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Abstract. Cyber attacks are a significant risk for cloud service providers
and to mitigate this risk, near real-time anomaly detection and mitiga-
tion plays a critical role. To this end, we introduce a statistical anomaly
detection system that includes several auto-regressive models tuned to
detect complex patterns (e.g. seasonal and multi-dimensional patterns)
based on the gathered observations to deal with an evolving spectrum
of attacks and a different behaviours of the monitored cloud. In addi-
tion, our system adapts the observation period and makes predictions
based on a controlled set of observations, i.e. over several expanding
time windows that capture some complex patterns, which span different
time scales (e.g. long term versus short terms patterns). We evaluate the
proposed solution using a public dataset and we show that our anomaly
detection system increases the accuracy of the detection while reducing
the overall resource usage.

Keywords: Anomaly detection, ARIMA, Time series, Forecasting

1 Introduction

In the midst of the recent cloudification, cloud providers remain ill-equipped to
cope with security and cloud is thereby highly vulnerable to anomalies and mis-
behaviours. It hence becomes critical to monitor today’s softwarised cloud, look-
ing for unusual states, potential signs of faults or security breaches. Currently,
the vast majority of anomaly detectors are based on supervised techniques and
thereby require significant human involvement to manually interpret, label the
observed data and then train the model. Meanwhile, very few labelled datasets
are publicly available for training and the results obtained on a particular con-
trolled cloud (e.g. based on a labelled dataset) do not always translate well to
another setting. In the following, we thus introduce an automated and unsu-
pervised solution that detects anomalies occurring in the cloud environment,
using statistical techniques. In particular, our anomaly detector relies on a fam-
ily of statistical models referring to AutoRegressive Integrated Moving Average
(ARIMA) and its variants [1], that model and predict the behaviour of the
softwarised networking system. This approach consists in building a predictive
model to provide an explainable anomaly detection. Any observation that is not
following the collective trend of the time series is refereed as an anomaly. Still,
building a predictive model based on the historical data with the aims of fore-
casting future values and further detect anomalies, remains a resource-intensive
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process that entails analysing the cloud behaviour as a whole and typically over
a long period of time, on the basis of multiple indicators, such as CPU load,
network memory usage, packet loss collected as time series to name a few. It
is therefore impractical to study all the historical data, covering all parameters
and possible patterns over time, as this approach hardly scales. Furthermore, the
performance of such approach tends to deteriorate when the statistical properties
of the underlying dataset (a.k.a. cloud behaviour) changes/evolves over time. To
tackle this issue, some research studies, e.g., [2], determine a small set of features
that accurately capture the cloud behavior so as to provide a light detection.
An orthogonal direction of research [3] devises sophisticated metrics (e.g., novel
window-based or range-based metrics) that operate over local region. Differ-
ently, we propose an adaptive forecasting approach that addresses these issues
by leveraging expanding window: once started, an expanding window is made
of consecutive observations that grow with time, counting backwards from the
most recent observations. The key design rational is to make predictions based
on a controlled set of observations, i.e. over several expanding time windows, to
capture some complex patterns that may span different time scales and to deal
with changes in the cloud behaviour. Overall, our contributions includes:
– an unsupervised anomaly detection system that incorporates a family of

autoregressive models (§3.2) supporting both univariate, seasonal and mul-
tivariate time series forecasting. Using several models – in opposition to a
single model that is not necessarily the best for any future uses – increases
the chance to capture seasonal patterns and complex patterns. The system
decomposes the observations (i.e., time series) and attempts to forecast the
subsequent behaviour. Then, any deviation from the model-driven forecast
is defined as an anomaly that is ultimately reported.

– Our system uses expanding windows and therefore avoids the tendency of
the model to deteriorate over time when the statistical properties of the
observations change at some points. When a significant behavioural change
is observed, a new expanding window is started. This way, the observations
depicting this novel behaviour are processed separately. Thus, the resulting
forecast better fits and the anomaly detection is robust to behaviour changes.

– Following, we assess the performances associated with our anomaly detector
(§4) considering a cloud native streaming service.

2 Adaptive Anomaly Detection

Auto-regressive algorithms are commonly used to predict the behaviour of a
system. As illustration, network operator attempt to predict the future band-
width/application needs [4] so as to provision in advance sufficient resources. In
the same way, we propose to monitor and predict the behaviour of the softwarised
network. Then, anomalies are detected by comparing the expected/predicted be-
haviour with the actual behaviour observed in the network ; the more deviant
this behaviour is, the greater the chance that an attack is underway. In prac-
tice, the problem is that detection accuracy tends to degrade when there is
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(even a small) change in behaviour. We thus introduce an anomaly detection
system that relies on several auto-regressive models capable of capturing sea-
sonal and correlated patterns for which traditional methods, including the small
body of works ( [5] leveraging univariate methods, fail on this aspect. In ad-
dition, our anomaly detection system uses several expanding windows to deal
with a wider range of behavioural patterns that span different time scales and
may change over time. From the moment a noticeable change of behaviour is
observed, a new windows that runs over an underlying collection is triggered.
Our anomaly detector consists in studying past behaviour based on some key
indicators (e.g. CPU usage, amount of disk read) that are expressed as a set of
K time series Y = {y1t }, {y2t }, · · · , {yKt }, with K ≥ 1 and t is the time, with
t ≥ T0 where T0 denotes the start time. The behaviour forecasting is performed
at equally spaced points in time, denoted T0, T1, · · ·Ti, · · · . At time Ti, the re-
sulting forecast model M̂i is established accordingly for the next period of time
∆T = [Ti, Ti+1]. In particular, we rely on 3 regressive models (as detailed in
§3.1) so as to establish in advance the expected behaviour of the softwarised
network and compare them with that observed, at any time t ≥ T1. Rather
than exploiting the whole historical dataset Y, the analysis is focused on several
time windows (i.e. time frames) to achieve some accurate predictions. Time win-
dow has the advantage of not having to conveniently deal with the never-ending
stream of historical data that are collected. Small window typically accommo-
dates short-term behaviour whilst allowing real-time anomaly detection at low
cost. As a complement, larger window covers a wider variety of behaviours and
ensures that long term behaviour are considered. Any expanding window Wj

(with 1 ≤ j ≤ J) is populated with the most recent data points and moves
step-wise along the time axis as new observations are received: as time goes, the
window grows. Let {1, · · · , wj} denote the time stamps sequence of observations
that are collected during any given time window Wj . This rolling strategy im-
plies that observations are considered for further data analysis as long as they
are located in the current window Wj . At time Ti (with Ti ≥ T1), all the win-

dowed times series {Y}Ti

t=Ti−W1
, {Y}Ti

t=Ti−W2
, · · · , {Y}Ti

t=Ti−Wj
, · · · are analysed

by a data processing unit that performs the forecasting and produces the predic-
tive model M̂i = M̂i({Y}Ti

t=Ti−W1
), · · · ,M̂i({Y}Ti

t=Ti−Wn
). For this purpose, a

family of predictive models denoted M̂i = M̂i
ARIMA,M̂i

SARIMA,M̂i
V ARMA is

used. Based on M̂i, the aim is to detect some anomalies Ai, with Ai ⊂ {Y}Ti+1

Ti
.

3 Anomaly Detection based on Time Series Forecasting

We introduce an anomaly detection system that continuously detects anomalies
and supports time series forecasting, which corresponds to the action of predict-
ing the next values of the time series, leveraging the family of predictive models
(§3.1) and making use of expanding windows (§3.2) to detect anomalies (§3.3).
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3.1 Time Series Forecasting

Time series forecasting is performed by a general class of extrapolating mod-
els based on the frequently used AutoRegressive Integrated Moving Average
(ARIMA) whose popularity is mainly due to its ability to represent a time se-
ries with simplicity. Advanced variants, including Seasonal ARIMA and Vector
ARIMA are further considered to deal with the seasonality in the time series
and multidimensional (a.k.a multivariate) time series.
Autoregressive Integrated Moving Average (ARIMA) process for uni-
variate time series combines Auto Regressive (AR) process and Moving Av-
erage (MA) process to build a composite model of the time series. During the
auto regressive process that periodically takes place at time Ti = tO + i∆T for
any expanding windows Wj (with 1 ≤ j ≤ J), the variable of interest ykt (with
Ti ≤ t ≤ Ti+1 and 1 ≤ k ≤ K) is predicted using a linear combination of past
values of the variable ykt−1, y

k
t−2, · · · , ykt−wj

that have been collected during wj :

ykt = µk +

wj∑
i=1

φki y
k
t−i + εkt (1)

where µk is a constant, φki is a model parameter and ykt−i (with i= 1, · · · , wi)
is a lagged value of ykt . εkt is the white noise a time t, i.e., a variable assumed to
be independently and identically distributed, with a zero mean and a constant
variance. Then, the Moving Average (MA) term ykt is expressed based on the
past forecast errors:

ykt = ck +

q∑
j=1

θkj ε
k
t−j + εkt = θ(B) εkt (2)

where θki and respectively εkt−i (with i= 1, · · · , ∆T ) are the model parameter
and respectively the random shock at time t− j. εkt is the white noise at time t,
B stands for backshift operator and θ(B) = 1+

∑wj

j=1 θ
k
jB

j . Overall, the effective
combination of Auto Regressive (AR) and moving average (MA) processes forms
a class of time series model, called ARIMA, whose differentiated time series y′t
is expressed as: φk(B)(1−B)dykt = µk+θk(B) with φk(B) = 1−

∑p
i=1 φ

k
iB

i and
y′kt = (1−B)dykt and d represent the number of differentiation. When seasonality
is present in a time series, the Seasonal ARIMA model is of interest.
Seasonal ARIMA (SARIMA) process deals with the effect of seasonality
in univariate time series, leveraging the non seasonal component, and also an
extra set of parameters P , Q, D, π to account for time series seasonality: P
is the order of the seasonal AR term, D the order of the seasonal Integration
term, Q the order of the seasonal MA term and π the time span of the seasonal
term. Overall, the SARIMA model, denoted SARIMA(p,d,q)(P ,D,Q)π, has the
following form:

φkp(B)Φ(BS)(1−B)d(1−Bπ)Dykt = θq(B)ΘQ(Bπ)εkt (3)

where B is the backward shift operator, π is the season length, εkt is the esti-
mated residual at time t and with:
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φp(B) = 1− φ1B − φ2B2 − · · · − φpBp
Φ(Bπ) = 1− ΦsBπ − Φ2πB

2π − · · · − ΦPπBPπ
θq(B) = 1 + θ1B + θ2B

2 + · · ·+ θqB
q

ΘQ(Bπ) = 1 +ΘsB
π +Θ2sB

2π + · · ·+ΘQπB
Qπ

Vector ARIMA (VARMA) process - Contrary to the (S)ARIMA model,
which is fitted for univariate time series, VARMA deals with multiple time se-
ries that may influence each other. For each time series, we regress a variable
on wi lags of itself and all the other variables and so on for the q parameter.
Given k time series y1t, y2t, ..., ykt expressed as a vector V t = [y1t, y2t, ..., ykt]

T ,
VARMA(p,q) models is defined by the following V ar and Ma models:

y1t
y2t
.
.
.
yKt

 =


µ1

µ2

.

.

.
µk

+



φ11,1 · · · φ11,k
φ12,1 · · · φ12,k
. . .
. . .
. . .

φ1k,1 · · · φ1k,k




y1,t−1
y2,t−1
.
.
.

yk,t−1

+· · ·+



φwi
1,1 ... φ

wi

1,k

φwi
2,1 ... φ

wi

2,k

. . .

. . .

. . .
φwi

k,1 ... φ
wi

k,k




y1,t−wi

y2,t−wi

.

.

.
yk,t−wi

+


ε1t
ε2t
.
.
.
εkt



y1t
y2t
.
.
.
yKt

 =


µ1

µ2

.

.

.
µk

+



θ11,1 ... θ
1
1,k

θ12,1 ... θ
1
2,k

. . .

. . .

. . .
θ1k,1 ... θ

1
k,k




ε1,t−1
ε2,t−1
.
.
.

εk,t−1

+· · ·+



θq1,1 ... θ
q
1,k

θq2,1 ... θ
q
2,k

. . .

. . .

. . .
θqk,1 ... θ

q
k,k




ε1,t−q
ε2,t−q
.
.
.

εk,t−q

+


ε1t
ε2t
.
.
.
εkt


(4)

where µi is a constant vector, the k × k matrices, denoted φri,j and respec-
tively θri,j (with i, j = 1, · · · , k and r = 1, · · · , p ) are the model parameters, the
vector yk,t−i (with i = 1, · · · , p) correspond to the lagged values, vector εi,t−u
(with i = 1, · · · , k and u = 1, · · · , q) represents random shocks and εit (with
i = 1, 2, ..., k) is the white noise vector.

In summary, the proposed anomaly detection system relies on ARIMA, SARIMA
and VARIMA that predict the future behaviour on a regular basis, i.e., during
the consecutive time periods [T1, T2], · · · [Ti, Ti+1], · · · . In particular, the pre-
diction method further utilises several expanding windows to support anomaly
detection at different resolutions. At Ti (with i > 0), the resulting predictive
models M̂i = M̂i({Y}Ti

t=Ti−W1
), · · · ,M̂i({Y}Ti

t=Ti−Wj
), · · · . makes a prediction

of the behaviour over the next period of time [Ti, Ti+1]. For each iteration step
Ti (with i ≥ 1), the complexity3 associated with forecasting the values with
ARIMA, SARIMA and VARIMA for all the spanning windows corresponds to:

J∑
j=1

(wj + qj)
2(1 +K2) + (wj + qj + Pj +Qj)

2 (5)

3 Complexity can be reduced by distributing and paralleling [6].
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As a forecast is performed for each window, this implies that the more windows
there are, the more expensive the forecast becomes.

3.2 Expanding Windows

In order to control the forecasting cost associated with handling several expand-
ing windows, the windows management problem then amounts to (i) determine
when a new expanding windows needs to be added and (ii) suppress an existing
expanding window if needed. The design of the expanding windows management
is such that it favours the forecasting with expanding windows that produce the
fewest forecast errors while privileging the less computationally demanding ones
in the case of an error tie. A novel expanding window starts if an existing expand-
ing windows provides erroneous predictions (i.e. the prediction error is greater
than a given threshold). If required (i.e. the number of windows is too large and
reaches the desired limit), this addition leads to the deletion of another window.

3.3 Threshold-based Anomaly Detection

The anomaly detection process is periodically triggered at time Ti (with Ti ≥ T1)
considering the three predictive models M̂i = M̂i

ARIMA,M̂i
SARIMA,M̂i

V ARMA.

In particular, a subset of valuesAi ⊂ ytTi+1

t=Ti
is defined as anomalous if there exists

a noticeable difference between the observed value ykt and one of the forecast
values at time t in M̂i = M̂i({Y}Ti

t=Ti−W1
), · · · ,M̂i({Y}Ti

t=Ti−WJ
). In one of the

given models, a noticeable difference between the observation value ykt and the

forecasted values ŷkt at time t (with Ti ≤ t ≤ Ti+1) is greater than a threshold.
The threshold is calculated using to the so-called three sigma rule [7], which is
a simple and widely used heuristic that detects outlier [8]. Other metrics such
as the one indicated in [3] could be easily exploited. Based on all the prediction
errors {εkt }

Ti

t=Ti−wi
observed during [Ti−wi, Ti] where εkt = |ykt −ŷkt |, the threshold

is defined as:
δwi

(Ti) = α σ(εkt ) + µ(εkt ) (6)

α is a coefficient that can be parameterised based on the rate of false posi-
tive/negative observed/expected and σ(εkt ) and resp. µ(εkt ) correspond to the
standard deviation and resp. mean of the prediction error.

4 Assessment

Our solution supports the forecasting along with anomaly detection, provided
relevant measurements (a.k.a time series). The proposed solution is evaluated
relying on a public dataset, which contains data provided by a monitored cloud-
native streaming service. The Numenta Anomaly Benchmark (NAB) dataset4

corresponds to a labelled dataset, i.e. the dataset contains anomalies for which

4 https://www.kaggle.com/boltzmannbrain/nab
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the causes are known. The dataset depicts the operation of some streaming and
online applications running on Amazone cloud. The dataset reported by the
Amazon Cloud watch service includes various metrics, e.g., CPU usage, incom-
ing communication (Bytes), amount of disk read (Bytes), ect. Our prototype

(a) normal observa-
tions (blue), known
anomalies (red)

(b) forecast values
(orange), known
anomalies (red)

(c) detected anoma-
lies (green) with
static threshold

(d) detected anoma-
lies (green) with dy-
namic threshold

Fig. 1: Observations versus forecast measurement - CPU utilisation of
cloud native streaming service during 23 days.

implementation is focused on the preprocessing of the monitored data, forecast-
ing and detection of anomalies. The prototype requires a Python environment as
well panda5, a third-party packages handling times series and data analytic. Our
detector proceeds as follows. filtered and converted into an appropriate format.
Then, measurements are properly scaled using Min-Max normalisation [9] of the
features. As suggested by Box and Jenkins, the ARIMA model along with their
respective (hyper)parameters are established. Finally, anomalies are detected.
Relying on the dataset and our prototype, we evaluate the performances associ-

(a) Observations
(blue), known
anomalies (red)

(b) Forecasted val-
ues (orange), known
anomalies (red)

(c) Detected anoma-
lies (green) with
static threshold

(d) Detected anoma-
lies (green) with dy-
namic threshold

Fig. 2: Observations versus forecast values - CPU utilisation of cloud native
streaming service during 1 month.

ated with the proposed anomaly detector. We consider two time frames lasting 23
days (Fig. 1 and 3) and one month (Fig. 2) during which labelled anomalies (red
points) are detected (green points in Figures 1c, 1d, 2c, 2d, 3c and 3d) or not. As

5 https://pandas.pydata.org
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expected, forecast values (orange points in Figures 1b and 2b) are conveniently
close to the normal observations (blue points). In both cases, anomalies are not
always distant from both the normal values (blue points), which makes anomaly
detection challenging even if in both cases they are adequately detected. With
a dynamic threshold (Figures 1d and 2d), the number of false positives (green
points not circled in red in Fig. 1d and 1c) is negligible comparing to a static
threshold (Fig. 1c and 2c) that involves a very high false positive rate. When we

(a) 2 time series
with normal obser-
vations (blue, yel-
low) and anomalies
(red)

(b) Observations
(blue and yellow)
versus forecast ob-
servations (orange
and green)

(c) Anomaly detec-
tion (green) with
static threshold

(d) Anomaly detec-
tion (green) with
dynamic threshold

Fig. 3: Multivariate Forecast

focus on a multivariate prediction and detection (Fig. 3), we see that the param-
eterization of the threshold plays a significant role in the detection accuracy and
in the rate of false positives and false negatives. Comparing to a static threshold,
a dynamic threshold constitutes a fair compromise between a accurate detection
and an acceptable false positive rate.

5 Related work

Anomaly detection is an long-standing research area that has continuously at-
tracted the attention of the research community in various fields. The resulting
research on anomaly detection is primarily distinguished by the type of data pro-
cessed for anomaly detection and the algorithms applied to the data to perform
the detection. The majority of the works deals with temporal data, i.e., typically
discrete sequential data, which are univariate rather than multivariate: in prac-
tice, several time series (concerning e.g. CPU usage, memory usage, traffic load,
etc.) are considered and processed individually. Based on each time series, tra-
ditional approaches [10] typically apply supervised or unsupervised techniques
to solve the classification problem related to anomaly detection. They construct
a model using (un)supervised algorithms, e.g., random forests, Support Vector
Machine (SVM), Recurrent Neural Networks (RNNs) and its variants including
Long Short-Term Memory (LSTMs) [11–13] and deep neural network (DNN).

Recently, another line of research that have been helpful in several domains, is
to analyse time-series to predict their respective behaviour. Then, an anomaly is
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detected by comparing the predicted time series and the observed ones. To model
non-linear time series, Recurrent Neural Networks (RNNs) and some variants,
e.g. Gated Recurrent Units (GRUs), Long Short-Term Memory (LSTMs) [14]
have been studied. Filinov et. al [14] use a LSTM model to forecast values and
detect anomalies with a threshold applied on the MSE. Candielieri [15] com-
bines a clustering approach and support vector regression to forecast and detect
anomalies. The forecasted data are clustered ; then anomaly is detected using
Mean Absolute Percentage Error. In [5], Vector Auto Regression (VAR) is com-
bined with RNNs to handle linear and non-linear problems with aviation and
climate datasets. In addition, a hybrid methodology called MTAD-GAT [16] uses
forecasting and reconstruction methods in a shared model. The anomaly detec-
tion is done by means of a Graph Attention Network. The works mentionned
above rely on RNNs that are non-linear models capable of modelling long-term
dependencies without the need to explicitly specify the exact lag/order. In coun-
terpart, they may involve a significant learning curve for large and complex
models. Furthermore, they are difficult to train well and may suffer from local
minima problems [17] even after carefully tuning the backpropagation algorithm.
The second issue is that RNNs might actually produce worse results than linear
models if the data has a significant linear component [31]. Alternatively, autore-
gressive models, e.g. ARIMA, Vector Autoregression (VAR) [5] and latent state
based models like Kalman Filters(KF) have been studied. Time series forecast-
ing problems addressed in the literature, however, are often conceptually simpler
than many tasks already solved by LSTM.

For multivariate time series, anomaly is detected by comparing the predicted
time series and the observed ones. To predict the future values, several algorithms
are employed. Filinov et. al [14] use a LSTM-based model to forecast values and
detect anomalies with a threshold on the MSE. Candielieri [15] combines clus-
tering and support vector regression to forecast and detect anomalies: forecasted
values are mapped into clusters and anomalies are detected using Mean Abso-
lute Percentage Error. R2N2 [5] combines the traditional Vector Auto Regression
(VAR) and RNNs to deal with both linear and non linear problems in the avi-
ation and climate datasets. An hybrid methodology [16] uses forecasting and
reconstruction methods in a shared model while anomaly detection is done with
Graph Attention Network.

6 Conclusion

Anomaly detection plays a crucial role on account of its ability to detect any
inappropriate behaviour so as to protect every device in a cloud including equip-
ment, hardware and software, by forming a digital perimeter that partially or
fully guards a cloud. In this article, we have approached the problem of anomaly
detection and introduced an unsupervised anomaly detection system that lever-
ages a family of statistical models to predict the behaviour of the softwarised
networking system and identify deviations from normal behaviour based on past
observations. Existing solutions mostly exploit the whole set of historical data
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for model training so as to cover all possible patterns spanning time. Nonethe-
less, such a detection approach may not scale and performance of these models
tend to deteriorate as the statistical properties of the underlying data change
across time. We address this challenge through the use of expanding windows
with the aim of making predictions based on a controlled set of observations. In
particular, several expanding time windows capture some complex patterns that
may span different time scales (e.g. long term versus short terms patterns), and,
deal with changes in the cloud behaviour. Following, we have implemented and
experimented our solution. Our prototype contributes to enhancing the accuracy
of the detection at a small computational cost.
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