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Generalized Laplace Particle Filter on Lie Groups Applied to Ambiguous Doppler Navigation

Particle filters are suited to solve nonlinear and non-Gaussian estimation problems which find numerous applications in autonomous systems navigation. Previous works on Laplace Particle Filter on Lie groups (LG-LPF) demonstrated its robustness and accuracy on challenging navigation scenarios compared to classic particle filters. Nevertheless, LG-LPF is applicable when the prior probability density and the likelihood have a predominant mode, which narrows the scope of applications of this method. Thus, this paper proposes a generalized strategy to use LG-LPF while keeping its benefits. The core idea is to compute an accurate multimodal importance function based on local optimizations and resample the particles accordingly. This approach is compared to a Laplace Particle Filter (LPF) designed in the Euclidean space, on a UAV navigation scenario with ambiguous Doppler measurements. The Lie group approach shows improved accuracy and robustness in every case, even with a reduced number of particles.

I. INTRODUCTION

Particle filters are a class of estimation methods well suited to highly nonlinear and non-Gaussian scenarios. They solve the Chapman-Kolmogorov and Bayes equations by approximating the probability density functions with weighted particles evolving in time. However, their practical implementation remains challenging as frequent particles resampling is required to maintain a consistent representation of the densities [START_REF] Kong | Sequential imputations and Bayesian missing data problems[END_REF]. An efficient method was introduced with Laplace Particle Filter (LPF) [START_REF] Musso | Introducing the Laplace approximation in particle filtering[END_REF] [START_REF] Quang | Particle filtering and the Laplace method for target tracking[END_REF], which uses the Laplace approximation for integrals to compute an importance function close to the posterior density. Thus, the particles are resampled in highly probable areas, bringing accuracy and robustness to the estimation process. However, the classic implementation of Laplace resampling assumes that the posterior density tends to a single mode, which does not cope with multimodal and ambiguous scenarios. Some research works addressed this problem by using a cluster representation of the probability density function [START_REF] Murangira | A mixture regularized rao-blackwellized particle filter for terrain positioning[END_REF], leading to improved results for terrain-based navigation. Besides, recent studies about filters on Lie groups demonstrated their superiority when the state presents nonlinear variables such as quaternions or rotation matrices [5] [6]. This framework takes advantage of Lie groups geometric and algebraic properties to derive filters with improved accuracy and robustness. [START_REF] Barrau | The invariant extended Kalman filter as a stable observer[END_REF]. In the wake of these results, a new class of particle filters on Lie groups was lately introduced [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF] [START_REF] Chahbazian | Improved Kalman-Particle Kernel Filter on Lie Groups Applied to Angles-Only Navgation[END_REF], confirming the interest of combining Lie groups and Laplace method in particle filtering. Yet, likewise usual LPF, [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF] [START_REF] Chahbazian | Improved Kalman-Particle Kernel Filter on Lie Groups Applied to Angles-Only Navgation[END_REF] are relevant when the estimated density has a predominant mode, which narrows their scope of applications. Hence, this paper proposes a generalized algorithm which copes with multimodal problems and keeps the advantages of LG-LPF. The main contribution is the computation of a close-to-optimal multimodal importance function defined on Lie groups, which adapts the framework proposed in [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF] to multimodal estimation problems. This algorithm was tested on a Doppler-aided UAV navigation scenario with ambiguous measurements. The results demonstrate the generality of the method introduced in this paper and and the interest of using Lie groups on such problems. In the sequel, Section II states the estimation problem, recalling Lie groups definitions and the principle of Laplace Particle Filter. Then, Section III describes the computation of the multimodal importance function on Lie groups, which is the main contribution of this paper. Finally, Section IV applies the algorithm of Section III to a Doppler-aided navigation scenario and Section V concludes this paper.

II. PROBLEM STATEMENT

A. Introduction to Lie Groups 1) Definitions: A Lie group (G, •) is a differential manifold endowed with a group structure. It admits a tangent space g at the identity, called the Lie algebra. In the case of matrix Lie groups, there exist two bijective maps at the vicinity of I d , namely the group exponential exp G : g → G and the group logarithm log G : G → g, whose expressions reduce to matrice power series [START_REF] Hilgert | Structure and Geometry of Lie Groups[END_REF]. Since g is a matrix vector space, there exist two linear mappings towards the Euclidean vector space R d :

[•]

∧ : R d → g, and

[•] ∨ : g → R d , (1) 
and their compositions with exp G and log G are denoted:

exp G ([•] ∧ ) = exp ∧ G (•) ; log G ([•] ∨ ) = log ∨ G (•). (2) 
A summary of these mappings is provided in Figure 1.

2) Group errors: Let (X, X) ∈ (G, •) two matrices. The group error between X and X can be defined on the right as η R = X • X -1 and the left as η L = X -1 • X since matrices generally do not commute. 3) Uncertainties on Lie groups: Let µ ∈ G a matrix and ∼ N (0, P ) a centered Gaussian random vector, where is P a covariance matrix. A random matrix on X ∈ G follows a left concentrated Gaussian distribution on G if:

X ∼ N L G (µ, P ) ; X = µ • exp ∧ G ( ). (3) 
This definition holds when the density is concentrated around its mean, that is to say, all eigenvalues of P are small enough [START_REF] Chirikjian | Gaussian approximation of non-linear measurement models on Lie groups[END_REF]. For the sake of brevity, this section only describes the left distribution case. The adaptation to the right distribution case is possible with only minor adjustments. Let X ∼ N L G (µ, P ) a left random variable on a Lie group, and • P the Mahalanobis norm with respect to P . The probability density function of a (left) concentrated Gaussian on a Lie group writes: [START_REF] Chirikjian | Gaussian approximation of non-linear measurement models on Lie groups[END_REF] p(X) ≈ 1

(2π) d det [P ] e -1 2 || || 2 P , (4) 
where = log ∨ G (µ -1 X).

B. State Estimation Problem

This section describes the estimation framework for stochastic filtering on Lie groups.

1) Stochastic Filtering Scheme: Let the discrete-time state process describing the evolution of a sequence of hidden states {X k } k∈N ∈ G, where G is a Lie group, according to a set of observations {y k } k∈N ∈ G , another Lie group:

X k+1 = f (X k , n q,k ), (5) 
y k+1 = h(X k+1 , n r,k+1 ), (6) 
where (n q,k , n r,k ) are centered noise vectors and (f, h) two nonlinear smooth mappings. The filtering problem lies in the estimation of the posterior density p(X k |y 1:k ), where y 1:k = {y 1 , ... , y k }, under the following hypotheses:

• The measurements y 1:k are mutually independent given the state; • The state matrices X 1:k describe a Markov process;

• The noise vectors (n q,k , n r,k ) are independent and identically distributed; • The initial state probability density function is known. (7) In this work, we address the case where the observation model function h is non-injective, which causes measurement ambiguity. Therefore, the likelihood g(X)

p(y|X) holds several local maxima and is referred to as a multimodal density. We also assume that the measurement model of g is represented by a mixture of N g ∈ N Gaussian kernels denoted φ g G :

g(X) = Ng n=1 W g n φ g G (h(X); µ g n , R n ), (8) 
where µ g n is the Lie group mean of the n th kernel, R n is the covariance matrix of the noise model, and W g n is the weight of each kernel such that:

Ng n=1 W g n = 1. (9) 
2) Particle Filter on Lie Groups: Particle filters solve (7) by approximating the probability density functions with weighted Dirac distributions called particles:

p(X k ) ≈ Np i=1 w i k δ X i k (X k ), (10) 
where X i k represents the i th particle at time k, w i k its weight, and N p the number of particles. When a measurement is available, the weights are updated according to a measurement model [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF]. After a few updates, a large majority of the weights tend to zero while a few tend to unity [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF]. Therefore, a resampling step is triggered when degeneracy is about to occur. The particle weights are monitored using the criterion [START_REF] Kong | Sequential imputations and Bayesian missing data problems[END_REF]:

N eff = 1 Np i=1 (w i ) 2 < N th . (11) 
A resampling step occurs when N eff goes below a given threshold N th = θ.N p where θ ∈ (0, 1) is an a priori defined parameter.

C. Laplace resampling

The resampling step is often challenging for particle filters as there is no guarantee that the new batch of particles gives a relevant representation of the estimated probability density function. Thus, the Laplace method improves the filter accuracy and robustness by resampling the particles in the most probable areas. The new set of particles is drawn according to an importance function whose mean X L and covariance P L are close to the posterior density [START_REF] Quang | Particle filtering and the Laplace method for target tracking[END_REF]. In practical implementation, the importance function is often a Gaussian whose mean is the Maximum A Posteriori (MAP) denoted X * , and whose covariance is the inverse of the Fisher information matrix J * . Fig. 2: Illustration of the Laplace resampling. In nominal behavior, the accurate importance function increases the overlap between the likelihood and the prior, which delays degeneracy and improves precision. When there is a poor consistency, or when the likelihood is very accurate, the importance function enables to resample the particles in the most probable areas.

In the approach proposed in [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF], X * and J * are approximated with an iterated extended Kalman filter on Lie groups. The benefits of the Laplace method are illustrated in Figure 2. Nevertheless, the computation of X * and J * only accounts for one mode. Thus, classic Laplace resampling is not suited to tackle multimodal density estimation, e.g. when the likelihood has several peaks. This limits the scope of applications of the filter and could lead to severe discrepancies if the measurement model or the prior density presents distinct modes, as illustrated in Figure 3. Hence, this paper proposes a generalization of the Laplace method for multimodal estimation in Lie Groups, which is developed in the following section.

III. GENERALIZED LAPLACE PARTICLE FILTER ON LIE

GROUPS

Particle filters are intended to solve nonlinear and non-Gaussian estimation problems, including multimodal estimation scenarios. When this is the case, a monomodal importance function would lead to a poor resampling accuracy and could even overlook important components of the prior as displayed in Figure 3. Thus, the sequel provides a general formulation of the Laplace resampling by computing a close-to-optimal multimodal importance function, which is the main contribution of this paper. First, Subsection III-A provides a method to fit Gaussian mixtures on Lie groups to the prior without specific assumption. Then, Subsection III-B details the computation of the multimodal importance function.

A. Approximation of the prior

The prior density denoted q is estimated with a weighted sum of particles during the filtering process. This section aims to approximate q with a parametric Gaussian kernels mixture which will be used to compute the multimodal 

q(X) ≈ Nq n=1 W q n φ q G (X; µ q n , P n ). (12) 
Here, φ G represents a Lie group Gaussian kernel, W q n are the scaled weights of each kernel, and N q represents the number of modes. The sequel describes a process which determines the parameters of [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF].

First, an Expectation-Maximization algorithm [START_REF] Mclachlan | Finite mixture models[END_REF] [START_REF] Borman | The expectation maximization algorithm-a short tutorial[END_REF] sorts the particles in different clusters denoted (C 1 , ..., C Nq ) which enables to compute the mean, the covariance and the weight of each Gaussian kernel of [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF]. In the left case, the Lie group mean µ q n , n ∈ [1, N q ] of each cluster is defined as [START_REF] Miolane | Defining a mean on Lie groups[END_REF]:

µ q n : X i ⊂Cn w i log ∨ G ((µ q n ) -1 X i ) = 0. (13) 
Then, the Lie group covariance P n , n ∈ ([1, N q ] of each cluster is computed:

P n = X i ⊂Cn w i log ∨ G ((µ q n ) -1 X i ) log ∨ G ((µ q n ) -1 X i ) T . (14)
Finally, the weight of each cluster is the sum of its particle weights:

W q n = X i ⊂Cn w i . (15) 

B. Computation of the Importance Function

The cornerstone of the Laplace resampling method lies in the computation of an importance function whose statistical moments are close to the posterior density. Since this paper addresses multimodal estimation problems, a relevant approach is to take an importance function denoted q which samples the particles close to the most probable peaks as shown in Figure 3. Thus, the importance function is chosen such as:

q(X) = Nq n=1 W q n φ q G (X; µ * n , P * n ), (16) 
where N q is the number of kernels of the importance function, and µ * n , P * n , W g n , n ∈ [1, N q ] are respectively the mean, covariance and weight of the n th kernel. The sequel details the steps to find the values of µ * n , P * n , W g n which are close to the posterior density.

1) Computation of the optimal modes: By applying the Bayes rule, the posterior density can be factorized with the likelihood g from ( 8) and the prior density denoted q from (12) :

p(X k+1 |y 1:k+1 ) ∝ g(X k+1 )q(X k+1 ).

Then, the optimal choice for the kernel means of the importance function are those which maximize the posterior density. For Gaussian mixtures, it corresponds to the set of minimums of the log-likelihood:

µ * i = arg min X {-log (g(X)q(X))}, i ∈ [1, N ], (18) 
where N ∈ N is the total number of extremums. However, finding the exact solution to this problem is difficult, especially when the dimension of the state is large with a strongly nonlinear measurement model. Hence, the sequel introduces an intuitive approach which leads to relevant approximated solutions of (18) using a similar approach as [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF].

2) A close-to-optimal solution: The proposed method is based on the idea that the solutions of (18) are close to the prior estimated density. These local minimums are approximated using an iterated Extended Kalman filter on Lie groups detailed in Algorithm 1 and illustrated in Figure 4. 

: δ 0 = ∞, X 0 = µ q n , P = P n while ||δ l -δ l-1 || 2 ≥ τ do H l = - ∂ log ∨ G h(X l exp ∧ G ( )) -1 y k+1 ∂ =0 S l = P q n H l φ G (δ l )P q n φ T G (δ l )H T l + R K l = P q n φ T G (δ l )H T l S -1 l δ l+1 = K l log ∨ G (y -1 k+1 h(X l )) + H l δ l X l+1 = µ q n exp ∧ G (δ l+1 ) l ← l + 1 end At convergence: µ * n = X l J * n = φ G (δ l )(I -K l H l φ G (δ l ))P q n φ G (δ l ) -1
Each optimization process is computed for the consistent pairs of kernels according to the following definition which is illustrated in Figure 5. Definition (Consistent pair). Let X k ∈ G a state matrix which follows the state space model [START_REF] Bourmaud | Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated Gaussian distributions[END_REF]. Let φ q G (X k ) = N G (X k ; µ q , P k ) a kernel of the prior density and

φ g G (X k ) = N G (h(X k ); µ g , R k ) a kernel of the likelihood. Then (φ q G , φ g G ) is a consistent pair if: (y k -h(X k )) T S -1 k (y k -h(X k )) < K ( 19 
)
Where K is chosen from the

χ 2 test p(χ 2 (d) K 2 ), d is the dimension of the Lie algebra, S k = H k P k H T k + R k
, and H k is the Lie group Jacobian of h at X k :

H k = - ∂ log ∨ G h(X k exp ∧ G ( )) -1 y k ∂ =0 . ( 20 
)
Finally R k is the covariance matrix of the measurement noise model.

The idea behind this process is that the peaks of the posterior density are located where the product of g and q is large, which happens when the peaks of g and q are close. Thus, the best solutions of (18) are at the vicinity of the consistent pairs defined previously. Step 2 represents the mixture fitted to the prior with 3 kernels (blue), and the likelihood with two kernels (green). The top left cluster is discarded as its weight is too low. In step 3, two prior modes are consistent with the likelihood, and an iterated Kalman update is completed for each consistent pair in the sense of (19) (red). In step 4, the updated kernels of step 3 are used for importance resampling.

Once the optimization is completed for each consistent pair, the updated mean and covariance are used as parameters of a Gaussian kernel of the importance function [START_REF] Tichavský | Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[END_REF]. The weight of each mode of the importance function is computed at the peaks of the posterior (17) and rescaled afterward:

W q n ∝ g(µ * n )q(µ * n ), n ∈ [1, N q ]. (21) 
Then, the importance function becomes:

q(X) = Nq n=1 W q n φ q G (X; µ * n , (J * n ) -1 ). (22) 
Eventually, a new set of particles is drawn according to (22):

X i ∼ q(X), i ∈ [1, N p ], (23) 
and their weight are re-initialized w i = 1 Np . The whole process is illustrated in Figure 6.

C. Algorithm

The generalized LG-LPF is described in Algorithm 2. The optimization process is based on an iterated Extended Kalman filter on Lie groups [START_REF] Bourmaud | Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated Gaussian distributions[END_REF] [8] which is detailed in Algorithm 1 and illustrated in Figure 4. Note that this approach keeps the genericity of the particle filter as the importance function is a Gaussian mixture. Hence, it can approximate any probability density function with a relevent number of Gaussian clusters. The Kalman optimisation is only local to every consistant pair. Another important anspect is the number of clusters for building the importance function. This parameter should be chosen by the user in order to garantee a proper representation of the posteriori density. Note that the number of clusters can evolve over time depending on the estimation problem. 

Initialization: sample X i 0 ∼ p(X 0 ) (3); Prediction: X i k+1|k = f (X i k , n i q,k ) , i ∈ [1, N p ] Update: w i k+1 ∝ w i k p(y k+1 |X i k+1|k ) if N eff < N th then
Compute the prior mixture from III-A: {µ q n , P n , W q n } n∈N Find the consistent pairs: See (19) for n ⊂ {Consistent pairs index} do Get the n th pair prior parameters:µ q n , P q n . Get the n th pair likelihood parameters: µ g n , R k . Compute µ * n and P * n with Algorithm 1. Compute W q n according to (21).

end Drawn: X i ∼ q(X) according to ( 22) Re-initialize weights: eb is the skew-symmetric matrix of the rotation rate vector, and g e is the local gravity vector assumed constant.

w i k+1 = 1 Np end

IV. APPLICATION AND NUMERICAL RESULTS

A. Inertial navigation

B. Doppler-Aided navigation

A Doppler sensor computes the frequency shifts of signals emitted from a beacon on the ground. The Doppler shift ∆f of a signal emitted at frequency f 0 is such that:

∆f = v DOP c f 0 , ( 25 
)
where c is the speed of light in vacuum and v DOP is the projection of the vehicle velocity on the line of sight of the beacon described by the unitary vector -→ e :

v DOP = -→ v e eb • - → e . ( 26 
)
The line of sight vector is obtained with the scaled distance vector pointing towards the beacon:

e = -→ p e eb - -→ x e eb || -→ p e eb - -→ x e eb || , (27) 
where p e eb denotes the position of the beacon.

C. Navigation scenario

In this simulated scenario, a UAV cruises at constant altitude and follows the trajectory displayed in Figure 7. It receives signals from four beacons on the ground, which positions are known. An embedded Doppler sensor provides the frequency shift for each signal with a centered white noise of standard deviation σ R . However, it is assumed that the sensor cannot associate a signal to a specific beacon, leading to an ambiguity in the measurements as illustrated in Figure 8. This ambiguity involves a multimodal likelihood similar to [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF], leading to a possibly multimodal posterior density. Hence, the strategy proposed Section III-B has to be implemented. For the sake of simplicity, it is assumed that the beacons are always visible, with perfectly-known signal frequencies and beacons position. In addition, the UAV is equipped with a calibrated altimeter which provides a measurement of the vehicle's height. Note that the fusion of the measurements of this sensor is performed with a particle weight update which enables observability on the vertical axis. Finally, the initial position, velocity, and attitude of the UAV are assumed to be unknown, the initial probability density function parameters are provided in Table I and illustrated for the lateral position in Figure 7.

D. Practical implementation

The chosen Lie group to represent the state is SE 2 (3). Thus the state matrix at time k writes:

X k =   C e b,k v e eb,k x e eb,k 0 1,3 1 0 0 1,3 0 1   ∈ SE 2 (3). (28) 
Note that the frequency and position of the emitters are assumed to be perfectly known and do not need to appear in the estimation process. 1) Computation of the Lie group Jacobian: Since the optimization process of the LG-LPF proposed in this paper is based on an iterated extended Kalman filter, it only requires the computation of a Lie group Jacobian. The measurement model for a Doppler measurement as a function of the state is given by:

h(X) = f 0 c -→ v e eb • -→ p e eb - -→ x e eb || -→ p e eb - -→ x e eb || . (29) 
The left Lie group Jacobian for the j th beacon is given by:

H j = [0 1,3 , (∆ j ) T ||∆ j || C e b , -J ∆ j C e b ]. (30) 
Where ∆ j = p e,j eb -x e eb = [∆ j x , ∆ j y , ∆ j z ] T , and :

J ∆ j =          1 ||∆ j || - (∆ j x ) 2 ||∆ j || 3 - ∆ j x ∆ j y ||∆ j || 3 - ∆ j x ∆ j z ||∆ j || 3 - ∆ j x ∆ j y ||∆ j || 3 1 ||∆ j || - (∆ j y ) 2 ||∆ j || 3 - ∆ j y ∆ j z ||∆ j || 3 - ∆ j x ∆ j z ||∆ j || 3 - ∆ j y ∆ j z ||∆ j || 3 1 ||∆ j || - (∆ j z ) 2 ||∆ j || 3          (31)
The measurement Jacobian for all the beacons writes:

H =   H 1 ... H N   . ( 32 
)
2) Approximation of the prior density: The clustering algorithm for the prior density uses the Matlab function gmfitdist (Matlab 2021.a), which is based on a Expectation-Maximization algorithm. Once the particles are sorted, each cluster covariance and mean is computed as described Section III-A. Then, these parameters are used to fit a Gaussian mixture to the prior density according to [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF].

3) Computation of the likelihood: Assuming that the measurement vector writes y = [y 1 , ..., y N b ] T , where N b represents the number of beacons, each component of y represents the Doppler shift of a signal coming from a specific beacon. Since the Doppler sensor is not able to assign the signal to its source, a measurement component y i , i ∈ [1, N b ] can be assigned to every beacon p j , j ∈ [1, N b ]. Thus, there exist N b ! equiprobable combinations of beacons, and each one of them generates a mode in the likelihood. Hence, in this scenario, the likelihood has 4! = 24 modes which enumerate the equiprobable beacon combinations:

g(X k+1 ) ∝ N b ! n=1 exp - 1 2 ||y n k+1 -h n (X k+1 )|| 2 R k+1 .
(33) This first approach is limited as the number of modes has a factorial growth with respect to the number of beacons. One can implement consistency tests to reject outliers combinations and make this approach scalable for higher numbers of beacons.

4) Computation of the importance function: The importance function q is computed at each resampling step using the parameters of the approximated prior density q and the likelihood g from (33) to run Algorithm 1. The detail of the computation of the measurement model and its Lie group Jacobian is provided from (29) to (32).

5) Filter and simulation parameters: The simulation parameters are provided in Table I. 

Sensor Parameters

E. Results

1) Methodology:

We compare LG-LPF and LPF which compute a multimodal importance function according to the method presented in III-B. Their only difference is that LPF computations are adapted to variables defined in the Euclidean space R 9 where the attitude is represented by Euler angles. The likelihood is the same for both filters and defined in [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF]. The Average Root Mean Square Error (ARMSE) are compared over the last 10 seconds of flight and their RMSE are plotted in Figure 9 alongside the Posterior Cramer-Rao Bound (PCRB) for the convergent runs. A run is considered convergent if the mean position of the state is contained inside the confidence ellipsoid Γ k computed from the Posterior Cramer-Rao Bound (PCRB) [START_REF] Tichavský | Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[END_REF], for the last five measurement iterations as follows:

Γ k = x e eb,k |(x e eb,k -x e eb,k ) T PCRB -1 k (x e eb,k -x e eb,k ) ≤ κ , (34) 
where the threshold κ is chosen from the test p(χ 2 (d) ≤ κ 2 ) = 0.99 with d = 9 the dimension of the state vector. The RMSE at time k is computed from convergent runs only based on the criterion (34) as:

RMSE e (k) = 1 N conv Nconv m=1 ||e(k)|| 2 2 , (35) 
where N conv represents the number of convergent runs, and the error vector e(k) is defined as:

e(k) =      Ψ (C e b,k ) T C e b,k,m , v e eb,k -v e eb,k,m , x e eb,k -x e eb,k,m , (36) 
where Ψ(•) defines the exact transformation from a rotation matrix to Euler angles. The ARMSE is computed from (35) over the time period T of N T steps ranging from k ini to k end :

ARMSE T = 1 N T kend k=kini RMSE e (k). (37) 
In the later, k ini starts 10 seconds before the end of the simulation, which corresponds to a sufficently large time interval to compare the filters after they converged, and k end is the last step of the trajectory.

2) Results: In spite of the ambiguous measurements, the generalized LG-LPF proposed in this article is able to converge with close-to-optimal performance on the attitude variables and velocity starting from 1000 particles. This is due to the accurate multimodal importance function which resamples the particles in the most probable areas. As expected, the accuracy and robustness increase with the number of particles, as illustrated in Table II and Figure 9. LPF performs well starting 5000 particles, but its Lie groups counterpart shows a significant accuracy improvement even starting with 500 particles. Finally, the RMSE peaks on the attitude variables visible in Figure 9 corresponds to the turns of the UAV. They result from integration errors due to the strong dynamics of the trajectory. The temporal integration flattens these effects on the velocity and the position, enabling a smooth convergence. This shows that LG-LPF is robust to angular discrepancies which is an interesting property for practical applications. The results obtained with this scenario show that LG-LPF of [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF] can be adapted to complex estimation problems. Besides, the accuracy and robustness obtained with this filter for a reduced number of particles pave the way to embedded applications where the computational cost of classic particle filters has been prohibitive so far.

V. CONCLUSION

The approach of LG-LPF proposed in this paper provides a general framework to implement a particle filter on Lie group with an accurate resampling method. It demonstrated close-to-optimal performance on a multimodal and ambiguous Doppler-aided navigation scenario, with Fig. 9: RMSE for LG-LPF with 500, 1000 and 5000 particles compared to the Cramer Rao Lower Bound (CRLB). The filter achieves close-to-optimal performance on the position, velocity, pitch and yaw. The roll has low observability in this scenario, as indicated by the slow convergence of the CRLB on this variable. The synchronized peaks on the attitude variables result from integration errors due to strong dynamics. The position and velocity plots correspond to the norm || • || 2 of the RMSE of their three axes.

Fig. 1 :

 1 Fig. 1: Illustration of the Lie group structure. For matrix Lie groups, the exponential exp G and logarithm log G define a bijection of G into R d , and the algebra g is the tangent space at I d .

  equation and the Bayes rule, which are referred to as the optimal filter: p(X k+1 |y 1:k ) = p(X k+1 |X k )p(X k |y 1:k )dX k , p(X k+1 |y 1:k+1 ) = p(y k+1 |X k+1 )p(X k+1 |y 1:k ) p(y k+1 |X k+1 )p(X k+1 |y 1:k )dX k+1 .

Fig. 3 :

 3 Fig. 3: Illustration of the interest of a multimodal importance function in the case of multimodal scenarios. A monomodal importance function cannot properly represent a multimodal prior density.

  importance function:

Algorithm 1 :

 1 The (left) Iterated Lie Groups Extended Kalman Filter for optimization Set iteration tolerance: τ Initialize

Fig. 4 :

 4 Fig.4: Illustration of Algorithm 1 which computes the Maximum A Posteriori (MAP) through an iterated Extended Kalman filter process. At each optimization step, the state stays in the group and the gradient δ l belongs to the tangent space at X l denoted T X l G. The covariance is updated using the MAP as linearization point.
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 5 Fig. 5: Illustration of consistent and inconsistent pairs. The prior modes are 1 and 2, and the likelihood mode are A, B, C and D. Graphically, 1 is close to B, 2 is close to both C and D, and A is far from 1 and 2. The consistent pairs are the combinations of prior and likelihood modes which are close according to the criteria (19). In this case, the consistent pairs are (1,B), (2,C) and (2,D).

Fig. 6 :

 6 Fig. 6: Illustration of the clustering and local optimization algorithm. Top step 1 (top left corner) represents the approximated prior density with particles.Step 2 represents the mixture fitted to the prior with 3 kernels (blue), and the likelihood with two kernels (green). The top left cluster is discarded as its weight is too low. In step 3, two prior modes are consistent with the likelihood, and an iterated Kalman update is completed for each consistent pair in the sense of (19) (red). In step 4, the updated kernels of step 3 are used for importance resampling.
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 2 The (left) Lie Groups Laplace Particle Filter
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  navigation system aims to estimate the position, velocity and orientation of a vehicle over time. To do so, most navigation systems are based on an inertial measurement unit (IMU), measuring the inertial rotation rate ω b eb and acceleration f b eb in the vehicle's frame denoted [b], with respect to the ground frame [e]. The IMU outputs are integrated over time according to the kinematics equations:    Ċe b = C e b Ω b eb , ve eb = C e b f b eb + g e , ẋe eb = v e eb , (24) where C e b denotes the rotation matrix from the vehicle frame [b] to the ground frame [e], and v e eb , x e eb are respectively the velocity and position of [b] with respect to [e] resolved in [e]. Ω b
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 7 Fig. 7: Illustration of the true trajectory horizontal position (blue line) and the four beacons (triangles) with the particle cloud represented at different times. The red stars represent the true state at the time where the particles were captured. The trajectory and the sensor inputs are simulated.
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 8 Fig. 8: Top view of two ambiguous Doppler measurements. The sensor receives two signals and computes their shifts leading to v 1 DOP and v 2 DOP . Two possibilities exist since the sources cannot be associated with the signals. In case 1, v 1 DOP is with beacon A and v 2 DOP is with beacon B. In case 2, v 1 DOP

improved accuracy and robustness compared to its Euclidean counterpart, the Laplace Particle Filter. The particle filter proposed in this paper is interesting for aerospace and robotics applications that require reliable and accurate estimation methods in complex navigation scenarios. Future work will focus on the test of this filter in experimental datasets with a specific interest on real-time embedded applications.
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