋆ΦT (ϑ
⋆) = β0ΦT (ϑ

0). Let us consider the application
v : Q⋆ 7→ {−1, 1} defined by: v(θ⋆k) = sign(β⋆

k) for any k ∈ {1, · · · , s}. According to Lemma 4.2, there exists
p⋆ ∈ L2(λT ) such that:

‖β⋆‖ℓ1 =

s
∑

k=1

β⋆
k 〈φT (θ⋆k), p⋆〉L2(λT ) = 〈β⋆ΦT (ϑ

⋆), p⋆〉L2(λT ) .

Using the fact that β⋆ΦT (ϑ
⋆) = β0ΦT (ϑ

0) and Properties (i) and (ii) of p⋆ in Lemma 4.2, we get:

(34) ‖β⋆‖ℓ1 =

s0
∑

k=1

β0
k

〈

φT (θ
0
k), p

⋆
〉

L2(λT )
≤
∥

∥β0
∥

∥

ℓ1
.

The role of (β⋆, ϑ⋆) and (β0, ϑ0) being symmetric, we also get
∥

∥β0
∥

∥

ℓ1
≤ ‖β⋆‖ℓ1 . Hence, we have

∥

∥β0
∥

∥

ℓ1
=

‖β⋆‖ℓ1 and sign(β0
k) =

〈

φT (θ
0
k), p

⋆
〉

L2(λT )
for k ∈ {1, · · · , s0}. Using Properties (i) and (ii) of p⋆ in Lemma

4.2, we remark that for any θ /∈ Q⋆

∣

∣

∣〈φT (θ), p⋆〉L2(λT )

∣

∣

∣ < 1.

Thus, we deduce from (34) that Q0 ⊆ Q⋆ and by symmetry Q0 = Q⋆. Hence, we obtain ϑ⋆ = ϑ0 (up to a
permutation on the components of ϑ⋆) and s = s0. Then use the injectivity of the function β 7→ βΦT (ϑ

⋆) to
get that β⋆ = β0 (up to the same permutation). This finishes the proof of the Lemma. �
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3. Goodness-of-fit for the mixture model

In this section, we build a test procedure to decide if the observation y derives from a given mixture of
translated features. We build a test Ψ, i.e. a measurable function of the observation y taking value in {0, 1}, in
order to distinguish a null hypothesis H0 against an alternativeH1(ρ) depending on a nonnegative separation
parameter ρ. We recall that the maximal type I and II error probabilities are sup(β⋆,ϑ⋆)∈H0

E(β⋆,ϑ⋆)[Ψ] and

sup(β⋆,ϑ⋆)∈H1(ρ) E(β⋆,ϑ⋆)[1 − Ψ], respectively, where Ψ is a function of y which is equal to β⋆ΦT (ϑ
⋆) + wT

under E(β⋆,ϑ⋆). The maximal testing risk is the sum of the former quantities, that is:

Rρ(Ψ) = sup
(β⋆,ϑ⋆)∈H0

E(β⋆,ϑ⋆)[Ψ] + sup
(β⋆,ϑ⋆)∈H1(ρ)

E(β⋆,ϑ⋆)[1−Ψ],

and the minimax testing risk is:

(35) R⋆
ρ = inf

Ψ
Rρ(Ψ),

where the infinimum is taken over all the measurable functions from L2(λT ) to {0, 1}. The minimax sepa-
ration rate of the test problem is defined for any α ∈ (0, 1) as:

(36) ρ⋆(α) = inf{ρ > 0 : R⋆
ρ ≤ α}.

3.1. Test problem. Let s0 ∈ N and consider the set Θs0

T (δ0) ⊂ Θs0

T of vectors whose components are

pairwise separated by a distance δ0 ≥ 0 (recall the definition (26)). Consider the vectors β0 ∈ (R∗)s
0

and

ϑ0 = (θ01 , · · · , θ0s0) ∈ Θs0

T (δ0). By convention, we have for s0 = 0 that β0 = 0, ϑ0 = 0 and β0ΦT (ϑ
0) = 0.

We build a test procedure based on the observation y to decide, for some δ⋆ ≥ 0, whether:

(37)

{

H0 : (β⋆, ϑ⋆) ∈ (R∗)s ×Θs
T (δ

⋆) such that β⋆ΦT (ϑ
⋆) = β0ΦT (ϑ

0),

H1(ρ) : (β⋆, ϑ⋆) ∈ (R∗)s ×Θs
T (δ

⋆) such that
∥

∥β⋆ΦT (ϑ
⋆)− β0ΦT (ϑ

0)
∥

∥

L2(λT )
≥ ρ,

where ρ is a nonnegative separation parameter. When Assumption 2.4 holds for the sets Q⋆ = {θ⋆1 , · · · , θ⋆s}
and Q0 = {θ01, · · · , θ0s0}, by Lemma 2.4, the null hypothesis implies that (β⋆, ϑ⋆) = (β0, ϑ0) (up to the
same permutation on the components of β⋆ and ϑ⋆). We remark that the separation condition from Point
(iv) of Assumption 2.4 required between the elements of Q⋆ (resp. Q0) is automatically satisfied when
δ⋆ ≥ σT Σ(η, r, s) (resp. δ0 ≥ σT Σ(η, r, s0)).

We shall denote the distribution under the null hypothesis as associated to the parameters (β0, ϑ0) and
see that the maximal type I error probability writes in this case E(β0,ϑ0)[Ψ] for E(β⋆,ϑ⋆)[Ψ]. Furthermore,

when s0 = 0, under Assumption 2.4 for the set Q⋆, Lemma 2.4 implies that the null hypothesis reduces to
H0 : s = 0.

3.2. Main results. We consider the test procedure ΨT (t) associated to a real valued statistic T (measurable
function of the observation y) and a threshold t > 0 (defining a critical region) given by:

(38) ΨT (t) = 1{|T |>t}.

We recall that for a test Ψ, we accept H0 when Ψ = 0 and reject it when Ψ = 1.

Let s0 ∈ N and consider known linear coefficients and location parameters β0 ∈ (R∗)s
0

and ϑ0 =

(θ01 , · · · , θ0s0) ∈ Θs0

T , respectively. We define two statistics T1 and T2 by:

(39) T1 =
∥

∥y − β0ΦT (ϑ
0)
∥

∥

2

L2(λT )
− E

[

‖wT ‖2L2(λT )

]

and T2 =
∥

∥

∥β̂ΦT (ϑ̂)− β0ΦT (ϑ
0)
∥

∥

∥

2

L2(λT )
,

where β̂ and ϑ̂ denote the estimators obtained from (28) for a given value of the tuning parameter κ and a
bound K on the unknown number s ∈ N of active features in the observed signal.
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Recall the definition (4) of ΞT , the variance of the squared L2(λT )-norm of the noise wT . The following
theorem gives an upper bound of the maximal testing risk associated to the test ΨT1(t) for some positive
threshold t and positive separation ρ.

Theorem 3.1. Let T ∈ N and s0 ∈ N. Let δ⋆ ≥ 0 and δ0 ≥ 0. Assume that we observe the random element
y of L2(λT ) under the regression model (3) with unknown parameters s ∈ N, β⋆ ∈ (R∗)s and ϑ⋆ ∈ Θs

T (δ
⋆).

Let β0 ∈ (R∗)s
0

and ϑ0 ∈ Θs0

T (δ0). Suppose that Assumption 2.1 on the smoothness of the features holds.
Suppose that Assumption 1.1 holds for a noise level σ > 0 and a decay rate for the noise variance ∆T > 0.

Then, the test ΨT1 in (38) using T1 in (39) satisfies:

(40) Rρ (ΨT1(t)) ≤
ΞT

t2
+

4ΞT

(ρ2 − t)2
+ e−(ρ2−t)2/(32σ2∆T ρ2),

for any threshold t and any separation ρ such that ρ2 > t > 0.

Proof. We give a bound of the type I error probability. Using that under H0 we have y = β0ΦT (ϑ
0) + wT ,

we get:

E(β0, ϑ0)[ΨT1(t)] = P

(∣

∣

∣ ‖wT ‖2L2(λT ) − E

[

‖wT ‖2L2(λT )

]∣

∣

∣ > t
)

.

Using Chebyshev’s inequality, we obtain:

(41) E(β0, ϑ0)[ΨT1(t)] ≤
ΞT

t2
·

We now give a bound of the type II error probability. We set:

R =
∥

∥β0ΦT (ϑ
0)− β⋆ΦT (ϑ

⋆)
∥

∥

L2(λT )
,

where (β⋆, ϑ⋆) ∈ (R∗)s×Θs
T (δ

⋆). Using the decomposition of y from the model (3) and the triangle inequality,
we have:

|T1| ≥ R2 −
∣

∣

∣‖wT ‖2L2(λT ) − E[‖wT ‖2L2(λT )]
∣

∣

∣− 2
∣

∣

∣

〈

β0ΦT (ϑ
0)− β⋆ΦT (ϑ

⋆), wT

〉

L2(λT )

∣

∣

∣ .

Notice that by Assumption 1.1, the random variable
〈

β0ΦT (ϑ
0)− β⋆ΦT (ϑ

⋆), wT

〉

L2(λT )
is Gaussian with

zero mean and variance bounded by σ2 ∆T R
2. Hence, using that under H1(ρ) we have R ≥ ρ, we obtain:

(42)
E(β⋆, ϑ⋆)[1−ΨT1(t)] ≤P

(

(ρ2 − t)/2 ≤
∣

∣

∣‖wT ‖2L2(λT ) − E[‖wT ‖2L2(λT )]
∣

∣

∣

)

+ P

(

(R2 − t)/2 ≤ 2σ
√

∆T R |G|
)

,

where G is a standard Gaussian random variable. On the one hand, for t < ρ2, using Chebyshev’s inequality
we get:

(43) P

(

(ρ2 − t)/2 ≤
∣

∣

∣‖wT ‖2L2(λT ) − E[‖wT ‖2L2(λT )]
∣

∣

∣

)

≤ 4ΞT

(ρ2 − t)2
·

On the other hand, we have:

(44) P

(

(R2 − t)/2 ≤ 2σ
√

∆T R |G|
)

≤ P

(

ρ2 − t

4σ
√
∆T ρ

≤ |G|
)

≤ e−(ρ2−t)2/(32σ2∆T ρ2) .

where we used that ρ ≤ R and the tail bound (see [1, Formula 7.1.13]):

(45)
1√
2π

∫ +∞

u

e−t2/2 dt ≤ 1

2
e−u2/2, for u > 0.
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By combining (42) with (43) and (44), we get the following bound on the type II error probability:

(46) E(β⋆, ϑ⋆)[1−ΨT1(t)] ≤
4ΞT

(ρ2 − t)2
+ e−(ρ2−t)2/(32σ2∆T ρ2) .

Then, by putting together (41) and (46), we obtain (40). �

We deduce from Theorem 3.1 upper bounds on the minimax separation ρ⋆ defined in (36) for the goodness-
of-fit test problem (37).

Corollary 3.2. Under the framework and the assumptions of Theorem 3.1, the minimax separation rate for
the test problem (37) verifies for any α ∈ (0, 1):

(47) ρ⋆(α) ≤ ρ(1)(α) with ρ(1)(α) := max

(

(

40ΞT

α

)1/4

, 8 σ

√

2∆T log

(

2

α

)

)

.

Proof of Corollary 3.2. This result is a direct consequence of Theorem 3.1 by taking the threshold t of the
test therein equal to ρ2/2. Then, we have that for ρ > 0:

R⋆
ρ ≤ Rρ

(

ΨT1(ρ
2/2)

)

≤ 4ΞT

ρ4
+

16ΞT

ρ4
+ e−ρ2/(128σ2∆T ) =

20ΞT

ρ4
+ e−ρ2/(128σ2∆T ) .

We deduce that R⋆
ρ ≤ α for any α ∈ (0, 1) whenever the separation ρ satisfies:

(48) ρ ≥
(

40ΞT

α

)
1
4

∨ σ
√

128∆T log

(

2

α

)

.

This implies (47). �

In the following theorem, we give a bound of the maximal testing risk associated to the test ΨT2(t) using T2
in (39) for solving the test problem (37). The statistic T2 is defined using estimators of the model parameters
(β⋆, ϑ⋆). In view of recovering the latter, we assume that the minimal distance δ⋆ (resp. δ0) is large enough
so that Point (iv) of Assumption 2.4 is satisfied for the components of ϑ⋆ (resp. ϑ0).

Recall the definitions of g∞ and L2 given by (15) and (16), that |ΘT | denotes the Euclidean length of the
compact set ΘT and Σ defined in (iv) of Assumption 2.4.

Theorem 3.3. Let T ∈ N, s0 ∈ N and choose K ∈ N such that s0 ≤ K. Let also η ∈ (0, 1) and
r ∈

(

0, 1/
√
2 g∞L2

)

. Let δ⋆ ≥ σT Σ(η, r, s) and δ0 ≥ σT Σ(η, r, s0). Assume we observe the random element

y of L2(λT ) under the regression model (3) with unknown parameters s ∈ N such that s ≤ K, β⋆ ∈ (R∗)s and

ϑ⋆ = (θ⋆1 , · · · , θ⋆s) ∈ Θs
T (δ

⋆). Let β0 ∈ (R∗)s
0

and ϑ0 = (θ01 , · · · , θ0s0) ∈ Θs0

T (δ0). Suppose that Assumption 2.4
holds for the sets Q⋆ = {θ⋆1 , · · · , θ⋆s} ⊂ ΘT of cardinal s and Q0 = {θ01 , · · · , θ0s0} ⊂ ΘT of cardinal s0. Suppose
also that the noise process wT satisfies Assumption 1.1 for a noise level σ > 0 and a decay rate for the noise
variance ∆T > 0.

Then, there exist finite positive constants C0, C1, C2, depending on r and on the function F , such that for
the tuning parameter κ:

(49) κ ≥ C1σ
√

∆T log(τ), for some τ > 1,

the test ΨT2 using T2 in (39) satisfies:

(50) Rρ (ΨT2(t)) ≤ 2 C2
(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

,

for any threshold t and any separation ρ satisfying:

(51) 0 < t, C0
√
s0 κ ≤

√
t < ρ and

√
t+ C0

√
s κ ≤ ρ.
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Remark 3.4 (On the bound K). The bound K on s is assumed to be known. It is needed to formulate the
optimization problem (28) whose solutions are the estimators of β⋆ and ϑ⋆. However, we stress that the
constants C0, C1, C2 and the bound on the maximal testing risk do not depend on K. Thus, K can be taken
arbitrarily large.

Proof of Theorem 3.3. Case s > 0. Let (β⋆, ϑ⋆) ∈ (R∗)s×Θs
T (δ

⋆). We consider the estimators (β̂, ϑ̂) defined
in (28). Notice that the hypotheses of Theorem 2.3 are in force. We use the constants C0, C1, C2 defined

therein. Under H0, we have s = s0. Thus, for
√
t ≥ C0

√
s κ, we get the following bound on the type I error

probability:

(52) E(β0, ϑ0)[ΨT2(t)] ≤ P

(

∥

∥

∥β̂ΦT (ϑ̂)− β⋆ΦT (ϑ
⋆)
∥

∥

∥

L2(λT )
> C0

√
s κ

)

≤ C2
(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

,

where we used that β0ΦT (ϑ
0) = β⋆ΦT (ϑ

⋆) and that
√
t ≥ C0

√
s κ for the first inequality and Theorem 2.3

for the second.

We now bound the type II error probability. Under H1(ρ), since
∥

∥β⋆ΦT (ϑ
⋆)− β0ΦT (ϑ

0)
∥

∥

L2(λT )
≥ ρ, we

obtain that:

(53) E(β⋆, ϑ⋆)[1−ΨT2(t)] ≤ P

(

ρ−
√
t ≤

∥

∥

∥β̂ΦT (ϑ̂)− β⋆ΦT (ϑ
⋆)
∥

∥

∥

L2(λT )

)

≤ C2
(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

,

where we used the triangle inequality for the first inequality and Theorem 2.3 as well as ρ −
√
t ≥ C0

√
s κ

for the second.

Case s = 0. Since s = 0, we have y = wT according to (3). Let us first bound the type I error probability
E(β0, ϑ0)[ΨT2(t)]. Assume that the hypothesis H0 holds so that s = s0 = 0. By definition we have:

E(β0, ϑ0)[ΨT2(t)] = P

(

∥

∥

∥β̂ΦT (ϑ̂)
∥

∥

∥

2

L2(λT )
> t

)

.

We get from the definition of the estimators β̂ and ϑ̂ from (28) that:

1

2

∥

∥

∥wT − β̂ΦT (ϑ̂)
∥

∥

∥

2

L2(λT )
+ κ
∥

∥

∥β̂
∥

∥

∥

ℓ1
≤ 1

2
‖wT ‖2L2(λT ).

By rearranging some terms in the equation above, we get:

(54)
1

2

∥

∥

∥β̂ΦT (ϑ̂)
∥

∥

∥

2

L2(λT )
≤
〈

β̂ΦT (ϑ̂), wT

〉

L2(λT )
− κ
∥

∥

∥β̂
∥

∥

∥

ℓ1
≤
∥

∥

∥β̂
∥

∥

∥

ℓ1

(

sup
ΘT

| 〈φT (θ), wT 〉L2(λT ) | − κ

)

.

Let us define the event:

(55) A = { sup
θ∈ΘT

| 〈φT (θ), wT 〉L2(λT ) | < κ}.

We deduce from (54) that on the event A we have
∥

∥

∥β̂ΦT (ϑ̂)
∥

∥

∥

L2(λT )
= 0. Therefore we get:

(56) E(β0, ϑ0)[ΨT2(t)] ≤ P

(

∥

∥

∥β̂ΦT (ϑ̂)
∥

∥

∥

L2(λT )
> 0

)

≤ P(Ac).

We shall bound later P(Ac), see (58).

We now consider the type II error probability. We asume H1, that is
∥

∥β0ΦT (ϑ
0)
∥

∥

L2(λT )
≥ ρ. We obtain:

(57)

E(β⋆, ϑ⋆)[1−ΨT2(t)] = P

(

∥

∥

∥β̂ΦT (ϑ̂)− β0ΦT (ϑ
0)
∥

∥

∥

L2(λT )
≤

√
t

)

≤ P

(

ρ−
√
t ≤

∥

∥

∥β̂ΦT (ϑ̂))
∥

∥

∥

L2(λT )

)

≤ P(Ac).
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where we used the definition of T2 and the triangle inequality for the first inequality, the second inequality
of (56) as well as ρ−

√
t > 0 for the second.

We shall apply [5, Lemma A.1] to bound P(Ac). It amounts to controling the supremum of the Gaussian
process θ 7→ 〈φT (θ), wT 〉L2(λT ). Recall that Assumptions 2.1 and 2.2 hold. The function φT is of class C1

from the interval ΘT to L2(λT ), with ΘT a sub-interval of Θ. We have also, with φ
[1]
T = D̃1;KT

[φT ], that:

‖φT (θ)‖L2(λT ) = 1 and
∥

∥

∥φ
[1]
T (θ)

∥

∥

∥

2

L2(λT )
= K[1,1]

T (θ, θ) = 1.

Since Assumption 1.1 on the noise wT holds, the hypotheses of [5, Lemma A.1] hold and we deduce from [5,
Lemma A.1] (with C1 = C2 = 1 therein) that:

P(Ac) = P

(

sup
θ∈ΘT

| 〈φT (θ), wT 〉L2(λT ) | ≥ κ

)

≤ 3 ·
(

2σ
√
g∞|ΘT |

√
∆T

σTκ
∨ 1

)

e−κ2/(4σ2∆T ),

where the diameter |ΘT |dT
of the set ΘT with respect to the metric dT is bounded by 2

√
g∞|ΘT |/σT using

(21) and the fact that CT ≤ 2. By taking κ ≥ 2σ
√

∆T log(τ), we get:

(58) P(Ac) = P

(

sup
θ∈ΘT

| 〈φT (θ), wT 〉L2(λT ) | ≥ κ

)

≤ 3 ·
( √

g∞|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

.

Notice that the constant C2 from Theorem 2.3 is equal to 2
√
g∞ C′

2 where C′
2 is given by [5, C2 from Eq. (84)

therein] and is greater than 3. The constant C2 depends only on r and the function F . Finally, by putting

together (52), (53), (56) and (57), we obtain for κ ≥ C1σ
√

∆T log(τ) (where the constant C1 is defined in [5,
Proof of Theorem 2.1 (p.32)] and is superior to 4) the bound on the maximal testing risk from Theorem 3.3.
This finishes the proof. �

In the next Corollary, we obtain an additionnal upper bound on the minimax separation rate.

Corollary 3.5. Under the framework and the assumptions of Theorem 3.3 and provided that |ΘT |/σT ≥ 1,
there exist finite positive constants c and C, depending on r and the function F , such that the minimax
separation rate for the test problem (37) verifies for any α ∈ (0, 1):

(59) ρ⋆ (α) ≤ ρ(2)(α), ρ(2)(α) := C σ

√

(s ∨ s0 ∨ 1)∆T log

(

c |ΘT |
ασT

)

.

Remark 3.6 (On the condition |ΘT |/σT ≥ 1). We recall that the set ΘT is a compact subset of Θ. In the case
where Θ is the torus R/Z, ΘT = Θ and the scale parameter σT tends towards 0 when T grows to infinity,
the condition |ΘT |/σT ≥ 1 is satisfied for T large enough. This condition also holds for T large enough in
the Gaussian spikes deconvolution example, with the particular choices for ΘT and σT from Section 5, where
Θ = R, limT→+∞ ΘT = Θ and limT→+∞ σT = 0.

Proof of Corollary 3.5. Notice that all the assumptions of Theorem 3.3 are in force. The result is a direct
consequence of Theorem 3.3. We fix the tuning parameter κ = C1σ

√

∆T log(τ) by taking the equality in
(49). Then, for

(60) ρ ≥ C0
√
s ∨ 1κ+

√
t and t = C2

0 (s
0 ∨ 1)κ2,

we have (51) (in particular 0 < t < ρ) and by Theorem 3.3 for τ > 1:

R⋆
ρ ≤ Rρ (ΨT2(t)) ≤ 2C2

(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

,

where the finite positive constants C0, C1, C2, from Theorem 3.3 depend on r and F .
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Then, taking τ = c|ΘT |/(ασT ) with c = (2C2) ∨ e and using that by assumption |ΘT |/σT ≥ 1, we get for

ρ ≥
√
2C0C1σ

√

(s+ s0) ∨ 2
√

∆T log(c|ΘT |/(ασT )) and α ∈ (0, 1) that R⋆
ρ ≤ α. We readily deduce (59) with

C = 2C0C1. �

Remark 3.7 (Combining the upper bounds of Corollaries 3.2 and 3.5). Let α ∈ (0, 1). Suppose that the
assumptions of Corollaries 3.2 and 3.5 hold. Previous results show that each procedure may perform better
than the other one in convenient regimes of the parameters, involving the unknown parameter s. In order to
aggregate the two procedures into an automatic one, we take the maximum of the two test procedures. This
aggregated test procedure rejects as soon as at least one of the procedures rejects, and accepts otherwise.

More precisely, let ρ(1)(α/2) be defined by (47) with α replaced by α/2 and set t(1) = (ρ(1)(α/2))2/2; and
let ρ(2)(α/2) be defined in (59) and t(2) be given by (60) with α replaced by α/2. Then, Corollaries 3.2 and
3.5 imply that Rρ(1)

(

ΨT1(t
(1))
)

≤ α/2 and Rρ(2)

(

ΨT2(t
(2))
)

≤ α/2. We define the test:

Ψmax = max(ΨT1(t
(1)),ΨT2(t

(2))).

It is straightforward to see that the type I error probability satisfies:

sup
(β⋆,ϑ⋆)∈H0

E(β⋆,ϑ⋆)[Ψ
max] ≤ α.

Moreover, we have for ρmin(α) = ρ(1)(α/2) ∧ ρ(2)(α/2) the following bound on the type II error probability:

sup
(β⋆,ϑ⋆)∈H1(ρmin)

E(β⋆,ϑ⋆)[1−Ψmax] ≤ α/2.

Therefore, we deduce an upper bound on ρ⋆(α) of order ρmin(α), that is:

(61) ρmin(α) = min

(

(

80ΞT

α

)1/4

, Cσ

√

(s ∨ s0 ∨ 1)∆T log

(

2 c |ΘT |
ασT

)

)

,

for a positive constant c ≥ 2. We identify two regimes depending on whether the observed signal is sparse
or not. Indeed, we notice that when α is fixed and:

s ∨ s0 ∨ 1 ≪
(

ΞT

α

)1/2

·
(

σ2∆T log

(

2 c |ΘT |
ασT

))−1

,

Corollary 3.5 yields a sharper upper bound on the separation rate than Corollary 3.2.

3.3. Minimax separation rates for signal detection. We illustrate our results on a simple model
motivated by [14] for sparse linear regression. We consider a discrete-time process y over a regular grid
t1 < · · · < tT on Θ = R/Z with grid step ∆T = 1/T . We set λT and wT as in Section 1.2.1. We recall that
ΞT = 2σ4∆2

TT where σ > 0 is the noise level. In the following, we assume without any loss of generality
that σ = 1.

Let us consider the framework of signal detection when s0 = 0. Under the assumptions of Corollary 3.5,
the test problem (37) reduces to:

(62)

{

H0 : β⋆ = 0,

H1(ρ) : (β⋆, ϑ⋆) ∈ (R∗)s ×Θs
T (δ

⋆) such that ‖β⋆ΦT (ϑ
⋆)‖L2(λT ) ≥ ρ.

Moreover, under the assumptions of Corollary 3.5 and with the same arguments used to establish (33), we
can show that:

(63) 5/6 ≤ Cmin := min
β

‖βΦT (ϑ
⋆)‖L2(λT )

‖β‖ℓ2
and Cmax := max

β

‖βΦT (ϑ
⋆)‖L2(λT )

‖β‖ℓ2
≤ 7/6.
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Therefore, the separation in the alternative hypothesis H1(ρ) can be formulated as a lower bound on ‖β⋆‖ℓ2
since we have:

Cmin‖β⋆‖ℓ2 ≤ ‖β⋆ΦT (ϑ
⋆)‖L2(λT ) ≤ Cmax‖β⋆‖ℓ2 .

We set ΘT = Θ and thus |ΘT | = 1. We get from (61) the following upper bound on ρ⋆(α) for any
α ∈ (0, 1):

(64) ρ(α) = Cmin

(

1

(αT )
1
4

,

√

s

T
log

(

c

α σT

)

)

,

with C a finite positive constant. Let (αT , T ≥ 1) be a (0, 1)-valued sequence which converges to zero when
T grows to infinity. We deduce that:

lim
s,T→+∞

R⋆
ρ(αT ) = 0.

By letting the sequence (αT , T ≥ 1) converge towards 0 as slow as we want, we deduce that for a sequence
of separations (ρs,T , T ≥ 1, s ≥ 1) such that:

(65) lim
s,T→+∞

ρs,T

1

T
1
4
∧
√

s
T log

(

c
σT

)

= +∞,

we have:

lim
s,T→+∞

R⋆
ρs,T

= 0.

Hence, we have obtained an asymptotic upper bound of the minimax separation associated to the detection
of a mixture issued from a continuous dictionary.

We now compare this upper bound to the asymptotic lower bound obtained in the case where the dictionary
contains a finite number of features instead of a continuum. Assume that the dictionary is fixed, known and
contains p features parametrized by the parameters in the known and fixed set Q0 = {θ01, · · · , θ0p} ⊂ ΘT .
We consider the high dimensional linear regression model:

y = β⋆ΦT (ϑ
0) + wT in L2(λT ),

with ϑ0 = (θ01 , · · · , θ0p) ∈ Θp
T and where β⋆ ∈ R

p is a s-sparse vector. Notice that in this model the entries of
β⋆ can take the value 0. The high dimension comes from the fact that p can be much larger than T . Under
coherence assumptions on the finite dictionary and for a sequence of separations (ρs,T , T ≥ 1, s ≥ 1) such
that:

(66) lim
s,T→+∞

ρs,T

1

T
1
4
∧
√

s
T log(p) ∧ p

1
4√
T

= 0,

the authors of [14] showed for different hypotheses on the design matrix ΦT (ϑ
0) that:

lim
s,T→+∞

R⋆
ρs,T

= 1.

It means that the hypotheses (62) cannot be distinguished asymptotically when the separation converges to
zero faster than the rate given by (66). We remark that in the high dimensional framework (i.e. T < p), we

get only the first two regimes in (66) since 1/T 1/4 < p1/4/
√
T .
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4. Goodness-of-fit of the dictionary

In spectroscopy, a prescribed material has known chemical components and a list of s0 corresponding
location parameters of the features is provided. From a sampled material we want to decide whether its
chemical components are included in the prescribed list. The linear coefficients are non-negative in this case
and they are not given, which makes the null hypothesis composite, that is, fixed location parameters and
varying positive linear coefficients. We generalize this setup to real valued linear coefficients. Under the null
hypothesis the location parameters are still fixed, but the linear coefficients vary with fixed sign.

More precisely, let s0 ∈ N and let Q0 = {θ01, · · · , θ0s0} ⊂ ΘT be a set of known location parameters

pairwise separated by a distance δ0 ≥ 0 so that the model is identifiable, see Lemma 2.4. We set the vector

ϑ0 = (θ01, · · · , θ0s0). Let v0 = (v01 , . . . , v
0
s0) be a vector in {−1, 1}s0 that contains the common signs of all

linear coefficients under the null hypothesis. Consider two disjoint subsets of the set Q0 associated to linear
coefficients with sign ǫ = ±1: Q0,ǫ = {θ0k ∈ Q0 : ǫv0k > 0}. Let s ∈ N

∗. Assume that we observe a
random element y issued from the model (3) with linear coefficients β⋆ ∈ (R∗)s and non-linear parameters
ϑ⋆ = (θ⋆1 , · · · , θ⋆s ) ∈ Θs

T . We test if the unknown set Q⋆,ǫ = {θ⋆k ∈ Q⋆ : ǫβ⋆
k > 0} is a subset of Q0,ǫ for

each ǫ = ±1. If s0 = 0, this amounts to testing that Q⋆ is empty, which corresponds to the signal detection
framework presented in Section 3 in the case s0 = 0. Hence, we shall assume in this section that s0 ≥ 1. For
example, if Q0,− is empty, this amounts to testing that Q⋆ is a subset of Q0 and β⋆ has positive entries.

4.1. A measure of discrepancy between dictionaries. We define the closed balls centered at θ ∈ ΘT

with radius r by:

BT (θ, r) = {θ′ ∈ ΘT : dT (θ, θ
′) ≤ r} ⊆ ΘT .

Let us define for ǫ = ±1 the set of indices Iǫ = {k ∈ {1, . . . , s0}, ǫv0k > 0}. We introduce for r > 0, k ∈ Iǫ

and ǫ ∈ {−1,+1} the set Sǫ
k(r) gathering the indices of the elements of Q⋆,ǫ that are close to the element θ0k

of Q0,ǫ:

(67) Sǫ
k(r) =

{

ℓ ∈ {1, · · · , s} : θ⋆ℓ ∈ BT (θ
0
k, r) and ǫβ

⋆
ℓ > 0

}

.

Notice that the sets Sǫ
k(r) can be empty. We assume that r < minℓ 6=k dT (θ

0
ℓ , θ

0
k)/2 so that the sets Sǫ

k(r)
with ǫ = ±1 and k ∈ Iǫ are pairwise disjoint. We also set:

S(r) =
⋃

ǫ∈{−1,+1}
Sǫ(r) with Sǫ(r) =

⋃

k ∈Iǫ

Sǫ
k(r).

We now define a discrepancy measure between the model and any approximation by a linear combination
of features having their parameters in Q0:

DT,r(β
⋆, ϑ⋆, v0, ϑ0) =

∑

ǫ∈{−1,+1}

∑

k∈Iǫ

∑

ℓ∈Sǫ
k
(r)

|β⋆
ℓ | dT (θ⋆ℓ , θ0k)2 +

∑

k∈S(r)c

|β⋆
k| for r > 0,

where S(r)c denotes the complementary set of S(r) in {1, . . . , s}. Notice that DT,r(β
⋆, ϑ⋆, v0, ϑ0) = 0 if and

only if Q⋆,+ ⊆ Q0,+ and Q⋆,− ⊆ Q0,−.

4.2. The testing hypotheses. We shall test the following hypotheses:

(68)

{

H0 : (β⋆, ϑ⋆) ∈ (R∗)s ×Θs
T (δ

⋆), Q⋆,+ ⊆ Q0,+ and Q⋆,− ⊆ Q0,−,

H1(ρ) : (β⋆, ϑ⋆) ∈ (R∗)s ×Θs
T (δ

⋆) and DT,r(β
⋆, ϑ⋆, v0, ϑ0) ≥ ρ,

where ρ and δ⋆ are separation parameters depending a priori on T , s and s0 that need to be evaluated.
Notice that the null hypothesis is also composite. We recall the definitions (35) and (36) of the minimax
testing risk R⋆

ρ and the minimax separation ρ⋆. In the following, we give upper bounds on the testing risk
and on the minimax separation ρ⋆(α) for any α ∈ (0, 1).
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4.3. Main result. In this section, we build a test for (68). Under Assumptions 2.1 and 2.2, we define the
element of L2(λT ):

(69) p0 =

s0
∑

k=1

αkφT (θ
0
k) +

s0
∑

k=1

ξk D̃1,T [φT ](θ
0
k),

where α, ξ ∈ R
s0 solve the system:

(70)
〈

φT (θ
0
k), p0

〉

L2(λT )
= v0k and

〈

∂θφT (θ
0
k), p0

〉

L2(λT )
= 0, for all k ∈ {1, · · · , s0}.

Remark 4.1. The element p0 of L2(λT ) coincides with the vanishing derivative pre-certificate which appears
in [10, Section 4] and is the solution of (70) with minimal norm ‖p0‖L2(λT ).

Following [5], we give the existence and properties of the interpolating certificate function.

Lemma 4.2 (Interpolating certificate). Let T ∈ N, let s ∈ N
∗, r ∈

(

0, 1/
√
2 g∞L2

)

, η ∈ (0, 1) and
Q = {θ1, · · · , θs} ⊂ ΘT . Suppose that Assumption 2.4 holds.

Then, there exist finite positive constants CN , CF , CB with CF < 1, depending on r and the function F ,
such that for any application v : Q 7→ {−1, 1}, there exist unique α, ξ ∈ R

s such that p ∈ L2(λT ) uniquely
defined by:

(71)







p =
s
∑

k=1

αkφT (θk) +
s
∑

k=1

ξk D̃1,T [φT ](θk),

〈φT (θ), p〉L2(λT ) = v(θ) and 〈∂θφT (θ), p〉L2(λT ) = 0, for all θ ∈ Q,
satisfies:

(i) For all θ ∈ Q and θ′ ∈ BT (θ, r), we have |〈φT (θ′), p〉L2(λT )| ≤ 1− CN dT (θ, θ
′)2.

(ii) For all θ in ΘT , θ /∈
⋃

θ′∈Q
BT (θ

′, r) (far region), we have |〈φT (θ), p〉L2(λT )| ≤ 1− CF .

(iii) We have ‖p‖L2(λT ) ≤
√
sCB.

Proof. Using similar arguments as those developed in the proof of Theorem 2.3, we get that all the hypotheses
of [5, Proposition, 7.4] are satisfied. The existence and uniqueness of p is then guaranteed by [5, Lemma,
10.1]. The properties satisfied by p are direct consequences of [5, Proposition, 7.4]. �

Using the estimator β̂ from (28) for a given value of the tuning parameter κ, we define the test statistic:

(72) T3 =
∥

∥

∥
β̂
∥

∥

∥

ℓ1
− 〈y, p0〉L2(λT ) .

and the corresponding test ΨT3(t) = 1{|T3|>t}.

Theorem 4.3. Let T ∈ N, s0 ∈ N
∗ and choose K ∈ N such that s0 ≤ K. Let also η ∈ (0, 1) and

r ∈
(

0, 1/
√
2 g∞L2

)

. Let δ⋆ ≥ σT Σ(η, r, s) and δ0 ≥ σT Σ(η, r, s0). Assume we observe the random element

y of L2(λT ) under the regression model (3) with unknown parameters s ∈ N
∗ such that s ≤ K, β⋆ ∈

(R∗)s and ϑ⋆ = (θ⋆1 , · · · , θ⋆s ) ∈ Θs
T (δ

⋆). Let v0 ∈ {−1, 1}s0 be a sign vector and let ϑ0 = (θ01 , · · · , θ0s0) ∈
Θs0

T (δ0). Suppose that Assumption 2.4 holds for the sets Q⋆ = {θ⋆1, · · · , θ⋆s} ⊂ ΘT of cardinal s and Q0 =
{θ01, · · · , θ0s0} ⊂ ΘT of cardinal s0. Suppose also that the noise process wT satisfies Assumption 1.1 for a
noise level σ > 0 and a decay rate for the noise variance ∆T > 0.

Then, the test statistic T3 is uniquely defined and there exist finite positive constants, a and Ci with
i = 1, · · · , 5, (depending on r and on the function F ) such that for any τ > 1 and any tuning parameter κ:

(73) κ ≥ C1σ
√

∆T log(τ),
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the test ΨT3 satisfies:

(74) Rρ (ΨT3(t)) ≤ 2 C2
(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

+
2

τa s0
,

for any threshold t > 0 and any separation ρ > 0 satisfying:

(75) t ≥ 2 C3 s0 κ and ρ ≥ C4 s κ+ C5 t.
Proof. Recall the test problem given by (68). Assumption 2.4 holds for the set Q0. Thanks to Lemma 4.2,
the element p0 of L2(λT ) is uniquely defined by v0, (69) and (70). Hence, the test statistic T3 from (72) is
well-defined.

We first bound the type I error probability. Let us fix (β⋆, ϑ⋆) ∈ (R∗)s × Θs
T (δ

⋆) such that H0 holds.
Using that y = β⋆ΦT (ϑ

⋆) + wT and the triangle inequality, we obtain:

|T3| =
∣

∣

∣

∣

∥

∥

∥β̂
∥

∥

∥

ℓ1
− ‖β⋆‖ℓ1 + ‖β⋆‖ℓ1 − 〈β⋆ΦT (ϑ

⋆), p0〉L2(λT ) − 〈wT , p0〉L2(λT )

∣

∣

∣

∣

(76)

≤
∣

∣

∣

∣

∥

∥

∥
β̂
∥

∥

∥

ℓ1
− ‖β⋆‖ℓ1

∣

∣

∣

∣

+ |B|+
∣

∣

∣
〈wT , p0〉L2(λT )

∣

∣

∣
,

where:

(77) B = ‖β⋆‖ℓ1 − 〈β⋆ΦT (ϑ
⋆), p0〉L2(λT ) .

Since Q⋆,+ ⊆ Q0,+, Q⋆,− ⊆ Q0,−, we have for all k ∈ {1, · · · , s}:
|β⋆

k | − 〈β⋆
kφT (θ

⋆
k), p0〉L2(λT ) = 0,

we deduce that B = 0 under H0. Hence, we have that:

(78) E(β⋆, ϑ⋆)[ΨT3(t)] ≤ P

(∣

∣

∣

∣

∥

∥

∥β̂
∥

∥

∥

ℓ1
− ‖β⋆‖ℓ1

∣

∣

∣

∣

> t/2

)

+ P

(∣

∣

∣〈wT , p0〉L2(λT )

∣

∣

∣ > t/2
)

.

Recall that under H0, we have s ≤ s0. Therefore, since C3 κ s0 ≤ t/2, we have C3 κ s ≤ t/2. We get from
Theorem 2.3 that:

(79) P

(∣

∣

∣

∣

∥

∥

∥β̂
∥

∥

∥

ℓ1
− ‖β⋆‖ℓ1

∣

∣

∣

∣

> t/2

)

≤ C2
(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

.

Then, thanks to Assumptions 1.1 and Lemma 4.2, the quantity 〈wT , p0〉L2(λT ) is a centered Gaussian random

variable of variance bounded by σ2C2
B∆T s0 where CB is the finite positive constant from Lemma 4.2. Hence

we have, provided that t ≥ 2C3 κ s0 with κ ≥ C1σ
√

∆T log(τ), that is, t2 ≥ (2C1C3σs0)2∆T log(τ):

P

(

〈wT , p0〉L2(λT ) > t/2
)

≤
∫ +∞

t/2

e−x2/(2σ2∆TC2
Bs0)

√

2πσ2∆TC2
Bs0

dx ≤ 1

2
e
− t2

8(σ2∆T C2
B

s0) ≤ 1

2τas0
,

with a = (C1C3/CB)
2/2 and where we used the tail bound (45). It gives by symmetry that:

(80) P

(

| 〈wT , p0〉L2(λT ) | > t/2
)

≤ 1

τa s0
.

Plugging (79) and (80) in (78), we get:

(81) sup
(β⋆, ϑ⋆)∈H0

E(β⋆, ϑ⋆) [ΨT3(t)] ≤ C2
(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

+
1

τa s0
·
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We now bound the type II error probability. Assume that H1 holds, that is DT,r(β
⋆, ϑ⋆, v0, ϑ0) ≥ ρ. We

have, using the first equality of (76) and the triangle inequality, that:

|T3| ≥ |B| −
∣

∣

∣〈wT , p0〉L2(λT )

∣

∣

∣−
∣

∣

∣

∣

∥

∥

∥β̂
∥

∥

∥

ℓ1
− ‖β⋆‖ℓ1

∣

∣

∣

∣

,

with B defined in (77). Using the definitions (67) of S(r) and Sǫ
k(r) with ǫ ∈ {−1,+1} and k ∈ Iǫ, we get:

B =
∑

ǫ∈{−1,+1}
k∈Iǫ, ℓ∈Sǫ

k(r)

|β⋆
ℓ |
(

1− sign(β⋆
ℓ ) 〈φT (θ⋆ℓ ), p0〉L2(λT )

)

+
∑

k∈S(r)c

|β⋆
k|
(

1− sign(β⋆
k) 〈φT (θ⋆k), p0〉L2(λT )

)

.

Thanks to Lemma 4.2 (i)-(ii) of , we obtain:

B ≥
∑

ǫ∈{−1,+1}
k∈Iǫ, ℓ∈Sǫ

k(r)

CN |β⋆
ℓ |dT (θ⋆ℓ , θ0k)2 +

∑

k∈S(r)c

CF |β⋆
k |

≥ (CN ∧CF )DT,r(β
⋆, ϑ⋆, v0, ϑ0) ≥ (CN ∧ CF )ρ,

where the constants CN and CF are defined in Lemma 4.2 and depend on r and on the function F . Therefore,
we have with at = (CN ∧ CF )ρ− t:

E(β⋆,ϑ⋆) [1−ΨT3(t)] ≤ P

(

∣

∣

∣
〈wT , p0〉L2(λT )

∣

∣

∣
+

∣

∣

∣

∣

‖β⋆‖ℓ1 −
∥

∥

∥
β̂
∥

∥

∥

ℓ1

∣

∣

∣

∣

≥ at

)

≤ P

(∣

∣

∣〈wT , p0〉L2(λT )

∣

∣

∣ ≥ at/2
)

+ P

(∣

∣

∣

∣

‖β⋆‖ℓ1 −
∥

∥

∥β̂
∥

∥

∥

ℓ1

∣

∣

∣

∣

≥ at/2

)

.

Provided that ρ ≥ C4 s κ+ C5 t with C4 = 2 C3/(CN∧CF ) and C5 = 2/(CN∧CF ) we have at/2 ≥ (C3κs)∨(t/2).
By using (79) and (80), we obtain:

(82) sup
(β⋆, ϑ⋆)∈H1(ρ)

E(β⋆, ϑ⋆) [1− ΨT3(t)] ≤ C2
(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

+
1

τas0
.

Finally, by adding both sides of (81) and (82), we get (74). This concludes the proof. �

4.4. Separation rates. We give in this section an upper bound on the minimax separation ρ⋆ to test the
goodness-of-fit of the dictionary, that is to distinguish the assumptions H0 and H1(ρ) presented in Section 4.

Corollary 4.4. Under the framework and the assumptions of Theorem 4.3, there exist finite positive con-
stants c and C (depending on r and the function F ) such that provided that |ΘT |/σT ≥ 1, we have for any
α ∈ (0, 1):

(83) ρ⋆(α) ≤ C σ (s ∨ s0)
√

∆T log

(

c |ΘT |
ασT

)

.

Proof. The result is a direct consequence of Theorem 4.3. We fix the tuning parameter κ = C1σ
√

∆T log(τ)
by taking the equality in (73). Then, for ρ ≥ C4 s κ+ C5 t and t = 2 C3 s0κ we have by Theorem 4.3 for τ > 1
and since s0 ≥ 1:

R⋆
ρ ≤ Rρ (ΨT3(t)) ≤ 2C2

(

|ΘT |
σT τ

√

log(τ)
∨ 1

τ

)

+
2

τa
,

where the finite positive constants a, Ci with i ∈ {1, · · · , 5}, from Theorem 4.3 depend on r and the function
F .
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Hence, by taking τ = c′/(σTα/(2|ΘT |))c
′′

with c′′ = 1 ∨ (1/a) and c′ = (2C2) ∨ e ∨ 21/a, we get for

ρ ≥ 2C1((2 C3 C5) ∨ C4)σ(s ∨ s0)
√

∆T log(c′/(σTα/(2|ΘT |))c′′) and α ∈ (0, 1) that R⋆
ρ ≤ α

2 + α
2 = α. We

readily deduce (83) with c = 2c′(1/c
′′). �

5. Gaussian scaled spikes deconvolution

In this section, we consider the discrete time process observed on a regular grid given in Section 1.2.1.
We recall that Assumption 1.1 holds with:

λT = ∆T

T
∑

j=1

δtj with tj = −bT + j∆T and ∆T =
2bT
T
,

and wT given by (5), where T ∈ N
∗. We consider the scaled Gaussian features associated to the function:

h(t, σ) 7→ exp(−t2/2σ2)

π1/4σ1/2
defined on Θ×S = R× R

∗
+.

We shall see below that the natural choice for the function F appearing in (10) is given by:

F = h0 ∗ h0 = h0(·/
√
2) with h0(·) = h(·, 1).

In the following, we check that Assumption 2.4 holds. Then, using Theorem 2.3 on a particular example,
we provide a prediction bound for the estimator of (β⋆, ϑ⋆) solution of the optimization problem (28).

5.1. Choice of the approximating kernel. We denote the unscaled feature ϕ0 on θ ∈ Θ by:

ϕ0(θ) = h(θ − ·, 1) = h0(θ − ·).
We define the mapping fT : Θ → Θ by fT (θ) = θ/σT for any θ ∈ Θ and the (pushforward) measure
λ0T = λT ◦ f−1

T so that for any g ∈ L1(λ0T ):
∫

g(θ/σT )λT (dθ) =

∫

g(θ)λ0T (dθ).

The Hilbert space L2(λ0T ) is endowed with its natural scalar product 〈·, ·〉L2(λ0
T
) and norm ‖·‖L2(λ0

T
). We

define on Θ2 the kernel:

K0
T (θ, θ

′) = 〈φ0T (θ), φ0T (θ′)〉L2(λ0
T
) with φ0T (θ) = ϕ0(θ)/

∥

∥ϕ0(θ)
∥

∥

L2(λ0
T
)
.

The kernel KT can be seen as a scaled kernel derived from K0
T as for any θ, θ′ ∈ Θ:

KT (θ, θ
′) = K0

T (θ/σT , θ
′/σT ).

When the measure λ0T converges in some sense, as T goes to infinity, towards the Lebesgue measure Leb on
R, it is natural to consider the approximation K0

∞ of K0
T on Θ2 by:

K0
∞(θ, θ′) =

〈

φ0∞(θ), φ0∞(θ′)
〉

L2(Leb)
with φ0∞(θ) = ϕ0(θ)/

∥

∥ϕ0(θ)
∥

∥

L2(Leb)
.

Thanks to the definition of F , we also have on Θ2 that:

F (θ − θ′) = K0
∞(θ, θ′).

The approximating kernel Kprox
T is then given by (10) on Θ2.

5.2. Checking Assumption 2.4.

5.2.1. Regularity of the dictionary. We refer to [5, Section 8] to check that Assumption 2.4 (i) holds for the
feature ϕT defined by (1) and any scale parameter σT ∈ S = R

∗
+.
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5.2.2. Boundedness and local concavity on the diagonal. Elementary calculations show that g∞ = −F ′′(0) =
1/2. By definition of F , we directly deduce that Assumption 2.3 holds. We also get that for r ∈ (0,

√
2):

ε(r) = 1− e−r2/4 > 0 and ν(r) =

(

1− r2

2

)

e−r2/4 .

We fix r ∈ (0, 1/2). We readily check that Assumption 2.4 (ii) is verified.

5.2.3. Proximity to the approximating kernel. In order for the kernel Kprox
T to be a good approximation of KT

in the sense of Assumption 2.4 (iii), we shall consider the set ΘT over which the optimization is performed:

ΘT = [(1− ξ)aT , (1− ξ)bT ] ⊂ [aT , bT ] with a given shrinkage parameter ξ ∈ (0, 1).

Intuitively, one does not expect the estimation of the location parameter to perform well near the lower and
upper bounds of the observation grid (given by the support of λT ). Following [5, Section 8], we set:

(84) γT = 2∆T σ
−1
T +

√
π e−ξ2b2T /2σ2

T .

Recall VT and CT defined by (20) and (22). Using Lemma [5, Lemma 8.1], there exist finite positive
universal constants c0, c1 and c2, such that γT < c0 implies:

(85) VT ≤ c1γT and |1− CT | ≤ c2γT .

Assume that (bT , T ≥ 2) and (σT , T ≥ 2) are sequences of positive numbers, such that:

(86) lim
T→∞

bT = +∞, lim
T→∞

σT = 0 and lim
T→∞

∆T σ
−1
T = 0.

Therefore, we have limT→+∞ VT = 0 and limT→+∞ CT = 1.

Let η ∈ (0, 1) be fixed. We deduce that under (86), Assumption 2.4 (iii) is satified provided that T is
larger than some constant depending on η, r, the sparsity s and the sequences (bT , T ≥ 2) and (σT , T ≥ 2).

5.2.4. Separation of the non-linear parameters. We remark that limr′′→∞ sup|r′|≥r′′ |F (i)(r′)| = 0 for all

i ∈ {0, . . . , 3}. Thus, we deduce from the definition (25) of δ that δ(u, s) is finite for all s ∈ N
∗ and u > 0.

Let us stress that sups∈N∗ δ(u, s) ≤M/u for some universal finite constantM , see [5, Remark 8.2]. Therefore,
the quantity Σ(η, r, s) is bounded by a constant depending only on η and r.

So Assumption 2.4 (iv) is verified as soon as |θ − θ′| > σT Σ(η, r, s) for all for all θ 6= θ′ ∈ Q⋆. (Notice
this happens for the scaling parameter σT small enough depending on Q⋆.)

5.3. Prediction error bound in a particular case. Recall the shrinkage parameter ξ ∈ (0, 1) in (84).
Let us assume that:

bT = log(T ) and σT = 1/
√

ξ log(T ).

In particular, condition (86) holds. In this case, there exists a finite positive constant c depending on r, η

and ξ such that for T ≥ c
√

log(T ) s, Assumption 2.4 holds (notice that the separation condition (27) of the
location parameters in Q⋆ is also verified for T large enough, depending on Q⋆, as limT→+∞ σT = 0). By
Theorem 2.3 with τ = T and κ given by the equality in (29), we get that:

1√
T

∥

∥

∥β̂ΦT (ϑ̂)− β⋆ΦT (ϑ
⋆)
∥

∥

∥

ℓ2
≤ C0 C1 σ

√

s log(T )

T
,

with probability larger than 1−C2
(

2
√
ξ log(T )
T ∨ 1

T

)

, where the constants C0, C1 and C2 do not depend on T .
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6. Low-pass filter

In this section, we consider the continuous-time process described in Section 1.2.2 on the torus Θ = R/Z
with λT = Leb the Lebesgue measure on Θ and the noise:

wT =
∑

k∈N

√

ξk Gk ψk,

where (Gk, k ∈ N) are independent centered Gaussian random variables with variance σ2, (ψk, k ∈ N) is an
o.n.b. of L2(Leb) on Θ and ξ = (ξk, k ∈ N) is a square summable sequence of non-negative real numbers
depending on T ∈ 2N∗ + 1. Recall that the noise satisfies Assumption 1.1 for a positive noise level σ and a
decay on the noise variance ∆T = supk∈N ξk.

We consider the normalized Dirichlet kernel, see (8), on Θ:

(87) h(t, σ) =
sin(Tπt)√
T sin(πt)

defined for t ∈ Θ = R/Z and σ =
1

T
, T ∈ 2N∗ + 1.

The parameter T is related to the so-called cut-off frequency fc ∈ N
∗ by T = 2fc + 1. We shall see below

that the natural choice for the function F appearing in (10) is given by:

F (t) =
sin(πt)

πt
for t ∈ R.

We get from the definition (15) that g∞ = −F ′′(0) = π2/3.

In the following, we check that Assumption 2.4 hold. Then, using Theorem 2.3, we provide a prediction
bound for the estimator of (β⋆, ϑ⋆) solution of the optimization problem (28).

6.1. The approximating kernel. We define the features ϕT using (1) with σT = 1/T . Elementary calcu-
lations give that for θ, θ′ ∈ Θ:

KT (θ, θ
′) =

sin(Tπ(θ − θ′))

T sin(π(θ − θ′))
·

Recall that by convention |θ − θ′| is the Euclidean distance between θ and θ′ in Θ, and in particular it
belongs to [0, 1/2]. We define the approximating kernel Kprox

T on Θ by:

Kprox
T (θ, θ′) = F (T |θ − θ′|) with |θ − θ′| ∈ [0, 1/2].

Since F is even, we get also that F (T |θ − θ′|) = F (T (θ − θ′)) where, for θ, θ′ ∈ Θ, their representers in R a
chosen so that θ − θ′ belongs to [−1/2, 1/2].

6.2. Checking Assumption 2.4.

6.2.1. Regularity of the dictionary. It is elementary to check that gT is a constant function on Θ equal to
g∞ (T 2 − 1) and that Assumption 2.4 (i) on the regularity of the dictionary holds.

6.2.2. Boundedness and local concavity on the diagonal. There exists R > 0 such that for any r ∈ (0, R):

ε(r) = 1− sin(πr)

πr
> 0 and ν(r) = −

(

6

π3r3
− 3

π r

)

sin(πr) +
6 cos(πr)

π2r2
> 0.

We fix r ∈ (0, (1/
√
2g∞L2) ∧ (R/2)). This and the fact that F is C∞ with bounded derivatives implies that

Assumption 2.4 (ii) on the boundedness and the local concavity of the approximating kernel holds.
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6.2.3. Proximity to the approximating kernel. We set ΘT = Θ. The proof of the next lemma on the uniform
approximation of KT by Kprox

T on the torus is postponed to Section 6.3.1.

Lemma 6.1. There exists a universal positive finite constant c3 such that for any T ∈ 2N∗ + 1:

(88) VT ≤ c3
T

and |1− CT | ≤
1

2(T 2 − 1)
·

Let η ∈ (0, 1) be fixed. We deduce from (88) that Assumption 2.4 (iii) is satified provided that T is larger
than some constant depending on η, r, the sparsity s.

6.2.4. Separation of the non-linear parameters. Notice that limr′′→∞ sup|r′|≥r′′ |F (i)(r′)| = 0 for all i ∈
{0, · · · , 3}. Thus, we deduce from the definition (25) of δ that δ(u, s) is finite for all s ∈ N

∗ and u > 0.

So Assumption 2.4 (iv) is verified as soon as |θ − θ′| > σT Σ(η, r, s) for all θ 6= θ′ ∈ Q⋆. (Notice this
happens for T large enough depending on Q⋆ as σT = 1/T .)

6.3. Prediction error bound. There exists a constant c depending on η and r such that for any T ∈ 2N∗+1
such that T ≥ c s, and provided that (27) is satisfied, Assumption 2.4 holds. Using Theorem 2.3 with κ
given by an equality in (29) with τ > 1, we obtain the prediction bound:

∥

∥

∥β̂ΦT (ϑ̂)− β⋆ΦT (ϑ
⋆)
∥

∥

∥

L2(Leb)
≤ C0 C1 σ

√

s∆T log(τ),

with probability larger than 1− C2
(

T

τ
√

log(τ)
∨ 1

τ

)

, where the constants C0, C1 and C2 do not depend on T .

Remark 6.2. Exact support recovery results were obtained in [10]. The authors considered a small noise
regime , that is ‖wT ‖L2(Leb)/κ less than a constant). They assumed that the location parameters satisfy for

any k, ℓ ∈ {1, · · · , s} such that k 6= ℓ, the separation condition |θ⋆k − θ⋆ℓ | ≥ C/fc for T = 2fc + 1, for some
positive constant C and with fc ≥ s (s being the number of active features in the mixture). They showed
that there exist finite constants C′ and C′′ such that for all k ∈ {1, · · · , s}:

|θ̃k − θ⋆k| ≤ C′‖wT ‖L2(Leb) and |β̃k − β⋆
k| ≤ C′′‖wT ‖L2(Leb),

for some estimators (β̃, ϑ̃ = (θ̃1, · · · , θ̃s)) obtained by solving the BLasso problem.
However the small noise regime assumption is restrictive as it does not encompass the example of Sec-

tion 1.2.2 where for all k ∈ N, ξk = T−11{1≤k≤T} and thus ∆T = 1/T and E[‖wT ‖L2(Leb)] is of order 1.

Recall that in (31) we obtain that our estimators satisfy:

∣

∣

∣‖ β̂‖ℓ1 − ‖ β⋆‖ℓ1
∣

∣

∣ ≤ C
s
√

log(T )√
T

for some constant C > 0 with high probability. Thus our prediction and estimation rates are smaller by a
factor

√

log(T )/
√
T due to the probabilistic bounds on linear functionals of the noise process that we used

in the proof, and this holds under analogous separation condition on any θ⋆k and θ⋆ℓ , for k 6= ℓ in {1, ..., s}.
6.3.1. Proof of Lemma 6.1. It is easy to check that the functions gT and gKprox

T
are constant functions with:

(89) gT = g∞ (T 2 − 1) and gKprox
T

= g∞ T 2.

Thus, we easily deduce the second inequality of (88) from the definition (20) of CT .

We now consider the bound on VT . For i, j ∈ {0, · · · , 3} and ℓ = i+ j, we have with αT = 1− 1/T 2:

(90) sup
Θ2

|K[i,j]
T −Kprox[i,j]

T | = g−ℓ/2
∞ (T 2αT )

−ℓ/2 sup
t∈[− 1

2 ,
1
2 ]

∣

∣

∣

∣

∂ℓt

[

DT (t) +
(

1− α
ℓ/2
T

) sin(Tπt)

Tπt

]∣

∣

∣

∣

,
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where, for t ∈ [−1/2, 1/2] and the convention J(0) = 0:

DT (t) =
sin(Tπt)

T
J(t) and J(t) =

1

sin(πt)
− 1

πt
·

It is easy to check that the function J can be expanded as a power series at 0 with positive convergence
radius, and thus is of class C∞ on [−1/2, 1/2]. Thus the following constant is finite:

M = sup
0≤ℓ≤6

sup
[−1/2,1/2]

|J (ℓ)| < +∞.

Using the Leibniz rule, we have that for ℓ ∈ {1, · · · , 6} and t ∈ [−1/2, 1/2]:

|∂ℓtDT (t)| =
1

T

∣

∣

∣

∣

∣

∣

ℓ
∑

j=0

(

ℓ

j

)

(Tπ)j sin(j)(Tπt)J (ℓ−j)(t)

∣

∣

∣

∣

∣

∣

≤M
(Tπ + 1)ℓ

T
·

We deduce from (90) that for i, j ∈ {0, · · · , 3} and ℓ = i+ j:

sup
Θ2

|K[i,j]
T −Kprox[i,j]

T | ≤ g−ℓ/2
∞ (T 2αT )

−ℓ/2

(

M
(Tπ + 1)ℓ

T
+ (1− α

ℓ/2
T )

)

≤M3ℓ T−1,

where we used that T ≥ 3 and g∞αT ≥ 1, and that 1− α
ℓ/2
T = 0 for ℓ = 0. Recall the definition (22) of VT

to get VT ≤M3ℓ T−1. This finishes the proof.
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Appendix A. Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3. Let T ∈ N and consider a positive scaling σT . In
order to prove the theorem we shall apply [5, Theorem 2.1] replacing the limit kernel, noted K∞ therein, by
the approximating kernel Kprox

T defined on Θ2 by:

(91) Kprox
T (θ, θ′) = F (|θ − θ′|/σT ).

We check that all the hypotheses of [5, Theorem 2.1] hold in our framework. Since Assumption 1.1 holds,
the noise wT is admissible and satisfies Point (i) of [5, Theorem 2.1]. Then, recall that Assumptions 2.1
and 2.2 are in force thanks to Assumption 2.4 (i). Therefore Point (ii) of [5, Theorem 2.1] on the regularity
of the dictionary ϕT is verified. We shall check Point (iii) of [5, Theorem 2.1] on the regularity of the
kernel with K∞ replaced by Kprox

T . Since Assumption 2.3 holds, we readily check that [5, Assumption 5.1]

as Kprox
T (θ, θ) = F (0) = 1 and Kprox[2,0]

T (θ, θ) = F ′′(0)/g∞ = −1. Thus, Points (iii) therein holds on Θ (with
Θ∞ = Θ). Point (iv) on the proximity between the kernels KT and Kprox

T is verified since Assumption 2.4
(iii) holds and implies [5, Assumption 5.2].

It remains to show that Point (v) on the existence of certificate functions also holds. To do so, we shall
apply [5, Propositions 7.4 and 7.5] that give sufficient conditions for Point (v) to hold. Let us first focus on
the hypotheses of [5, Proposition 7.4]. We fix r ∈

(

0, 1/
√
2 g∞L2

)

(we stress that the quantities “r” and
“ρ”from [5, Propositions 7.4 and 7.5] are respectively taken equal to r

√
g∞ and 2). It is straightforward to

see that Point (i) of [5, Proposition 7.4] on the regularity of the dictionary is satisfied thanks to Assumption
2.2 and 2.1.

The Riemannian metric noted d∞ in [5] is given by, for any θ, θ′ ∈ Θ:

(92) d∞(θ, θ′) = |GKprox
T

(θ)−GKprox
T

(θ′)| =√gKprox
T

|θ − θ′| = √
g∞σ

−1
T |θ − θ′|,

where GKprox
T

is a primitive of the function
√
gKprox

T
defined by (11) and we used (18) for the second inequality.

Following [5, (Eq.39-40)], we define the quantities for r′ > 0,

ε∞(r′) = 1− sup {|Kprox
T (θ, θ′)|; θ, θ′ ∈ Θ such that d∞(θ′, θ) ≥ r′} ,

ν∞(r′) = − sup
{

Kprox[0,2]
T (θ, θ′); θ, θ′ ∈ Θ such that d∞(θ′, θ) ≤ r′

}

.

We readily check that for any r′ > 0, ε(r′/
√
g∞) = ε∞(r′) and ν(r′/

√
g∞) = ν∞(r′). Thus, ε∞(r

√
g∞/2) > 0

and ν∞(2r
√
g∞) > 0. Furthermore, Assumption 2.3 on the properties of the function F is in force which

corresponds to [5, Assumption 5.1]. Hence, Point (ii) of [5, Proposition 7.4] on the regularity of the “limit”
kernel Kprox

T holds.
Following [5, (Eq.42)], we define for u > 0:

δ∞(u, s) = inf
{

δ > 0 : max
1≤ℓ≤s

s
∑

k=1,k 6=ℓ

|Kprox[i,j]
T (θℓ, θk)| ≤ u for all (i, j) ∈ {0, 1} × {0, 1, 2}

and for all ℓ 6= k, d∞(θk, θℓ) > δ
}

.

Elementary calculations using (17) and (92) show that for any u > 0, δ∞(u, s) =
√
g∞ δ(u, s) where δ is

defined in (25). We fix u∞ = ηH
(2)
∞ (r). By assumption, we have that δ(u∞, s) < +∞. Therefore, δ∞(u∞, s)

is finite and Point (iii) of [5, Proposition 7.4] holds. Recall that we have from Assumption 2.4 (iii) that
CT ≤ 2 which gives that Point (iv) of [5, Proposition 7.4] holds with ρ = 2 therein.
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We verify Point (v) of [5, Proposition 7.4] on the proximity between the kernels KT and Kprox
T thanks to

Point (iii) of Assumption 2.4. We have verified all the assumptions of [5, Proposition 7.4]. Similarly Points
(i)− (iv) of [5, Proposition 7.5] hold with u′∞ = u∞.

Finally, acording to [5, Propositions 7.4 and 7.5] Point (v) of Theorem [5, Theorem 2.1] on the existence
of certificate functions holds for any subset Q⋆ such that for all θ 6= θ, we have

(93) dT (θ, θ) > 2max(r, 2δ∞(ηH(2)
∞ (r), s)) = 2max(r, 2 g1/2∞ δ(ηH(2)

∞ (r), s)),

where dT is defined in (19).
Recall that by assumption CT ≤ 2. Since for any θ 6= θ′ ∈ Q⋆ we get from the bound (21) on dT and

Assumption 2.4 (iv) that:

|θ − θ′|/CT > 4 σT g
−1/2
∞ max(r, 2 g1/2∞ δ(ηH(2)

∞ (r), s)).

Thus, inequality (93) holds. We deduce that Point (v) of Theorem [5, Theorem 2.1] is verified. Finally,
by [5, Theorem 2.1], there exist finite positive constants C0, C1, C′

2, C3, depending on Kprox
T and on r such

that for any τ > 0 and a tuning parameter: κ ≥ C1σ
√

∆T log(τ), we have the prediction error bound of the

estimators β̂ and ϑ̂ defined in (28) given by (30) with probability larger than 1−2
√
g∞ C′

2

(

|ΘT |
σT τ

√
log(τ)

∨ 1
τ

)

,

where the diameter |ΘT |dT
of the set ΘT with respect to the metric dT is bounded by 2

√
g∞|ΘT |/σT using

(21) and the fact that CT ≤ 2. We set C2 = 2
√
g∞ C′

2. In addition, we have (31) with the same probability.
A careful reading of the proof of Theorem [5, Theorem 2.1] shows that the constants C0, C1, C′

2, C3 appearing

in its statement depend only on the quantities Mi,j = supΘ2
∞

|Kprox[i,j]
T | with i, j ∈ {0, 1, 2, 3} and on some

contants appearing in the properties of the certificates (denoted CN , C
′
N , CF , CB, cN , cF , cB in [5]). By [5,

Propositions 7.4 and 7.5], we have that the latter depend only on ε∞(r
√
g∞), ν∞(r

√
g∞) and Mi,j with

i, j ∈ {0, 1, 2, 3}. We readily show, using (17) to see that Mi,j depend only on F , that they do not depend
on T but on only r and F . This finishes the proof.
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Email address: jean-francois.delmas@enpc.fr

Anne Dutfoy, EDF R&D, Palaiseau, France
Email address: anne.dutfoy@edf.fr

Clément Hardy, CERMICS École des Ponts and EDF R&D Palaiseau, France
Email address: clement.hardy@enpc.fr


	1. Introduction
	1.1. Model
	1.2. Examples of Gaussian noise processes
	1.3. Description of the results
	1.4. Previous work
	1.5. Roadmap of the paper

	2. Assumptions and prediction bounds
	2.1. Regularity of the features
	2.2. Examples of feature functions
	2.3. Definition of the kernel and its approximation
	2.4. Boundedness and local concavity on the diagonal of the approximating kernel
	2.5. Prediction error bound

	3. Goodness-of-fit for the mixture model
	3.1. Test problem
	3.2. Main results
	3.3. Minimax separation rates for signal detection

	4. Goodness-of-fit of the dictionary
	4.1. A measure of discrepancy between dictionaries
	4.2. The testing hypotheses
	4.3. Main result
	4.4. Separation rates

	5. Gaussian scaled spikes deconvolution
	5.1. Choice of the approximating kernel
	5.2. Checking Assumption 2.4
	5.3. Prediction error bound in a particular case

	6. Low-pass filter
	6.1. The approximating kernel
	6.2. Checking Assumption 2.4
	6.3. Prediction error bound

	References
	Appendix A. Proof of Theorem 2.3

