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A VISCOELASTIC FLOW MODEL OF MAXWELL-TYPE WITH A SYMMETRIC-HYPERBOLIC FORMULATION

Maxwell models for viscoelastic flows are famous for their potential to unify elastic motions of solids with viscous motions of liquids in the continuum mechanics perspective. But the usual Maxwell models allow one to define well motions mostly for one-dimensional flows only. To define unequivocal multi-dimensional viscoelastic flows (as solutions to well-posed initial-value problems) we advocated in [ESAIM:M2AN 55 (2021) 807-831] an upper-convected Maxwell model for compressible flows with a symmetrichyperbolic formulation. Here, that model is derived again, with new details.

Elastic and viscous motions in the continuum perspective

First, let us recall seminal systems of PDEs that unequivocally model the motions φ t : B →⊂ R 3 of continuum bodies B on a time range t ∈ [0, T ). PDEs governing elastic flows are a starting point for all continuum bodies. PDEs governing viscoelastic flows, for liquid bodies in particular, shall come next in Section 2.

Let us denote {x i , i = 1 . . . 3} a Cartesian coordinate system for the Euclidean ambiant space R 3 . Let us assume, for t ∈ [0, T ), that B is a manifold equipped with a Cartesian coordinate system {a α , α = 1 . . . d} (d ∈ {1, 2, 3}), and that φ t (a ≡ a α e α ) = φ i t (a)e i is a bi-Lipshitz function on B ∋ a. Given a vector force field f in R 3 , Galilean physics requires the deformation gradient F i α := ∂ α φ i t • φ -1 t and the velocity u i := ∂ t φ i t • φ -1 t , to satisfy the conservation of linear momentum: [START_REF] Bollada | On the mathematical modelling of a compressible viscoelastic fluid[END_REF] ρ∂ t (u

• φ t ) = div a S + ρ(f • φ t ) on B
given a mass-density ρ(a) ≥ 0, see e.g. [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF]. Neglecting heat transfers, the first Piola-Kirchoff stress tensor S(F ) is defined by an internal energy functional e(F ):

(2) S iα = ρ∂ F i α e . Then, when ρ ∈ R + * is constant, motions can be unequivocally defined by solutions [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF][START_REF] Boyaval | About the structural stability of maxwell fluids: convergence toward elastodynamics[END_REF][START_REF] Coleman | The thermodynamics of elastic materials with heat conduction and viscosity[END_REF], if (1-5) defines a symmetric-hyperbolic system [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF],

(u i • φ t , F i α • φ t ) ∈ C 0 t [0, T ), H s (R 3 ) 3 × H s (R 3 ) 3×3 with s > 3 2 to (1-2) complemented by
∂ t F i α • φ t -∂ α u i • φ t = 0 (3) ∂ t |F i α | • φ t -∂ α C i α • φ t u i • φ t = 0 (4) ∂ t C i α • φ t + σ ijk σ αβγ ∂ β F j γ • φ t u k • φ t = 0 (5)
denoting σ ijk Levi-Civita's symbol. But for physical applications, it is difficult to identify functionals e(F ) such that (1-5) defines a symmetric-hyperbolic system.

In the sequel, assuming ρ ∈ R + * constant, we recall how one standardly defines e(F ) for solids and fluids dynamics, on considering the determinant |F i α | of the deformation gradient (also denoted |F | hereafter) and the cofactor matrix C i α of F i α (C in tensor notation) as variables independent of F . Next, in Section 2, we 2010 Mathematics Subject Classification. 76A10; 35L45; 74D10.

recall with much details the function e(F ) that we proposed in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] so as to properly define a viscoelastic dynamics of Maxwell type that unifies solids and fluids. 

φ t |, Cof(∇ a φ t )) (t = 0) ∈ H s (R 3 ) with s > 3 2 , such that ∇ a × F = 0 = div a C holds i.e (6) σ αβγ ∂ α F i β = 0 = ∂ α C i α ∀i , then (1-5
) enters the framework of symmetric-hyperbolic systems. In particular, a unique time-continuous solution can be built in

H s (R 3 ) for t ∈ [0, T ), given initial conditions F i α (t = 0) ∈ H s (R 3 ) 3×3 and u i (t = 0) ∈ H s (R 3 ) 3 [7]
. The latter solution, associated with a unique mapping φ t , is equivalently defined by [START_REF] David | Symmetric-hyperbolic equations of motion for a hyperelastic material[END_REF] 

∂ t ρu i + ∂ j ρu i u j -σ ij = ρf i (7) ∂ t ρF i α + ∂ j ρF i α u j -ρu i F j α = 0 (8) ∂ t ρ + ∂ j ρu j = 0 (9) ∂ t ρC i α + ∂ i ρC j α u j = 0 (10)
where

σ ij := |F | -1 S iα F j α and ρ := |F | -1 ρ, provided the initial conditions satisfy (11) ∂ j (ρF j α ) = 0 = σ ijk ∂ j (ρC k α )
∀α . Indeed, with the Eulerian description (7-10) of the body motions (i.e. in spatial coordinates, as opposed to the Lagrangian description (1-5) in material coordinates)

∂ t (ρu) + div (ρu ⊗ u -σ) = ρf (12) ∂ t (ρF ) -∇ × ρF T × u = 0 (13) ∂ t ρ + div (ρu) = 0 (14) ∂ t (ρC) + ∇ ⊗ ρC T • u = 0 (15)
where C T is the dual (matrix transpose) of C, and with Piola's identity (11) [START_REF] Treloar | The physics of rubber elasticity[END_REF] div(ρF T ) = 0 = ∇ × (ρC T ) , one can show that, when e(F ) is polyconvex, the symmetric-hyperbolic framework applies to [START_REF] Clerk | On double refraction in a viscous fluid in motion[END_REF][START_REF] Owens | Computational rheology[END_REF][START_REF] Payne | Convergence of the equations for a Maxwell fluid[END_REF][START_REF] Preziosi | Stokes' first problem for viscoelastic fluids[END_REF][START_REF] Treloar | The physics of rubber elasticity[END_REF] insofar as smooth solutions also satisfy the conservation law

(17) ∂ t ρ 2 |u| 2 + ρe + div ρ 2 |u| 2 + ρe u -σ • u = ρf • u
for ρ 2 |u|2 + ρe, a functional convex in a set of independent conserved variables [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF].

A first example of a physically-meaningful internal energy is the neo-Hookean

(18) e(F k α F k α ) := c 2 1 2 (F k α F k α -d)
with c 2 1 > 0. Then, the quasilinear system (1-3) is symmetric-hyperbolic insofar as smooth solutions additionally satisfy a conservation law for |u| 2 /2+e strictly convex in (u, F ). Unequivocal motions can be defined1 , equivalently by [START_REF] Clerk | On double refraction in a viscous fluid in motion[END_REF][START_REF] Owens | Computational rheology[END_REF]. The latter neo-Hookean model satisfyingly predicts the small motions of some solids.

However, (18) is oversimplistic : it does not model the deformations that are often observed orthogonally to a stress applied unidirectionally, see e.g. [START_REF] Treloar | The physics of rubber elasticity[END_REF] regarding rubber. Many observations are better fitted when the Cauchy stress σ contains an additional spheric term -pI, with a pressure p(ρ) function of volume changes.

Next, instead of (18), one can rather assume a compressible neo-Hookean energy

(19) e(F k α F k α ) := c 2 1 2 (F k α F k α -d) - d 2 1 1 -γ |F | 1-γ =: ẽ(|F |, F ) .
The functional (19) is polyconvex as soon as γ > 1 [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. Thus, using either (1-5) or (7-10) one can define unequivocal smooth motions with

S i α (F ) = ρc 2 1 F i α - ρd 2 1 |F | -γ Cof(F ) i α
where an additional pressure term arises 2 in comparison with (18). Precisely, one can build unique solutions to a symmetric reformulation of a system of conservation laws for conserved variables

U (t, x) : R + × R m → R n i.e. ( 20 
) ∂ t U + ∂ α G α (U ) = 0 with k involutions M α ∂ α U = 0, M α ∈ R k×n i.e. M α G β (U ) = -G α (U )M β , α = β. An additional conservation law ∂ t η(U ) + ∂ α Q α (U ) = 0 is satisfied by (20), for η(U ) = |u| 2 2 + ẽ(|F |, F ) a strictly convex functional of U . So a smooth func- tion Ξ(U ) ∈ R k exists such that DQ α (U ) = Dη(U )DG α (U ) + Ξ(U ) T M α holds, D 2 η(U )DG α (U )+DΞ(U ) T M α is a symmetric matrix, and (20) admits a symmetric- hyperbolic reformulation. The 2D Lagrangian case α ∈ {a, b}, c 2 1 ρ ≡ 1, reads ∂ t u x + ∂ a (F y b p -F x a ) + ∂ b (-F y a p -F x b ) = 0, ( 21 
)
∂ t u y + ∂ a (-F x b p -F y a ) + ∂ b (F x a p -F y b ) = 0, ( 22 
)
∂ t |F | = ∂ a (-F x b u y + F y b u x ) + ∂ b (-F y a u x + F x a u y ) , (23) 
∂ t F x a -∂ a u x = 0, (24) 
∂ t F x b -∂ b u x = 0, (25) ∂ t F y a -∂ a u y = 0, (26) 
∂ t F y b -∂ b u y = 0, (27) with p(|F |) := -∂ |F | ẽ ≡ d 2 1 c 2 1 |F | -γ , abusively denoting (u, |F |, F ) the functions (u, |F |, F ) • φ t of material coordinates as usual. Involutions M α ∂ α U = 0 hold with M a = 0 0 0 0 1 0 0 0 0 0 0 0 0 1 M b = 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 .
They combine with (20) using Ξ(U ) T = pu y -pu x to yield a symmetric system after premultiplication by

D 2 η(U ): note ν α (D 2 η(U )DG α (U ) + DΞ(U ) T M α ) reads (28)           0 0 (e x Cν)∂ |F | p -ν a -ν b 0 0 0 0 (e y Cν)∂ |F | p 0 0 -ν a -ν b (e x Cν)∂ |F | p (e y Cν)∂ |F | p 0 0 0 0 0 -ν a 0 0 0 0 0 0 -ν b 0 0 0 0 0 0 0 -ν a 0 0 0 0 0 0 -ν b 0 0 0 0 0           denoting e x Cν ≡ F y b ν a -F y a ν b , e y Cν ≡ -F x b ν a + F x a ν b and ν T = (ν a ν b ) ∈ R m a unit vector.
The symmetric formulation allows one to establish the key energy estimates in the existence proof of smooth solutions [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF], as well as weak self-similar solutions to the 1D Riemann problem using generalized eigenvectors R solutions to

(29) ν α D 2 η(U )DG α (U ) + DΞ(U ) T M α R = σD 2 η(U )R with eigenvalues σ ∈ {0, ±1, ± 1 + (|e x Cν| 2 + |e y Cν| 2 )∂ |F | p}.
For application to real materials 3 , one important question remains: how to choose c 2 1 and d 2 1 .

2 And thus the flux becomes nonlinear in the conservative variables, so T > 0 is definitely finite. 3 So far, the only parameters to be specified for real application are ρ, c 2 1 and d 2 1 .

In most real applications of elastrodynamics, the material parameters c 2 1 and d 2 1 should vary, as functions of F e.g., but also as functions of an additional temperature variable so as to take into account microscopic processes not described by the macroscopic elastodynamics system. For instance, the deformations endured by stressed elastic solids increase with temperature, until the materials become viscous liquids. Then, one natural question arises: could (19) remain useful for liquids which are mostly incompressible (i.e. div u ≈ 0 holds) and much less elastic than solids ? In Sec. 1.2, we recall the limit case when the volumic term dominates the internal energy, and p = C 0 ρ γ dominates σ, which coincides with seminal PDEs for perfect fluids (fluids without viscosity). In Section 2, we next consider how to rigorously connect fluids like liquids to solids using an enriched elastodynamics system. 1.2. Fluid dynamics. Consider the general Eulerian description (12-15) for continuum body motions. It is noteworthy that given u, each kinematic equation ( 10), ( 8) and ( 9) is autonomous. As a consequence, in spatial coordinates, motions can be defined by reduced versions of the full Eulerian description (7-10), with an internal energy e strictly convex in ρ but not in F ! One famous case is the polytropic law

(30) e(ρ) := C 0 γ -1 ρ γ-1
with C 0 > 0. Then, one obtains Euler's system for perfect (inviscid) fluids (31)

∂ t ρ + ∂ i (u i ρ) = 0 ρ ∂ t u i + u j ∂ j u i + ∂ i p = ρf i
with a pressure p := -∂ ρ -1 e = C 0 ρ γ characterizing spheric stresses:

(32)

σ ij = -p δ ij .
The system (31) is symmetric-hyperbolic. It is useful to define unequivocal timeevolutions of Eulerian fields (on finite time ranges) [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF], although multi-dimensional solutions are then not equivalently described by one well-posed Lagrangian description [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF]. In fact, for application to real fluids, the system (31) is better understood as the limit of a kinetic model based on Boltzmann's statistical description of molecules [START_REF] Golse | The Boltzmann equation and its hydrodynamic limits[END_REF], and the model indeed describes gaseous fluids better than condensed fluids (liquids). In any case, the fluid model (31) still lacks viscosity. One classical approach adds viscous stresses as an extra-stress term τ in (32) i.e.

(

) σ = -pδ + τ . 33 
The extra-stress is required symmetric (to preserve angular momentum), objective (for the sake of Galilean invariance), and "dissipative" (to satisfy thermodynamics principles) [START_REF] Coleman | The thermodynamics of elastic materials with heat conduction and viscosity[END_REF]. Precisely, introducing the entropy η as an additional state variable for heat exchanges at temperature θ = ∂ s e > 0, thermodynamics requires

t η + (u j ∂ j )η = D/θ
with a dissipation term D ≥ 0. Usually, denoting D(u) ij := 1 2 ∂ i u j + ∂ j u i , one then postulates a Newtonian extra-stress with two constant parameters ℓ, μ > 0 (34)

τ ij = 2 μD(u) ij + ℓ D(u) kk δ ij which satisfies D ≡ τ ij ∂ j u i ≥ 0 [5]
. The Newtonian model allows for the definition of causal motions through the resulting Navier-Stokes equations. But it is not obviously unified with elastodynamics; and letting alone that (34) is far from some real "non-Newtonian" materials, it implies that shear waves propagate infinitelyfast, an idealization that is also a difficulty for the unification with elastodynamics.

By contrast, Maxwell's viscoelastic fluid models for τ possess well-defined shear waves of finite-speed, and they can be connected with elastodynamics with a view to unifying solids and fluids (liquids) in a single continuum description.

Viscoelastic flows with Maxwell fluids

Maxwell's models [START_REF] Clerk | On double refraction in a viscous fluid in motion[END_REF] with viscosity μ > 0, relaxation time λ > 0, time-rate 

τ := ∂ t τ + (u • ∇)τ -(∇u)τ -τ (∇u) T because ▽ τ = 2 μ λ D(u)
is compatible with elastodynamics when τ = μ λ F F T -I . However, a difficulty arises with the quasilinear system ( 12)-( 14)-( 33)-( 35)-(36) to define general multi-dimensional motions for any λ ∈ (0, ∞) from solutions to Cauchy problems: the system may not be hyperbolic and numerical simulations may become unstable [START_REF] Owens | Computational rheology[END_REF]. As a cure, we proposed in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] a symmetric-hyperbolic reformulation of ( 12)-( 14)-( 33)-( 35)-(36) using a new variable A in τ = ρ(F AF T -I).

We review the reformulation in Sec. 2.2, after recalling in Sec. 2.1 well-known 1D solutions to ( 12)-( 14)-( 33)-( 35)-(36) which show the interest for Maxwell's models.

2.1. Viscoelastic 1D shear waves for solids and fluids. Some particular solutions to ( 12)-( 14)-( 33)-( 35)-(36) unequivocally model viscoelastic flows, and rigorously link solids to fluids. Shear waves e.g. for a 2D body moving along e x ≡ e x 1 following b = y ≡ x 2 , a = x -X(t, y), X(0, y) = 0 are well-defined by [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] 38) are well defined given initial conditions plus possibly boundary conditions when the body has finite dimension along e y ≡ e x 2 , such as y ≡ x 2 > 0 in Stokes first problem see e.g. [START_REF] Preziosi | Stokes' first problem for viscoelastic fluids[END_REF]. Moreover, the latter 1D shear waves rigorously unify solids and fluids insofar as they are structurally stable [START_REF] Payne | Convergence of the equations for a Maxwell fluid[END_REF][START_REF] Boyaval | About the structural stability of maxwell fluids: convergence toward elastodynamics[END_REF]

: when λ ≡ 1 G μ → ∞, they satisfy ∂ 2 tt τ xy = G∂ 2 yy τ xy ∂ 2 tt u = G∂ 2
yy u like elastic solids, and when λ → 0, they satisfy

τ xy = μ∂ y u ∂ t u = μ∂ 2
yy u like viscous liquids. So the 1D shear waves illustrate well the structural capability of Maxwell's model to unify solid and Newtonian fluid motions.

But a problem arises with multi-dimensional motions: solutions to ( 12)-( 14)-( 33)-( 35)-(36) are not well-defined in general. 4 Other objective derivatives than UC can be used, which also allow symmetric-hyperbolic reformulations. They will not be considered here for the sake of simplicity.

2.2.

Maxwell flows with a symmetric-hyperbolic formulation. To establish multi-dimensional motions satisfying (35), we introduced in [2] a 2-tensor A:

(39) λ(∂ t + u • ∇)A + A = F -1 F -T
which can be understood as a material property that relaxes in fluid flows. [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF] and [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF]. Then compute (∂ t + u • ∇)τ straightforwardly using τ := ρc 2 1 (F AF T -I). Noteworthily ( 35)-( 40) coincides with a version of Maxwell's models for compressible fluids [START_REF] Bollada | On the mathematical modelling of a compressible viscoelastic fluid[END_REF]. Moreover, it is contained in a larger symmetric-hyperbolic system, which allows one to rigorously define viscoelastic motions unequivocally. Proposition 2. With (33) such that τ := ρc 2 1 (F AF T -I) and p(ρ) + c 2 1 ρ = -∂ ρ -1 e 0 for e 0 strictly convex in ρ -1 , (12)-( 13)-( 14)-(39) becomes symmetrichyperbolic provided div(ρF T ) = 0 and A is symmetric positive-definite (A ∈ S 3 +, * ).

Proposition 1. Set μ = λc 2 1 . Then τ := ρc 2 1 (F AF T -I) satisfies (35) with (40) ♦ τ := ∂ t τ + (u • ∇)τ -(∇u) τ -τ (∇u) T + (div u) τ . Proof. Recall that (∂ t + u • ∇)F T = F T • (∇u) T holds, using
Proof. Using div(ρF T ) = 0, (12)-( 13)-( 14)-(39) rewrites in material coordinates as the Lagrangian system (1)-( 3)-( 4) plus

λ∂ t A + A = F -1 F -T where S = (p(|F |)C + c 2 1 F -T ) + ρc 2 1 F A = ρ∂ F e 0 + c 2 1 2 F A : F .
Then, A ∈ S 3 +, * allows the variable change Y = A -2 . The resulting Lagrangian system for (u, F , |F |, Y ) with involution ∇ a × F = 0 admits a "mathematical entropy" [START_REF] Dafermos | Non-convex entropies for conservation laws with involutions[END_REF] so it is therefore symmetric-hyperbolic. For details we refer to [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF].

A unique smooth solution can be constructed for ( 12)-( 13)-( 14)-(39) using an initial condition satisfying ρ|F | =: ρ > 0, div(ρF T ) = 0, A ∈ S +, * [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. On small time ranges, it unequivocally defines viscoelastic multi-dimensional motions governed by the compressible UCM law ( 35 13)-( 14)-(39) additionally satisfy

∂ t ρ 2 |u| 2 + ρe + div ρ 2 |u| 2 + ρe u -σ • u = ρf • u + ρc 2 1 2λ (I -c -1 ) : (c -I)
provided div(ρF T ) = 0 and A ∈ S +, * , on denoting c = F AF T ∈ S +, * .

Proof. We will show (3) in material coordinates (the Lagrangian description). On one hand, computing ∂ t |u| 2 = 2u • ∂ t u is straightforward. One the other hand, using Interestingly, notice that our free energy (41) is not useful for well-posedness: it is not strictly convex in conserved variables. Morover, our formulation ( 12)-( 13)-( 14)-(39) for a sound Maxwell model admits the 1D shear waves examined in Sec. 2.1 as solutions, so it preserves some well-established interesting properties of the standard (incompressible) formulation of Maxwell model.

Let us finally detail the symmetric structure of our hyperbolic formulation for (compressible) viscoelastic flows of Maxwell-type, with Lagrangian description

∂ t u = div a S + f (43) ∂ t |F | = div a C T u (44) ∂ t C T = ∇ a × (u × F ) (45) ∂ t F T = ∇ a ⊗ u (46) ∂ t A = (F -1 F -T -A)/λ (47) where S = -p C + F A, p(|F |) = |F | -1 + d 2 1 c 2 1 |F | -γ , assuming c 2 1 ρ ≡ 1 in (41) e(F ) = c 2 1 2 (F k α A αβ F k β -2 log |F k β |) - d 2 1 1 -γ |F | 1-γ .
To that aim, we consider a 2D system when λ → ∞:

∂ t u x + ∂ a F y b p -(A aa F x a + A ab F x b ) + ∂ b -F y a p -(A ab F x a + A bb F x b ) = 0, ( 48 
) ∂ t u y + ∂ a -F x b p -(A aa F y a + A ab F y b ) + ∂ b F x a p -(A ab F y a + A bb F y b ) = 0, (49) ∂ t |F | = ∂ a (-F x b u y + F y b u x ) + ∂ b (-F y a u x + F x a u y ) , (50) 
∂ t F x a -∂ a u x = 0, (51) ∂ t F x b -∂ b u x = 0, (52) ∂ t F y a -∂ a u y = 0, (53) 
∂ t F y b -∂ b u y = 0, (54) 
∂ t Y aa = ∂ t Y ab = ∂ t Y bb = 0 (55) where, denoting ∆ = Y aa Y bb -Y ab Y ab , δ = Y aa + Y bb + 2 √ ∆, we have A aa = Y bb + √ ∆ δ , A ab = -Y ab δ , A bb = Y bb + √ ∆ δ .
Rewriting ∂ t U + ∂ α G α (U ) = 0 the system above, involutions M α ∂ α U = 0 hold with M a = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 M b = 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 and

∂ t η(U ) + ∂ α Q α (U ) = 0 is satisfied for η(U ) = |u| 2 2 + e, using Ξ(U ) T = pu y -pu x in DQ α (U ) = Dη(U )DG α (U ) + Ξ(U ) T M α .
A symmetric formulation is obtained for our quasilinear formulation of Maxwell (compressible) viscoelastic flows similarly to the standard compressible elastodynamics case: on premultiplying the system (48-55) by D 2 η(U ), insofar as the matrix (D 2 η(U )DG α (U ) + DΞ(U ) T M α )ν α is symmetric given a unit vector ν = (ν a , ν b ) ∈ R 2 . We do not detail the symmetric matrix (D 2 η(U )DG α (U ) + DΞ(U ) T M α )ν α here: its upper-left block coincides with (28), but the other blocks are complicate and depend on the choice of the variable Y = A -1 2 (key to exhibit the symmetrichyperbolic structure using a fundamental convexity result from [10] -Theorem 2 p.276 with r = 1 2 and p = 0) a choice which is not unique (ours may not be optimal). In any case, the symmetric structure yields a key energy estimate for the construction of unique smooth solutions, and it also allows one to construct 1D waves similarly from (29) when λ → ∞ (otherwise one has to take into account the source term of relaxation-type).

Conclusion and Perpsectives

Our symmetric-hyperbolic formulation of viscoelastic flows of Maxwell type [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] allows one to rigorously establish multidimensional motions, within the same continuum perspective as elastodynamics and Newtonian fluid models. It remains to exploit that mathematically sound framework, e.g. to establish the structural stability of the model and rigorously unify (liquid) fluid and solid motions through parameter variations in our model: see [START_REF] Boyaval | About the structural stability of maxwell fluids: convergence toward elastodynamics[END_REF] regarding the nonsingular limit toward elastodynamics. Another step in that direction is to drive the transition between (liquid) fluid and solid motions more physically, e.g. on taking into account heat transfers: see [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF] for a model of Cattaneo-type for the heat flux, which preserves the symmetric-hyperbolic structure. Last, one may want to add physical effects for particular applications: the purely Hookean internal energy in (41) can be modified to include finite-extensibility effects as in FENE-P or Gent models, or to use another measure of strain, with lower-convected time-rate for instance, see [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF].

  as physically useful to link fluids where τ λ→0 ---→ 2 μD(u) in the Newtonian limit, with solids governed by elastodynamics when λ ∼ μ → ∞. In particular, one often considers the Upper-Convected Maxwell (UCM) model, with objective time-rate ♦ τ in (35) defined by the Upper-Convected (UC) derivative 4 : (36)

▽

  

1 2(F

 1 )-(40) as long as hyperbolicity holds and the solution remains bounded. Those motions satisfy thermodynamics with (41) e = e 0 + c 2 A : F -log det F A : F ) . Proposition 3. With (33), τ := ρc 2 1 (F AF T -I) and p(ρ) + c 2 1 ρ = -∂ ρ -1 e 0 , smooth solutions to (12)-(

2 1 2 (

 22 ) and∂ t F = ∇ a u one computes (42) ∂ t e = ∂ t e 0 + c Ic -1 ) : ∂ t c =c -1 ) : (c -I) + ∇ a u : S/ ρwhere (Ic -1 ) : (c -I) ≥ 0 is a dissipation. QED

  i.e.

	(37) ∂ given enough initial and boundary conditions. Denoting G := μ λ > 0 the shear elasticity, (37)-(38) indeed coincides with the famous hyperbolic system for 1D
	damped waves, which implies λ∂ 2

t u = ∂ y τ xy where we recall u := ∂ t X, and Maxwell's constitutive relation (35) i.e. (38) λ∂ t τ xy + τ xy = μ∂ y u , tt u(t, y)+∂ t u(t, y) = μ∂ 2 yy u(t, y) and λ∂ 2 tt τ xy (t, y)+ ∂ t τ xy (t, y) = μ∂ 2 yy τ xy (t, y). Time-continuous solutions to (37)-(

Not only with fields in H s (R 3 ), s > 3

, for t ∈ [0, T ), but in fact whatever T > 0 and s ∈ R here, insofar as S i α (F ) = ρc 2 1 F i α so the Lagrangian description (1-3) reduces to linear PDEs.
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