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A VISCOELASTIC FLOW MODEL OF MAXWELL-TYPE

WITH A SYMMETRIC-HYPERBOLIC FORMULATION

SÉBASTIEN BOYAVAL

Abstract. Maxwell models for viscoelastic flows are famous for their po-
tential to unify elastic motions of solids with viscous motions of liquids in
the continuum mechanics perspective. But the usual Maxwell models allow
one to define well motions mostly for one-dimensional flows only. To define
unequivocal multi-dimensional viscoelastic flows (as solutions to well-posed
initial-value problems) we advocated in [ESAIM:M2AN 55 (2021) 807-831]

an upper-convected Maxwell model for compressible flows with a symmetric-
hyperbolic formulation. Here, that model is derived again, with new details.

1. Elastic and viscous motions in the continuum perspective

First, let us recall seminal systems of PDEs that unequivocally model the mo-
tions φt : B →⊂ R

3 of continuum bodies B on a time range t ∈ [0, T ). PDEs
governing elastic flows are a starting point for all continuum bodies. PDEs govern-
ing viscoelastic flows, for liquid bodies in particular, shall come next in Section 2.

Let us denote {xi, i = 1 . . . 3} a Cartesian coordinate system for the Euclidean
ambiant space R

3. Let us assume, for t ∈ [0, T ), that B is a manifold equipped
with a Cartesian coordinate system {aα, α = 1 . . . d} (d ∈ {1, 2, 3}), and that
φt(a ≡ aαeα) = φi

t(a)ei is a bi-Lipshitz function on B ∋ a. Given a vector force

field f in R
3, Galilean physics requires the deformation gradient F i

α := ∂αφ
i
t ◦φ−1

t

and the velocity ui := ∂tφ
i
t ◦ φ−1

t , to satisfy the conservation of linear momentum:

(1) ρ̂∂t(u ◦ φt) = diva S + ρ̂(f ◦ φt) on B
given a mass-density ρ̂(a) ≥ 0, see e.g. [11]. Neglecting heat transfers, the first
Piola-Kirchoff stress tensor S(F ) is defined by an internal energy functional e(F ):

(2) Siα = ρ̂∂F i
α
e .

Then, when ρ̂ ∈ R
+
∗ is constant, motions can be unequivocally defined by solutions

(ui ◦ φt, F
i
α ◦φt) ∈ C0

t

(

[0, T ), Hs(R3)3 ×Hs(R3)3×3
)

with s >
3

2

to (1–2) complemented by (3–5), if (1–5) defines a symmetric-hyperbolic system [7],

∂t
(

F i
α ◦ φt

)

− ∂α
(

ui ◦ φt

)

= 0(3)

∂t
(

|F i
α| ◦ φt

)

− ∂α
(

Ci
α ◦ φt u

i ◦ φt

)

= 0(4)

∂t
(

Ci
α ◦ φt

)

+ σijkσαβγ∂β
(

F j
γ ◦ φt u

k ◦ φt

)

= 0(5)

denoting σijk Levi-Civita’s symbol. But for physical applications, it is difficult to
identify functionals e(F ) such that (1–5) defines a symmetric-hyperbolic system.

In the sequel, assuming ρ̂ ∈ R
+
∗ constant, we recall how one standardly defines

e(F ) for solids and fluids dynamics, on considering the determinant |F i
α| of the

deformation gradient (also denoted |F | hereafter) and the cofactor matrix Ci
α of

F i
α (C in tensor notation) as variables independent of F . Next, in Section 2, we
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2 SÉBASTIEN BOYAVAL

recall with much details the function e(F ) that we proposed in [2] so as to properly
define a viscoelastic dynamics of Maxwell type that unifies solids and fluids.

1.1. Polyconvex elastodynamics. If e(F ) in (2) is polyconvex, and if the initial
conditions for (u,F , |F |,C)◦φt are given by (∂tφt,∇aφt, |∇aφt|,Cof(∇aφt)) (t =
0) ∈ Hs(R3) with s > 3

2
, such that ∇a × F = 0 = diva C holds i.e

(6) σαβγ∂αF
i
β = 0 = ∂αC

i
α ∀i ,

then (1–5) enters the framework of symmetric-hyperbolic systems. In particular,
a unique time-continuous solution can be built in Hs(R3) for t ∈ [0, T ), given
initial conditions F i

α(t = 0) ∈ Hs(R3)3×3 and ui(t = 0) ∈ Hs(R3)3 [7]. The latter
solution, associated with a unique mapping φt, is equivalently defined by [17]

∂t
(

ρui
)

+ ∂j
(

ρuiuj − σij
)

= ρf i(7)

∂t
(

ρF i
α

)

+ ∂j
(

ρF i
αu

j − ρuiF j
α

)

= 0(8)

∂tρ+ ∂j
(

ρuj
)

= 0(9)

∂t
(

ρCi
α

)

+ ∂i
(

ρCj
αu

j
)

= 0(10)

where σij := |F |−1SiαF j
α and ρ := |F |−1ρ̂, provided the initial conditions satisfy

(11) ∂j(ρF
j
α) = 0 = σijk∂j(ρC

k
α) ∀α .

Indeed, with the Eulerian description (7–10) of the body motions (i.e. in spatial
coordinates, as opposed to the Lagrangian description (1–5) in material coordinates)

∂t (ρu) + div (ρu⊗ u− σ) = ρf(12)

∂t (ρF )−∇×
(

ρF T × u
)

= 0(13)

∂tρ+ div (ρu) = 0(14)

∂t (ρC) +∇⊗
(

ρCT · u
)

= 0(15)

where CT is the dual (matrix transpose) of C, and with Piola’s identity (11)

(16) div(ρF T ) = 0 = ∇× (ρCT ) ,

one can show that, when e(F ) is polyconvex, the symmetric-hyperbolic framework
applies to (12–16) insofar as smooth solutions also satisfy the conservation law

(17) ∂t

(ρ

2
|u|2 + ρe

)

+ div
((ρ

2
|u|2 + ρe

)

u− σ · u
)

= ρf · u

for ρ
2
|u|2 + ρe, a functional convex in a set of independent conserved variables [7].

A first example of a physically-meaningful internal energy is the neo-Hookean

(18) e(F k
αF

k
α ) :=

c21
2
(F k

αF
k
α − d)

with c21 > 0. Then, the quasilinear system (1–3) is symmetric-hyperbolic insofar as
smooth solutions additionally satisfy a conservation law for |u|2/2+e strictly convex
in (u,F ). Unequivocal motions can be defined1, equivalently by (12–13). The latter
neo-Hookean model satisfyingly predicts the small motions of some solids.

However, (18) is oversimplistic : it does not model the deformations that are often
observed orthogonally to a stress applied unidirectionally, see e.g. [16] regarding
rubber. Many observations are better fitted when the Cauchy stress σ contains an
additional spheric term −pI, with a pressure p(ρ) function of volume changes.

1Not only with fields in Hs(R3), s > 3

2
, for t ∈ [0, T ), but in fact whatever T > 0 and s ∈ R

here, insofar as Si
α(F ) = ρ̂c2

1
F i
α so the Lagrangian description (1–3) reduces to linear PDEs.
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Next, instead of (18), one can rather assume a compressible neo-Hookean energy

(19) e(F k
αF

k
α ) :=

c21
2
(F k

αF
k
α − d)− d21

1− γ
|F |1−γ =: ẽ(|F |,F ) .

The functional (19) is polyconvex as soon as γ > 1 [7]. Thus, using either (1–
5) or (7–10) one can define unequivocal smooth motions with Si

α(F ) = ρ̂c21F
i
α −

ρ̂d21|F |−γ Cof(F )
i

α where an additional pressure term arises2 in comparison with
(18). Precisely, one can build unique solutions to a symmetric reformulation of a
system of conservation laws for conserved variables U(t,x) : R+ × R

m → R
n i.e.

(20) ∂tU + ∂αGα(U) = 0

with k involutions Mα∂αU = 0, Mα ∈ R
k×n i.e. MαGβ(U) = −Gα(U)Mβ, α 6= β.

An additional conservation law ∂tη(U) + ∂αQα(U) = 0 is satisfied by (20), for

η(U) = |u|2

2
+ ẽ(|F |,F ) a strictly convex functional of U . So a smooth func-

tion Ξ(U) ∈ R
k exists such that DQα(U) = Dη(U)DGα(U) + Ξ(U)TMα holds,

D2η(U)DGα(U)+DΞ(U)TMα is a symmetric matrix, and (20) admits a symmetric-
hyperbolic reformulation. The 2D Lagrangian case α ∈ {a, b}, c21ρ̂ ≡ 1, reads

∂tu
x + ∂a (F

y
b p− F x

a ) + ∂b (−F y
a p− F x

b ) = 0,(21)

∂tu
y + ∂a (−F x

b p− F y
a ) + ∂b (F

x
a p− F y

b ) = 0,(22)

∂t|F | = ∂a (−F x
b u

y + F y
b u

x) + ∂b (−F y
a u

x + F x
a u

y) ,(23)

∂tF
x
a − ∂au

x = 0,(24)

∂tF
x
b − ∂bu

x = 0,(25)

∂tF
y
a − ∂au

y = 0,(26)

∂tF
y
b − ∂bu

y = 0,(27)

with p(|F |) := −∂|F |ẽ ≡ d2

1

c2
1

|F |−γ , abusively denoting (u, |F |,F ) the functions

(u, |F |,F )◦φt of material coordinates as usual. Involutions Mα∂αU = 0 hold with

Ma =

(

0 0 0 0 1 0 0
0 0 0 0 0 0 1

)

Mb =

(

0 0 0 −1 0 0 0
0 0 0 0 0 −1 0

)

.

They combine with (20) using Ξ(U)T =
(

puy −pux
)

to yield a symmetric system

after premultiplication by D2η(U): note να(D
2η(U)DGα(U) +DΞ(U)TMα) reads

(28)





















0 0 (exCν)∂|F |p −νa −νb 0 0
0 0 (eyCν)∂|F |p 0 0 −νa −νb

(exCν)∂|F |p (eyCν)∂|F |p 0 0 0 0 0
−νa 0 0 0 0 0 0
−νb 0 0 0 0 0 0
0 −νa 0 0 0 0 0
0 −νb 0 0 0 0 0





















denoting exCν ≡ F y
b νa − F y

a νb, eyCν ≡ −F x
b νa + F x

a νb and νT = (νa νb) ∈ R
m

a unit vector. The symmetric formulation allows one to establish the key energy
estimates in the existence proof of smooth solutions [7], as well as weak self-similar
solutions to the 1D Riemann problem using generalized eigenvectors R solutions to

(29) να
(

D2η(U)DGα(U) +DΞ(U)TMα

)

R = σD2η(U)R

with eigenvalues σ ∈ {0,±1,±
√

1 + (|exCν|2 + |eyCν|2)∂|F |p}. For application to

real materials3, one important question remains: how to choose c21 and d21.

2And thus the flux becomes nonlinear in the conservative variables, so T > 0 is definitely finite.
3So far, the only parameters to be specified for real application are ρ̂, c2

1
and d2

1
.
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In most real applications of elastrodynamics, the material parameters c21 and d21
should vary, as functions of F e.g., but also as functions of an additional temperature
variable so as to take into account microscopic processes not described by the
macroscopic elastodynamics system. For instance, the deformations endured by
stressed elastic solids increase with temperature, until the materials become viscous
liquids. Then, one natural question arises: could (19) remain useful for liquids which
are mostly incompressible (i.e. divu ≈ 0 holds) and much less elastic than solids ?

In Sec. 1.2, we recall the limit case when the volumic term dominates the internal
energy, and p = C0ρ

γ dominates σ, which coincides with seminal PDEs for perfect
fluids (fluids without viscosity). In Section 2, we next consider how to rigorously
connect fluids like liquids to solids using an enriched elastodynamics system.

1.2. Fluid dynamics. Consider the general Eulerian description (12–15) for con-
tinuum body motions. It is noteworthy that given u, each kinematic equation (10),
(8) and (9) is autonomous. As a consequence, in spatial coordinates, motions can be
defined by reduced versions of the full Eulerian description (7–10), with an internal
energy e strictly convex in ρ but not in F ! One famous case is the polytropic law

(30) e(ρ) :=
C0

γ − 1
ργ−1

with C0 > 0. Then, one obtains Euler’s system for perfect (inviscid) fluids

(31)
∂tρ+ ∂i(u

iρ) = 0

ρ
(

∂tu
i + uj∂ju

i
)

+ ∂i p = ρf i

with a pressure p := −∂ρ−1e = C0ρ
γ characterizing spheric stresses:

(32) σij = −p δij .

The system (31) is symmetric-hyperbolic. It is useful to define unequivocal time-
evolutions of Eulerian fields (on finite time ranges) [7], although multi-dimensional
solutions are then not equivalently described by one well-posed Lagrangian de-
scription [8]. In fact, for application to real fluids, the system (31) is better under-
stood as the limit of a kinetic model based on Boltzmann’s statistical description of
molecules [9], and the model indeed describes gaseous fluids better than condensed
fluids (liquids). In any case, the fluid model (31) still lacks viscosity.

One classical approach adds viscous stresses as an extra-stress term τ in (32) i.e.

(33) σ = −pδ + τ .

The extra-stress is required symmetric (to preserve angular momentum), objective
(for the sake of Galilean invariance), and “dissipative” (to satisfy thermodynamics
principles) [5]. Precisely, introducing the entropy η as an additional state variable
for heat exchanges at temperature θ = ∂se > 0, thermodynamics requires

∂tη + (uj∂j)η = D/θ

with a dissipation term D ≥ 0. Usually, denoting D(u)ij := 1

2

(

∂iu
j + ∂ju

i
)

, one
then postulates a Newtonian extra-stress with two constant parameters ℓ, µ̇ > 0

(34) τ ij = 2µ̇D(u)ij + ℓ D(u)kk δij

which satisfies D ≡ τ ij∂ju
i ≥ 0 [5]. The Newtonian model allows for the definition

of causal motions through the resulting Navier-Stokes equations. But it is not
obviously unified with elastodynamics; and letting alone that (34) is far from some
real “non-Newtonian” materials, it implies that shear waves propagate infinitely-
fast, an idealization that is also a difficulty for the unification with elastodynamics.
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By contrast, Maxwell’s viscoelastic fluid models for τ possess well-defined shear
waves of finite-speed, and they can be connected with elastodynamics with a view
to unifying solids and fluids (liquids) in a single continuum description.

2. Viscoelastic flows with Maxwell fluids

Maxwell’s models [12] with viscosity µ̇ > 0, relaxation time λ > 0, time-rate
♦
τ

(35) λ
♦
τ +τ = 2µ̇D(u)

are widely recognized as physically useful to link fluids where τ
λ→0−−−→ 2µ̇D(u) in

the Newtonian limit, with solids governed by elastodynamics when λ ∼ µ̇ → ∞. In
particular, one often considers the Upper-Convected Maxwell (UCM) model, with

objective time-rate
♦
τ in (35) defined by the Upper-Convected (UC) derivative4:

(36)
▽
τ := ∂tτ + (u ·∇)τ − (∇u)τ − τ (∇u)T

because
▽
τ= 2 µ̇

λ
D(u) is compatible with elastodynamics when τ = µ̇

λ

(

FF T − I
)

.

However, a difficulty arises with the quasilinear system (12)–(14)–(33)–(35)–(36)
to define general multi-dimensional motions for any λ ∈ (0,∞) from solutions to
Cauchy problems: the system may not be hyperbolic and numerical simulations may
become unstable [13]. As a cure, we proposed in [2] a symmetric-hyperbolic refor-

mulation of (12)–(14)–(33)–(35)–(36) using a new variable A in τ = ρ(FAF T −I).
We review the reformulation in Sec. 2.2, after recalling in Sec. 2.1 well-known 1D

solutions to (12)–(14)–(33)–(35)–(36) which show the interest for Maxwell’s models.

2.1. Viscoelastic 1D shear waves for solids and fluids. Some particular solu-
tions to (12)–(14)–(33)–(35)–(36) unequivocally model viscoelastic flows, and rig-
orously link solids to fluids. Shear waves e.g. for a 2D body moving along ex ≡ ex1

following b = y ≡ x2, a = x−X(t, y), X(0, y) = 0 are well-defined by (7) i.e.

(37) ∂tu = ∂yτ
xy

where we recall u := ∂tX , and Maxwell’s constitutive relation (35) i.e.

(38) λ∂tτ
xy + τxy = µ̇∂yu ,

given enough initial and boundary conditions. Denoting G := µ̇
λ

> 0 the shear
elasticity, (37)–(38) indeed coincides with the famous hyperbolic system for 1D
damped waves, which implies λ∂2

ttu(t, y)+∂tu(t, y) = µ̇∂2
yyu(t, y) and λ∂2

ttτ
xy(t, y)+

∂tτ
xy(t, y) = µ̇∂2

yyτ
xy(t, y). Time-continuous solutions to (37)–(38) are well defined

given initial conditions plus possibly boundary conditions when the body has finite
dimension along ey ≡ ex2 , such as y ≡ x2 > 0 in Stokes first problem see e.g. [15].
Moreover, the latter 1D shear waves rigorously unify solids and fluids insofar as
they are structurally stable [14, 4]: when λ ≡ 1

G
µ̇ → ∞, they satisfy

∂2
ttτ

xy = G∂2
yyτ

xy ∂2
ttu = G∂2

yyu

like elastic solids, and when λ → 0, they satisfy

τxy = µ̇∂yu ∂tu = µ̇∂2
yyu

like viscous liquids. So the 1D shear waves illustrate well the structural capability
of Maxwell’s model to unify solid and Newtonian fluid motions.

But a problem arises with multi-dimensional motions: solutions to (12)–(14)–
(33)–(35)–(36) are not well-defined in general.

4Other objective derivatives than UC can be used, which also allow symmetric-hyperbolic
reformulations. They will not be considered here for the sake of simplicity.
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2.2. Maxwell flows with a symmetric-hyperbolic formulation. To establish
multi-dimensional motions satisfying (35), we introduced in [2] a 2-tensor A:

(39) λ(∂t + u ·∇)A+A = F−1F−T

which can be understood as a material property that relaxes in fluid flows.

Proposition 1. Set µ̇ = λc21. Then τ := ρc21(FAF T − I) satisfies (35) with

(40)
♦
τ := ∂tτ + (u ·∇)τ − (∇u) τ − τ (∇u)T + (divu) τ .

Proof. Recall that (∂t + u ·∇)F T = F T · (∇u)T holds, using (8) and (11). Then

compute (∂t + u ·∇)τ straightforwardly using τ := ρc21(FAF T − I). �

Noteworthily (35)-(40) coincides with a version of Maxwell’s models for com-
pressible fluids [1]. Moreover, it is contained in a larger symmetric-hyperbolic
system, which allows one to rigorously define viscoelastic motions unequivocally.

Proposition 2. With (33) such that τ := ρc21(FAF T − I) and p(ρ) + c21ρ =
−∂ρ−1e0 for e0 strictly convex in ρ−1, (12)–(13)–(14)–(39) becomes symmetric-

hyperbolic provided div(ρF T ) = 0 and A is symmetric positive-definite (A ∈ S3
+,∗).

Proof. Using div(ρF T ) = 0, (12)–(13)–(14)–(39) rewrites in material coordinates

as the Lagrangian system (1)–(3)–(4) plus λ∂tA+A = F−1F−T where

S = (p(|F |)C + c21F
−T ) + ρ̂c21FA = ρ̂∂F

(

e0 +
c21
2
FA : F

)

.

Then, A ∈ S3
+,∗ allows the variable change Y = A−2. The resulting Lagrangian

system for (u,F , |F |,Y ) with involution ∇a × F = 0 admits a “mathematical
entropy” [6] so it is therefore symmetric-hyperbolic. For details we refer to [2]. �

A unique smooth solution can be constructed for (12)–(13)–(14)–(39) using an

initial condition satisfying ρ|F | =: ρ̂ > 0, div(ρF T ) = 0, A ∈ S+,∗ [7]. On
small time ranges, it unequivocally defines viscoelastic multi-dimensional motions
governed by the compressible UCM law (35)-(40) as long as hyperbolicity holds and
the solution remains bounded. Those motions satisfy thermodynamics with

(41) e = e0 +
c21
2
(FA : F − log detFA : F ) .

Proposition 3. With (33), τ := ρc21(FAF T − I) and p(ρ) + c21ρ = −∂ρ−1e0,
smooth solutions to (12)–(13)–(14)–(39) additionally satisfy

∂t

(ρ

2
|u|2 + ρe

)

+ div
((ρ

2
|u|2 + ρe

)

u− σ · u
)

= ρf · u+
ρc21
2λ

(I − c−1) : (c − I)

provided div(ρF T ) = 0 and A ∈ S+,∗, on denoting c = FAF T ∈ S+,∗ .

Proof. We will show (3) in material coordinates (the Lagrangian description). On
one hand, computing ∂t|u|2 = 2u · ∂tu is straightforward. One the other hand,
using (1) and ∂tF = ∇au one computes

(42) ∂te = ∂te0 +
c21
2
(I − c−1) : ∂tc = −ρc21

2λ
(I − c−1) : (c − I) + ∇au : S/ρ̂

where (I − c−1) : (c− I) ≥ 0 is a dissipation. QED �

Interestingly, notice that our free energy (41) is not useful for well-posedness:
it is not strictly convex in conserved variables. Morover, our formulation (12)–
(13)–(14)–(39) for a sound Maxwell model admits the 1D shear waves examined in
Sec. 2.1 as solutions, so it preserves some well-established interesting properties of
the standard (incompressible) formulation of Maxwell model.
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Let us finally detail the symmetric structure of our hyperbolic formulation for
(compressible) viscoelastic flows of Maxwell-type, with Lagrangian description

∂tu = diva S + f(43)

∂t|F | = diva

(

CTu
)

(44)

∂tC
T = ∇a × (u× F )(45)

∂tF
T = ∇a ⊗ u(46)

∂tA = (F−1F−T −A)/λ(47)

where S = −pC + FA, p(|F |) = |F |−1 +
d2

1

c2
1

|F |−γ , assuming c21ρ̂ ≡ 1 in (41)

e(F ) =
c21
2
(F k

αA
αβF k

β − 2 log |F k
β |)−

d21
1− γ

|F |1−γ .

To that aim, we consider a 2D system when λ → ∞:

∂tu
x + ∂a

(

F y
b p− (AaaF x

a +AabF x
b )

)

+ ∂b
(

−F y
a p− (AabF x

a +AbbF x
b )

)

= 0,(48)

∂tu
y + ∂a

(

−F x
b p− (AaaF y

a +AabF y
b )

)

+ ∂b
(

F x
a p− (AabF y

a +AbbF y
b )

)

= 0,(49)

∂t|F | = ∂a (−F x
b u

y + F y
b u

x) + ∂b (−F y
a u

x + F x
a u

y) ,(50)

∂tF
x
a − ∂au

x = 0,(51)

∂tF
x
b − ∂bu

x = 0,(52)

∂tF
y
a − ∂au

y = 0,(53)

∂tF
y
b − ∂bu

y = 0,(54)

∂tY
aa = ∂tY

ab = ∂tY
bb = 0(55)

where, denoting ∆ = Y aaY bb − Y abY ab, δ =
√

Y aa + Y bb + 2
√
∆, we have

Aaa =
Y bb +

√
∆

δ
, Aab =

−Y ab

δ
, Abb =

Y bb +
√
∆

δ
.

Rewriting ∂tU+∂αGα(U) = 0 the system above, involutions Mα∂αU = 0 hold with

Ma =

(

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

)

Mb =

(

0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0

)

and ∂tη(U) + ∂αQα(U) = 0 is satisfied for η(U) = |u|2

2
+ e, using Ξ(U)T =

(

puy −pux
)

in DQα(U) = Dη(U)DGα(U) + Ξ(U)TMα.
A symmetric formulation is obtained for our quasilinear formulation of Maxwell

(compressible) viscoelastic flows similarly to the standard compressible elastody-
namics case: on premultiplying the system (48–55) byD2η(U), insofar as the matrix
(D2η(U)DGα(U) +DΞ(U)TMα)να is symmetric given a unit vector ν = (νa, νb) ∈
R

2. We do not detail the symmetric matrix (D2η(U)DGα(U) + DΞ(U)TMα)να
here: its upper-left block coincides with (28), but the other blocks are complicate

and depend on the choice of the variable Y = A− 1

2 (key to exhibit the symmetric-
hyperbolic structure using a fundamental convexity result from [10] – Theorem 2
p.276 with r = 1

2
and p = 0) a choice which is not unique (ours may not be op-

timal). In any case, the symmetric structure yields a key energy estimate for the
construction of unique smooth solutions, and it also allows one to construct 1D
waves similarly from (29) when λ → ∞ (otherwise one has to take into account the
source term of relaxation-type).
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3. Conclusion and Perpsectives

Our symmetric-hyperbolic formulation of viscoelastic flows of Maxwell type [2]
allows one to rigorously establish multidimensional motions, within the same con-
tinuum perspective as elastodynamics and Newtonian fluid models. It remains to
exploit that mathematically sound framework, e.g. to establish the structural sta-
bility of the model and rigorously unify (liquid) fluid and solid motions through
parameter variations in our model: see [4] regarding the nonsingular limit toward
elastodynamics. Another step in that direction is to drive the transition between
(liquid) fluid and solid motions more physically, e.g. on taking into account heat
transfers: see [3] for a model of Cattaneo-type for the heat flux, which preserves
the symmetric-hyperbolic structure. Last, one may want to add physical effects for
particular applications: the purely Hookean internal energy in (41) can be modi-
fied to include finite-extensibility effects as in FENE-P or Gent models, or to use
another measure of strain, with lower-convected time-rate for instance, see [3].
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