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Abstract. We summarize and extend some of the results obtained recently
for the microscopic and macroscopic behavior of a pinned harmonic chain,
with random velocity flips at Poissonian times, acted on by a periodic
force at one end and in contact with a heat bath at the other end. Here
we consider the case where the system is in contact with two heat baths at
different temperatures and a periodic force is applied at any position. This
leads in the hydrodynamic limit to a heat equation for the temperature
profile with a discontinuous slope at the position where the force acts.
Higher dimensional systems, unpinned cases and anharmonic interactions
are also considered.
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1 Introduction

Nature has a hierarchical structure with macroscopic behavior arising from
the dynamics of atoms and molecules. The connection between different
levels of the hierarchy is however not always straightforward, as seen in
the emergent phenomena, such as phase transitions and heat convection.
Establishing in a mathematical precise way the connection between the
different levels is the central problem of rigorous statistical mechanics.

The derivation of macroscopic behavior from microscopic models by
suitable scaling of space and time is a field of science to which Errico
has made seminal contributions both for equilibrium and nonequilibrium
systems. In this work, which owes a lot to what we have learned from him,
we study the transition from microscopic to macroscopic systems in the
context of the conversion of work to heat. The conversion of mechanical
energy into heat was demostrated by Joule’s famous experiment in the
1840’s. Joule dropped weights turning a paddle wheel immersed in water.
The friction generated heat which he could measure and quantify.

In some recent works on this subject we carried out a rigorous mathe-
matical analysis of a simple microscopic model for this common phenom-
ena. In articles [5, 6], we considered a pinned harmonic chain on which
work is done at the right end by an external periodic force. This work
is converted into heat via an energy current flowing into a heat reservoir
at the left end of the chain. In order to make this system mirror realistic
physical systems with a finite heat conductivity we added to the bulk dy-
namics a random reversal of the velocity of each particle at a rate γ (the
pure harmonic crystal is well known to have an infinite heat conductivity,
see e.g. [9]). The precise description of the model is given in Section 2.
Starting with an initial distribution on the phase space, we have shown
that the system approaches a unique periodic state at long times. We
have also obtained, in the hydrodynamical diffusive scaling limit, a heat
equation for the temperature profile of the chain.

As a consequence of the presence of the periodic forcing, a constant en-
ergy flux, equal to the work done by the force, emerges on the macroscopic
scale, as well as a boundary condition on the derivative of the temperature
profile (Neumann boundary condition), such that Fourier law is satisfied
with respect to this energy flux. In 3 we review these results and we
present a generalization where the periodic force is applied at any posi-
tion inside the system, generating Neumann type of boundary conditions
in the bulk. We should mention the pioneering work by Errico and col-
laborators [4] where current reservoirs are attached to the boundary of
an open symmetric simple exclusion dynamics, that originate non-linear
Dirichlet boundary conditions.

In Section 4 we review a work in preparation about the unpinned dy-
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namics [7]. In this situation there are two locally conserved quantities,
energy and volume stretch, and the macroscopic evolution is governed by
a coupled system of two diffusive equations, see (46) below. In the ab-
sence of periodic forcing this problem was previously studied in [8]. In
Section 5 we review the generalization to higher dimension, also a work
in preparation, as the proof is not a straightforward generalization of the
one-dimensional case. In Section 6 we describe few results and some con-
jectures about the anharmonic case.

Acknowledgements. The work of J.L.L. was supported in part by the
A.F.O.S.R. He thanks the Institute for Advanced Studies for its hospitality.
T.K. acknowledges the support of the NCN grant 2020/37/B/ST1/00426.
This project is partially supported by the ANR grant MICMOV (ANR-
19-CE40-0012) of the French National Research Agency (ANR), and by
the European Union with the program Fonds européen de développement
régional.

2 Description of the model

We consider a pinned chain of n+1 harmonic oscillators in contact with a
Langevin heat bath at temperature T− on the left and another Langevin
heat bath at temperature T+ on the right. In addition there is a periodic
force acting on the particle labeled by [nu], where u ∈ [0, 1] and [a] denotes
the integer part of a positive real number a. The configuration of particle
positions and momenta is described by

(q,p) = (q0, . . . , qn, p0, . . . , pn) ∈ Rn+1 × Rn+1. (1)

The total energy of the chain is given by the Hamiltonian: Hn(q,p) :=∑n
x=0 Ex(q,p), where the energy of particle x is defined by

Ex(q,p) :=
p2x
2

+
1

2
(qx − qx−1)

2 +
ω2
0q

2
x

2
, x = 0, . . . , n, (2)

where ω0 > 0 is the pinning strength. We adopt the convention that
q−1 := q0.

The microscopic dynamics of the process {(q(t),p(t))}t⩾0 describing
the total chain is given in the bulk by

q̇x(t) = px(t), x ∈ {0, . . . , n},
dpx(t) =

(
∆Nqx − ω2

0qx
)
dt− 2px(t−)dNx(γt) + δx,[nu]Fn(t)dt,

(3)
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q0 q1 qnqn−1qx−1 qx qx+1

rx

T− T+Fn(t)

for x ∈ {1, . . . , n− 1}, and at the boundaries the equations are

dp0(t) =
(
q1(t)− q0(t)− ω2

0q0(t)
)
dt− 2γ−p0(t)dt+

√
4γ−T−dw̃−(t)

(4)

dpn(t) =
(
qn−1(t)− qn(t)− ω2

0qn(t)
)
dt− 2γ+pn(t)dt+

√
4γ+T+dw̃+(t).

Here ∆Nqx = qx+1 + qx−1 − 2qx is the Neumann discrete Laplacian,
corresponding to the choice of the boundary conditions qn+1 := qn and
q−1 := q0. Processes {Nx(t), x = 1, . . . , n − 1} are independent Poisson
processes of intensity 1, while w̃±(t) are two independent standard Wiener
processes, independent of the Poisson processes. Parameters γ > 0, γ± ⩾ 0
regulate the intensity of the random perturbations and the Langevin ther-
mostats.

Finally, we assume that the forcing Fn(t) is θn-periodic, with the period
θn = nbθ, and the amplitude n−a, i.e.

Fn(t) =
1

na
F
(

t

nbθ

)
+ F (5)

where F(t) is a smooth 1-periodic function such that∫ 1

0

F(t)dt = 0,

∫ 1

0

F(t)2dt > 0. (6)

The constant part of the forcing F does not influence the macroscopic
behavior of energy in the pinned case, but it is important in the unpinned
case where tension of the chain is a relevant parameter, as it can be seen
in 4 below.

In order to ensure stability of the system in the limit n → ∞ we need
to assume that the parameters a, b satisfy

a ⩾ 0, b ⩾ 0, b+ a =
1

2
. (7)
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The choice b = 0 corresponds to a fixed period θ independent of n, i.e. the
periodic forcing acts on a microscopic time, then we need to set a = 1

2 in
order to have an average work done of order 1

n (see (11) for the definition).
In fact the maximum of energy current the system can hold without ex-
ploding should be of order 1

n , and the work done has to be of the same
order. With the choice 0 < b < 1

2 , the periodic forcing is acting on meso-
scopic time scales and in order to keep the average work done of order 1

n
we need to choose a = 1

2 − b.

3 The pinned dynamics: ω0 > 0

In the presence of the pinning force, ω0 > 0, the system is not translation
invariant and the only conserved quantity in the bulk is the energy.

The microscopic energy currents are given by

d

dt
Ex(t) = jx−1,x(t)− jx,x+1(t) + δx,[nu]Fn(t)px(t), (8)

with

jx,x+1(t) := −px(t)(qx+1(t)− qx(t)), if x ∈ {0, ..., n− 1} (9)

and at the boundaries

j−1,0(t) := 2γ−
(
T− − p20(t)

)
, jn,n+1(t) := −2γ+

(
T+ − p2n(t)

)
. (10)

The work done up to time t by the periodic force is given by

Wn(t) =

∫ t

0

Fn(s)p[nu](s)ds, (11)

where we adopt the usual sign convention that positive work means energy
going into the system.

Consider an initial configuration given by (q,p), and denote by E =
Eq,p the expectation of the process with this initial configuration. Thanks
to the assumption (7) we expect that, for large n, the average work per
unit time is of order 1/n. In fact, the limit can be computed explicitly and
for diffusive times n2t equals:

lim
n→∞

1

n
Eq,p

(
Wn(n

2t)
)
= tW, t > 0, (12)

where W is independent of q,p, n and t. More precisely it is given by
(cf. [6, Theorem 2.1 and Remark 2.3]):

W =

(
2π

θ

)2∑
ℓ∈Z

ℓ2Q(ℓ), (13)
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where Q(ℓ) is explicit: if b = 0 (and a = 1
2 ) then

Q(ℓ) = 4γ|F̂(ℓ)|2
∫ 1

0

cos2
(πz

2

)

×


[
4 sin2

(πz
2

)
+ ω2

0 −
(
2πℓ

θ

)2
]2

+

(
4γπℓ

θ

)2


−1

dz

(14)
while if b > 0 then

Q(ℓ) = 4γ|F̂(ℓ)|2
∫ 1

0

cos2
(πz

2

) [
4 sin2

(πz
2

)
+ ω2

0

]−2

dz. (15)

Note that the latter case corresponds to (14) with limn→+∞ θn = +∞.
Here

F̂(ℓ) =

∫ 1

0

e−2πiℓtF(t)dt, ℓ ∈ Z. (16)

Note that by (6) we have F̂(0) = 0. We moreover assume that∑
ℓ

|F̂(ℓ)| < ∞. (17)

Notice that W > 0 if
∑

ℓ ̸=0 |F̂(ℓ)| > 0 and it does not depend on T± nor
on u.

In [6] we have studied the macroscopic evolution of the temperature
profile in the diffusive space-time scaling in the case γ+ = 0 and the
periodic force acting on the last particle (i.e. u = 1). We have assumed
that the initial configuration of the particles is random with a distribution
satisfying an entropy bound. More precisely, define the Gibbs measure

νT−(dq,dp) :=
1

Z

n∏
x=0

exp

{
−Ex(q,p)

T−

}
dqdp, (18)

where Z is the normalizing constant. Let µn(t) be the probability law
of (q(n2t),p(n2t)). We suppose that the initial distribution µn(0) has a
density fn(0) with respect to νT− that belongs to C2(R2(n+1)) – the space
of functions with two continuous derivatives. By the standard regularity
theory for SDEs then µn(t) possesses a C2 regular density fn(t,q,p) with
respect to νT− . We then denote by

Hn,T−(t) :=

∫
Ωn

fn(t,q,p) log fn(t,q,p)νT−(dq,dp) (19)
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the relative entropy of µn(t) w.r.t. νT− . We assume that there exists a
constant C > 0 such that the relative entropy satisfies

Hn,T−(0) ⩽ Cn for all n ⩾ 1. (20)

Furthermore we suppose that there exists a continuous function T0 : [0, 1] →
(0,+∞) such that

lim
n→∞

1

n+ 1

∑
x

φ

(
x

n+ 1

)
E
(
Ex(0)

)
=

∫ 1

0

φ(u)T0(u)du, (21)

for any φ ∈ C[0, 1] – the space of continuous functions on [0, 1]. Here
and in the following we denote Ex(t) = Ex(q(t),p(t)). Following the same
argument as in [6], and assuming that γ+ > 0, γ− > 0 (both heat bath are
present), we find that

lim
n→∞

1

n+ 1

∑
x

φ

(
x

n+ 1

)
E
(
Ex(n2t)

)
=

∫ 1

0

φ(u)T (t, u)du, (22)

where T (t, u) is the solution of the heat equation

∂tT = Dγ∂
2
uT, u ∈ (0, 1), (23)

with T (0, u) = T0(u) and with the following boundary conditions:

• if u ∈ (0, 1)

T (t, 0) = T−, T (t, 1) = T+,

∂uT (t, u
−)− ∂uT (t, u

+) =
W
Dγ

,
(24)

• if u = 0 or 1, then the force does not influence the hydrodynamic
limit, since all the energy generated by the work flows into the cor-
responding heat bath, and the boundary conditions are only given
by

T (t, 0) = T−, T (t, 1) = T+.

Moreover, in the case one thermostat is absent, say γ+ = 0, the boundary
conditions become the following:

• if u ∈ (0, 1)

T (t, 0) = T−, ∂uT (t, 1) = 0,

∂uT (t, u
−)− ∂uT (t, u

+) =
W
Dγ

,
(25)
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• if, for instance, u = 1 then we have

T (t, 0) = T−, ∂uT (t, 1) =
W
Dγ

. (26)

This last case (26) is proven in [6], while the boundary conditions (24) and
(25) can be proved by a very similar argument.

The diffusion coefficient D is not influenced by the boundary conditions
and it is given in all cases explicitly by the formula

Dγ =
1

4γ
ω2
0

(
Gω0

(0) +Gω0
(1)
)
=

1

4γ

2

2 + ω2
0 + ω0

√
ω2
0 + 4

. (27)

Here Gω0
(x) =

(
ω2
0 −∆

)−1
(x), where ∆ is the standard discrete Laplacian

on Z. The thermal diffusion coefficient Dγ can also be expressed by a
different formula, that arises from the kinetic limit, related to this model
[1]. Namely,

Dγ =
1

4γ
2π2

∫ 1

0

[ω′(k)]
2
dk, (28)

where ω(k) =
√
ω2
0 + 4 sin2(πk) is the dispersion relation of the near-

est neighbor pinned harmonic chain. The expression (28) gives a general
formula for the thermal diffusion for more general harmonic chains char-
acterized by the dispersion relation ω(k).

In [6] it is also proven an equipartition law for both the kinetic and po-
tential energies. It implies in particular that the limit for the temperature
profile equals twice the limit of the average of the kinetic energy, i.e.

lim
n→∞

1

n+ 1

∑
x

φ

(
x

n+ 1

)
E
(
p2x(n

2t)
)
=

∫ 1

0

φ(u)T (t, u)du, (29)

3.1 Clausius inequality
From the evolution of the relative entropy, if γ+ = 0 we get the following
inequality

1

n

(
Hn,T+

(t)−Hn,T+
(0)
)
⩽

1

nT−
E
(
Wn(n

2t)
)
. (30)

By Fourier’s law (see (23)) the macroscopic current at the right endpoint
equals −(D/4γ)

∫ t

0
∂uT (s, 1)ds, and we obtain the following inequality in

the macroscopic limit:

lim
n→+∞

1

n

(
Hn,T+(t)−Hn,T+(0)

)
⩽

tW
T−

. (31)
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3.2 Stationary periodic state
We define a periodic stationary probability measure {µP

t , t ∈ [0,+∞)} for
the dynamics of the chain as a solution of the forward equation ∂tµ

P
t =

G∗
t µ

P
t such that µP

t+θn
= µP

t , where G∗
t is the adjoint of the generator Gt

of the dynamics. This condition is equivalent with∫ θn

0

ds

∫
R2(1+n)

GsF (r,p)µP
s (dq,dp) = 0, (32)

for any smooth test function F . Using the contraction principle, in a man-
ner similar to the proof of the existence and uniqueness of self-consistent
reservoirs for a harmonic crystal (see [3, Theorem 3.1]) one can prove
that for a fixed n ⩾ 1 there exists a unique θn-periodic stationary state
{µP

s , s ∈ [0,+∞)} for the system (3)-(4). The measures µP
s are absolutely

continuous with respect to the Lebesgue measure dqdp and the density
µP
s (dq,dp) = fP

s (q,p)dqdp is strictly positive. This has been shown in
the case γ+ = 0 and u = 1 in [5, Theorem 1.1].

Suppose that {(q(t),p(t))}t⩾0 is the solution of (3)-(4) initially dis-
tributed according to µP

0 . Given a measurable function F : R2(n+1) → R
integrable w.r.t. each measure {µP

s , s ∈ [0,+∞)} we denote

F (t) := EµP
0

(
F
(
q(t),p(t)

))
=

∫
R2(n+1)

F (q,p)µP
t (dq,dp), t ⩾ 0, (33)

where EµP
0

is the expectation corresponding to the initial data distributed
according to µP

0 . The function F (t) is θn-periodic. We denote its time
average by

⟨⟨F ⟩⟩ := 1

θn

∫ θn

0

F (t)dt. (34)

3.3 The macroscopic stationary state
In the general case the stationary temperature profile, corresponding to
(23) and (24), is given by

Tss(u) =

[
T− +

(
W
Dγ

(1− u) + T+ − T−

)
u

]
1u⩽u

+

[
T+ +

(
W
Dγ

u− T+ + T−

)
(1− u)

]
1u>u.

(35)

If the right heat bath is absent, i.e. γ+ = 0 (then the boundary condition
(25) holds), then

Tss(u) =

[
T− +

W
Dγ

u

]
1u⩽u +

[
T− +

W
Dγ

u

]
1u>u. (36)
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Finally, if γ+ = 0 and u = 1 corresponding to the boundary condition
(26), then it has been proved in [5, Theorem 3.3] that for any φ ∈ C[0, 1]:

lim
n→∞

1

n+ 1

n∑
x=0

φ

(
x

n+ 1

)
⟨⟨p2x⟩⟩ = lim

n→∞

1

n+ 1

n∑
x=0

φ

(
x

n+ 1

)
⟨⟨Ex⟩⟩

=

∫ 1

0

φ(u)Tss(u)du,

(37)
with the stationary profile given by

Tss(u) = T− +
W
Dγ

u. (38)

Notice that when γ → 0 we have that Tss(u) → T− in (36) and (38),
while Tss(u) → (T+ − T−)u+ T− in (35). This does not correspond to the
stationary situation with γ = 0, cf. [9] for the case in absence of periodic
forcing.

Furthermore, in [5, Theorem 9.1], we prove that in the case when the
period of the force is of a fixed microscopic size (i.e. b = 0 and a = −1/2)
the fluctuations of the kinetic energy functional vanish, i.e. there exists a
constant C > 0 such that

n∑
x=0

∫ θ

0

(
p2x(t)− ⟨⟨p2x⟩⟩

)2
dt ⩽

C

n2
, n = 1, 2, . . . (39)

4 The unpinned dynamics: ω0 = 0

When the system is unpinned, i.e. ω0 = 0, it is translational invariant and
one should consider only the relative distance between the particles. We
introduce the variables

rx := qx − qx−1, x = 1, . . . , n, (40)

sometimes referred to as the volume stretch. In this situation there are
two conserved quantities in the bulk: the energy Ex = 1

2 (p
2
x + r2x) and

the volume rx. The hydrodynamic limit for this unpinned dynamics with
Langevin heat bath at both endpoints has been studied in [8]. In [7] we
consider the situation when the force is applied at the right endpoint of
the chain and the only heat bath is located at its left endpoint. The
microscopic dynamics of the process {(r(t),p(t))}t⩾0 describing the total
chain is given by

ṙx(t) = px(t)− px−1(t)

dpx(t) = (rx+1(t)− rx(t))dt− 2px(t
−)dNx(γt) + δx,nFn(t)dt,

(41)
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for x = 1, . . . , n and at the left boundary

dp0(t) = r1dt− 2γ−p0(t)dt+
√
4γ−T−dw−(t). (42)

Here the force is given by (5). We use the convention r0 = rn+1 := 0. One
can immmediately see, from the first equation of (41), that rx is a second
(locally) conserved quantity besides the energy.

The energy currents are again given by (9) and (10). The work per-
formed by the force is again given by (11). We have

lim
n→∞

1

n
Er,p

(
Wn(n

2t)
)
= tW (43)

where W is independent of t and (r,p) – the initial configuration of
stretches and momenta. In the case a = 1/2 and b = 0 it is given by
(see [7] in preparation):

W = Wmech +WQ, (44)

where

Wmech :=
F

2

2γ
, WQ :=

∑
ℓ∈Z

(
2πℓ

θ

)2

Q(ℓ),

correspond to the mechanical and thermal parts of the work performed on
the system. Here Q(ℓ) is given by (14), setting ω0 = 0. In the case b > 0,
we have a+ b/4 = 1/2 and W is given by (44) with the same formula for
Wmech and

WQ := 2
∑
ℓ∈Z

(π|ℓ|
γθ

)1/2|F̂(ℓ)|2.

To formulate the hydrodynamic limit we assume, besides (20) and (21),
that for any test function φ ∈ C[0, 1] we have

lim
n→+∞

1

n+ 1

n∑
x=0

E
(
p2x(0)

)
φ

(
x

n+ 1

)
=

∫ 1

0

T0(u)φ(u)du,

lim
n→+∞

1

n+ 1

n∑
x=0

E
(
rx(0)

)
φ

(
x

n+ 1

)
=

∫ 1

0

r0(u)φ(u)du.

(45)

In addition, if we assume that a = 1/2 and b = 0, then(
E
(
p2x(n

2t)
)
,E
(
rx(n

2t)
))

x=0,...,n



66 T. Komorowski, J. L. Lebowitz, S. Olla, M. Simon

converge weakly, cf. (37), to (T (t, u), r(t, u)), the unique solution of the
following system

∂tT (t, u) =
1

4γ
∂uuT (t, u) +

1

2γ
(∂ur(t, u))

2

∂tr(t, u) =
1

2γ
∂uur(t, u), (t, u) ∈ R+ × (0, 1), (46)

with the boundary and initial conditions:

r(t, 0) = 0, r(t, 1) = F ,

T (t, 0) = T−, ∂uT (1) = 4γWQ

T (0, u) = T0(u), r(0, u) = r0(u).

(47)

This result will be shown in [7].
Notice that the thermal energy, i.e. the temperature T (t, u), is not a

conserved quantity in the bulk. This is given instead by the total energy
E(t, u) = T (t, u) + 1

2r(t, u)
2 that satisfies the equation

∂tE(t, u) =
1

4γ
∂uu

(
E(t, u) + 1

2
r(t, u)2

)
(48)

that is equivalent to (46). Consequently we understand that the term
1
2γ (∂ur(t, u))

2 is the rate of transfer of mechanical energy to thermal energy
in the bulk. Of course we also have that E

(
Ex(n2t)

)
converges weakly to

E(t, u).
In the case the forcing is done on a point [nu] in the bulk of the system,

and a heat bath is present on the right hand side (γ+ > 0), then the
boundary conditions we expect are the following:

r(t, 0) = 0, ∂ur(t, u
+) = ∂ur(t, u

−),

r(t, u−)− r(t, u+) = F , r(t, 1) = 0,

T (t, 0) = T−, ∂uT (u
−)− ∂uT (u

+) = 4γWQ, T (t, 1) = T+.

(49)

As in the pinned case, the macroscopic stationary temperature profiles
can be computed. In the case of the stationary state corresponding to (46)
the elongation stationary profile is given by

rss(u) = Fu, u ∈ [0, 1] (50)

and the temperature stationary profile is given by

Tss(u) = F
2
u(1− u) + (F

2
+ 4γWQ)u+ T−, u ∈ [0, 1]. (51)
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Note that, contrary to the pinned case, the temperature profile is not linear
(see (38)) but parabolic.

In the case the forcing is in the bulk and the thermostats are present
at both endpoints, the stationary solution with boundary conditions (49)
is given by

rss(u) =F (u− 1u⩾u) ,

Tss(u) = [T− + (4γWQ(1− u) + T+ − T−)u] 1u⩽u

+ [T+ + (4γWQu− T+ + T−) (1− u)] 1u>u + F
2
u(1− u).

(52)

5 Higher dimension
We can consider the discrete lattice

Ξd,n = {x = {x1, . . . , xd}, xj = 0, . . . , n, xj = xj+n if j ̸= 1},

and the configuration of positions and momenta are described by

(q,p) = (qx, px) ∈ RΞd,n × RΞd,n .

The microscopic dynamics of the process {(q(t),p(t))}t⩾0 describing the
total chain is now given in the bulk by

q̇x(t) = px(t), x ∈ Ξd,n,

dpx(t) =
(
∆Nqx − ω2

0qx
)
dt− 2px(t−)dNx(γt) + Fn,x(t)dt,

(53)

for x1 ∈ {1, . . . , n− 1}, and at the boundaries by

dpx(t) =
(
∆Nqx − ω2

0qx(t)
)
dt− 2γ−px(t)dt+

√
4γ−T−dw̃x(t), x1 = 0

dpx(t) =
(
∆Nqx − ω2

0qx(t)
)
dt− 2γ+px(t)dt+

√
4γ+T+dw̃x(t), x1 = n.

(54)

Here ∆N is the discrete laplacian on Ξd,n with Neumann boundary condi-
tions on the direction 1 and periodic on the others. Processes {Nx(t),x ∈
Ξd,n} are independent Poisson of intensity 1, while {w̃x(t)} are indepen-
dent standard Wiener processes, independent of the Poisson processes.

For the pinned model (ω0 ̸= 0) in the absense of forcing (Fn,x(t) = 0
for all x ∈ Ξd,n), the macroscopic heat equation is given by

∂tT = Dγ∆uT, u ∈ (0, 1)× Td−1,

T (t, u) =

{
T− u1 = 0,

T+ u1 = 1,

(55)
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where the diffusion coefficient depends on the dimension and is given by

Dγ =
1

4γ

1

2π2

∫
Td

|∇ω(k)|2 dk (56)

where ω(k) =
√
ω2
0 + 4

∑d
j=1 sin

2(πkj) is the dispersion relation of the
harmonic lattice. This coincides with the diffusion coefficient appearing in
the self-consistent model, computed in section 7 of [3].

If a driving force is acting in the same way on the right side of the
system, i.e. Fn,x(t) = Fn(t)δx1,n−1, with Fn(t) satisfying analogous con-
ditions as in dimension 1, and in absence of thermostat on the right,
i.e. γ+ = 0, then we have the following Neumann type boundary con-
ditions on the right:

∇T (t, 1) =
W
Dγ


1
0
...
0

 (57)

where W is the average work done by the periodic forcing, defined as the
limit

W =
1

t
lim
n→∞

1

nd−1

∑
x

δx1,n−1E

(
1

n

∫ n2t

0

Fn(s)px(s)ds

)
. (58)

More generally, given a smooth d−1 dimensional surface Γ ⊂ (0, 1)×Td−1,
defining by Γn the lattice points x such that the distance of x/n from Γ
is less that 1

2n , if Fn,x(t) = Fn(t)δx,Γn , then we expect the boundary
conditions

∇T (t, u) =
W
Dγ

nΓ(u), u ∈ Γ, (59)

where nΓ(y) is the unit vector normal to Γ in the point u, and W is a
suitable modification of formula (58). For a more general inhomogeneous
periodic forcing different macroscopic boundary conditions are expected,
and it is a subject of further investigation. The argument used in the one
dimensional case in [5, 6] cannot be extended directly to prove (55), (57)
or (59). This will be considered in a future work (in preparation).

6 Anharmonic chains

Harmonic chains allow many explicit calculations, in particular we can
solve first and second moment equations autonomously, without any need
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to analyze higher moments. The situation is much more difficult for an-
harmonic chains, even in presence of the random flip of the velocities sign.
Consider the Hamiltonian

Hn(q,p) :=
n∑

x=0

(
p2x
2

+ V (qx − qx−1) + U(qx)

)
, (60)

where we set q−1 = 0. Then consider the stochastic dynamics

q̇x(t) = px(t), x ∈ {0, . . . , n},
dpx(t) = ∂qxHndt− 2px(t−)dNx(γt), x ∈ {1, . . . , n− 1},

(61)

and at the boundaries by

dp0(t) = ∂q0Hndt− 2p0(t−)dN0(γt)− 2γ−p0(t)dt+
√

4γ−T−dw̃−(t)

dpn(t) = ∂qnHndt+ Fn(t)dt− 2pn(t−)dNn(γt)− 2γ+pn(t)dt

+
√

4γ+T+dw̃+(t). (62)

The energy currents in the bulk are given by

jx,x+1(t) := −px(t)V
′(qx+1(t)− qx(t)), if x ∈ {0, ..., n− 1}. (63)

The only existing mathematical result is the existence of the thermal dif-
fusivity defined by the Green-Kubo formula ([2]):

Dγ(T ) =

∫ ∞

0

dt
∑
x∈Z

EνT
(jx,x+1(t)j0,1(0)) , (64)

where EνT
is the expectation of the corresponding infinite dynamics in

equilibrium at temperature T .
When γ− and γ+ are strictly positive we expect the convergence of the

temperature profile as in (29) to the solution of

∂tT = ∂u (Dγ(T )∂uT ) , u ∈ (0, 1),

T (t, 0) = T−, T (t, 1) = T+,

T (0, u) = T0(u).

(65)

When γ+ = 0, i.e. if only the periodic forcing is acting on the last parti-
cle, the boundary condition on u = 1 is given by a non-linear Neumann
condition:

Dγ(T (t, 1))(∂uT )(t, 1) = −J(T (t, 1)) (66)

with a boundary current J(T ) depending on the local temperature.
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A linear response argument gives the following expression of J as a
function of T :

−J(T ) =
1

T

∫ θ

0

dt

∫ +∞

t

F
( t
θ

)
F
(s
θ

)
E+
νT

(p0(t)p0(s)) ds

=
1

T

∫ ∞

0

(∫ θ

0

F
( t
θ

)
F
( t+ s

θ

)
dt

)
E+
νT

(p0(0)p0(s)) ds,

(67)

where E+
νT

denotes the expectation for the semi-infinite process (i.e. (61)
for x ∈ Z+, without any forcing or heat bath) in equilibrium at tempera-
ture T . As for (64), the integral involved in (67) can be proven convergent
by using a similar argument as in [2].

In the harmonic case (67) coincides with (13) with −J(T ) = W. Note
also that −J(T ) is positive since

−J(T ) = lim
n→+∞

1

nT

∫ nθ

0

dt

∫ nθ

t

F
(
t

θ

)
F
(s
θ

)
EνT

[
pn(t)pn(s)

]
ds

= lim
n→+∞

1

2nT
EνT

[(∫ nθ

0

F
(
t

θ

)
pn(t)dt

)2 ]
⩾ 0.

(68)
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