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The dynamics across different scales in the stable atmospheric boundary layer has been investi-
gated by means of two metrics, based on instantaneous fractal dimensions, and grounded in dynam-
ical systems theory. The wind velocity fluctuations obtained from data collected during the CASES-
99 experiment were analyzed to provide a local (in terms of scales), and an instantaneous (in terms
of time) description of the fractal properties and predictability of the system. By analyzing the
phase space projections of the continuous turbulent, intermittent and radiative regimes, a progres-
sive transformation, characterized by the emergence of multiple low-dimensional clusters embedded
in a high-dimensional shell and a 2-lobe mirror symmetrical structure of the inverse persistence,
have been found. The phase space becomes increasingly complex and anisotropic as the turbulent
fluctuations become uncorrelated. The phase space is characterized by a three-dimensional structure
for the continuous turbulent samples in a range of scales compatible with the inertial sub-range,
where the phase space-filling turbulent fluctuations dominate the dynamics, and is low-dimensional
in the other regimes. Moreover, lower dimensional structures present a stronger persistence than
the higher dimensional structures. Eventually, all samples recover a three-dimensional structure and
higher persistence level at large scales, far from the inertial sub-range. The two metrics obtained in
the analysis can be considered as proxies for the decorrelation time and the local anisotropy in the
turbulent flow.

I. INTRODUCTION

The atmospheric boundary layer (ABL) connects the
lowest layer of the Earth’s atmosphere, the surface layer,
to the rest of the troposphere. Its dynamics is fundamen-
tal for the transport and exchange of moisture, heat and
momentum with the underlying surface [1–3]. Several
studies have examined turbulence in the ABL, showing
that its structure can be extremely complex and charac-
terized by multiscale fluctuations [4, 5], with turbulent
eddies ranging from mesoscales, L ∈ [102, 103] m, related
to the instability of the mean flow shear, and buoyancy
effects [6–11], down to smaller scales, L ∈ [10−2, 102] m,
related to the energy-cascade process or fine-scale tur-
bulent bursts [6, 10, 12–14]. Since the ABL is charac-
terized by continuous thickness modulation over time,
all physical quantities related to the flow are subject
to large amplitude fluctuations, due to strong vertical
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mixing [15, 16]. The nocturnal ABL is characterized by
terrain-following flows and stable thermal stratification,
responsible for the formation of a stable boundary layer
(SBL) [1, 17, 18]. The net radiative cooling of the ground
surface induces a vertical temperature gradient, associ-
ated with heat transfer from the ABL to the terrain sur-
face. This cools down the fluid, with the consequent for-
mation of a stable stratified inversion layer.

Understanding the nature of the statistical proper-
ties of turbulence under realistic conditions is essential
for technological and environmental applications, as well
as for multiple experiments [19–22]. Numerical simu-
lations [23–26] have been performed to investigate the
characteristics of turbulence in the SBL. However, dis-
entangling the scale dependent features of the flow (i.e.
“local” properties) remains a challenging task. In partic-
ular, one of the fundamental requirements for developing
a comprehensive theoretical framework of the SBL dy-
namics is to identify a scale-dependent dynamical transi-
tion, namely a clear cutoff threshold in the superposition
of the fast and slow dynamics of the nonlinear and non-
stationary SBL turbulent flow.
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FIG. 1. [color online] Left column: temporal evolution of a 1-hour subset of the temperature T (t) for the three different regimes
observed for the SBL: radiative (14/10/1999, upper panel), continuous turbulent (15/10/1999, central panel), and intermittent
(18/10/1999, lower panel), all samples are relative to 00:00:00 → 01:00:00 in local standard time. Right Column: temporal
evolution of a 1-hour subset, for the same time window, of the first velocity component U1(t) observed for the same three SBL
regimes. Both temperature and velocity components U1(t) were recorded at station 1.

Due to their complexity, the analysis of these systems
has been focused on features shared by a large class of
phenomena, regardless of the details of their fine struc-
ture. In fact, the ABL can be described as a chaotic
dynamical system displaying recurrent large-scale con-
figurations [27–31]. Recently, such configurations have
been investigated using a novel approach, described by
two new metrics related to the local dimension and to the
local persistence in the phase space (PS) [32, 33]. Here,
such concepts have been applied to the different dynam-
ical regimes of the nocturnal SBL, observed during the
Cooperative Atmosphere-Surface Exchange Study - 1999
experiment (CASES-99) [9, 34–39], with particular fo-
cus on understanding the different turbulent behaviors
observed in the SBL. Following the classical Kolmogorov
description of turbulent fluctuations [40], the two dynam-
ical metrics have been used to characterize the scale-by-
scale dynamics over a wide range of scales, spanning from
the inertial sub-range, where the dynamics are character-
ized by the so-called energy cascade, up to larger scales,
where the energy injection in the cascade occurs. Our
results show the existence of a low-dimensional dynam-
ics embedded in a high-dimensional shell. As we will see,
while the former is characterized by a three-dimensional
structure across the inertial sub-range, the latter presents
higher dimensional structures with an increased level of
persistence.

II. COOPERATIVE ATMOSPHERE-SURFACE
EXCHANGE STUDY - 1999 (CASES-99)

All experimental samples used in this work were col-
lected during the period from 01/10/1999 to 31/10/1999
in Kansas, USA (37.6◦N, 96.7◦E), on a homogeneous,
flat area, making it an ideal site for investigating the
atmospheric SBL. According to the Wichita National
Weather Service and Argonne Boundary Layer Experi-
ment (ABLE), nights in October tend to be characterized
by clear skies and light near-surface flow, thus contribut-
ing to SBL development [35]. The measurements are col-
lected by a cluster of probes consisting of a central mete-
orological tower and six satellite stations located within a
600 m diameter, to resolve the turbulence and the mean
flow. The probes are 3D sonic anemometers and temper-
ature sensors, located at seven different heights above the
surface for the central tower, and at fixed height of 5 m
for the satellite towers [34]. All measurements refer to the
stationary regime observed within 00:00:00→ 06:00:00 in
local standard time (LST). In this study, we used high
frequency observations (with sampling time ∆t = 0.05
sec), of the three wind velocity components Ui(t) (where
i
.
= {u(t), v(t), w(t)}) and of the temperature T (t),

collected by the six satellite towers.

In order to characterize the turbulence within the
SBL, the non-dimensional ratio ζ/L is used as an in-
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TABLE I. Classification of CASES-99 data used in this study,
based on turbulent heat flux observations, taken from [49]:
friction velocity (u? [m sec−1]), conductive heat flux from the
Earth’s surface to the atmosphere (surface turbulent heat flux
H [W m−2]), net radiation (Qnet [W m−2]), latent heat fluxes
(LvE [W m−2]), and the turbulence intensity as a percentage
Ti% [1, 50]. All samples refer to the nighttime period between
00:00:00 and 06:00:00 LST.

Date Group u? H Qnet LvE Ti%

13/10/1999 transient 0.199 -17.5 -62.5 -1.8 16

14/10/1999 radiative 0.031 -1.4 -62.8 -0.3 27

15/10/1999 turbulent 0.494 -45.6 -73.9 5.7 21

17/10/1999 turbulent 0.594 -5.7 -31.2 12.5 25

18/10/1999 intermittent 0.094 -4.1 -55.6 2.9 22

19/10/1999 radiative 0.033 -1.1 -57.6 0.4 23

20/10/1999 intermittent 0.070 -5.7 -61.9 0.1 22

21/10/1999 transient 0.115 -14.3 -63.2 -0.2 26

dicator of the atmospheric stability [41, 42], where L =
−ρCpTu3?/κgH is the Monin-Obukhov length scale (ρ be-
ing the density of air at temperature T , Cp the specific
heat capacity at constant pressure, u? the friction ve-
locity, κ ' 0.4 the Von Kármán constant, and H the
surface turbulent heat flux) and ζ is the height above the
ground, or in terms of the Richardson number Ri [42–44].
However, it should be noted that accurately estimating
the atmospheric stability is still considered a challenging
task [45–47]. Here, the SBL behavior is defined according
to the dynamical stability indicator Π [8, 48], based on a
set of simplified model equations for the pressure gradient
and isothermal net radiation. In particular, Π ≥ 1 repre-
sents non-intermittent behavior, while Π < 1 represents
the intermittent cases.

The CASES-99 samples used in this work can be clas-
sified into three main groups and one transient category,
according to the Π classification [49]: (I) radiative nights
(low energy transport through the atmosphere by the tur-
bulence, see Figure 1, top panels); (II) continuous turbu-
lent nights (large conductive heat fluxH due to strong ra-
diative surface cooling, Qnet in combination with strong
turbulent mixing u?, see Figure 1, middle panels); and
(III) intermittent nights (irregular repetition of short tur-
bulent bursts with different amplitude generated by local
shear effects, Figure 1, bottom panels). The relevant val-
ues of friction velocity u?, conductive heat flux from the
Earth’s surface to the atmosphere H, net radiation Qnet,
and latent heat fluxes LvE, are listed in table I. All
samples that present mixed properties of the three main
groups (e.g., collapse of turbulence with strong variations
or modulations in u? and H) are tagged as transient.

Figure 1 shows the velocity component U1(t) and
the associated temperature T (t), for three 1-hour
sub-samples (00:00:00 → 01:00:00 LST), 14/10/1999,
15/10/1999, and 18/10/1999, depicting the three distinct
regimes of the SBL: radiative, continuous turbulent, and

intermittent, respectively. The Taylor’s frozen hypothe-
sis [1, 50] is verified for all data (Ti ≈ 20%).

As customary in turbulence studies, the non-
dimensional power spectral density (PSD) SUi for a 2-
hour subset extracted from sample 15/10/1999 in the
continuous turbulent regime (00:00:00 → 02:00:00 LST)
is shown in Figure 2, with the associated Von Kármán
spectrum [51, 52] superimposed (solid line):

fSU1(f)

σ2
U1

=
4fL

(1 + 70.8f2L)5/6
(1)

fSU2,3(f)

σ2
U2,3

=
4fL(1 + 755.2f2L)

(1 + 283.2f2L)11/6
, (2)

where fL = fLUi〈Ui〉−1 represents the non dimensional
frequency, LUi is the turbulence integral length scale in
the longitudinal, lateral and vertical directions, and σ2

Ui
is the variance of the i-th velocity component. The small
differences in the range of fL are due to the slightly dif-
ferent 〈Ui〉 and LUi , which are both sample-dependent.
In terms of similarity theory [53], a spectral relation (ex-
periments indicating an energy cascade valid in the in-
ertial sub-range for fL > 0.2 [52, 54], with no informa-
tion on its upper limit) takes the form fSUi(f)σ−2Ui ∼
f−2/3 [40, 55, 56], which is plotted for comparison as a
dashed line in all panels of Figure 2.

III. SCALE-DEPENDENT PROPERTIES OF
THE STABLE BOUNDARY LAYER:

INSTANTANEOUS AND LOCAL DYNAMICS

A. Velocity fluctuations and large scale
decorrelation

Following the K41 phenomenology [40], multi-scale
analysis has been performed on the classical field incre-
ments at scale `, defined as δUi(`) = Ui(t+`)−Ui(t) [57–
61]. For fully developed, homogeneous, isotropic turbu-
lence in an infinite medium, the K41 theory assumes that
the energy (or information) transfer is constant (in a
statistical sense) over a range of scales enclosed in the
so-called inertial sub-range [40, 62, 63]. However, the
scale-to-scale dynamics is actually far from being uni-
form, since the breakdown of self-similarity produces the
well-known scale variation of the PDFs due to small-scale
intermittency [64–67]. As the scale ` increases, local cor-
relations are lost, and the probability density function
of the velocity fluctuations becomes nearly Gaussian, ac-
cording to the central limit theorem [68].

The maximum scale in the analysis has been selected
as the scale at which the Kurtosis reaches its Gaus-
sian value, K`(δUi) ≡ µ

(4)
δUiσ

−4
Ui = 3, (µ

(j)
δUi being the

j-th order moment of the fluctuation δUi). The value
of K`(δUi) plays an important role in the classical de-
scription of homogeneous, isotropic turbulence. Indeed,
a larger K(δUi) is related to local correlations existing in
limited spatial regions, due to structures accumulating
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FIG. 2. [color online] Left panel: non-dimensional power spectral density (PSD) of the velocity component δU1 as a function of
the physical frequency f , with the corresponding Von Kármán spectrum (full line) and the classical Kolmogorov scaling (dashed
line) superimposed. Central panel: non-dimensional PSD of the velocity component δU2. Right panel: comparison of the three
non-dimensional PSD for the three components of the velocity (δU1,2,3) as a function of the non dimensional frequency fL. All
PSD overlap, with small differences attributed to the slightly different values of 〈Ui〉 and LUi .
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FIG. 3. [color online] Left panel: Scale-dependent Kurtosis (K`) for the continuous turbulent sample on 15/10/1999. The
components δU1,2 become uncorrelated at `1 = 3650 sec and `2 = 5500 sec, respectively. For the component δU3, the Kurtosis
never reaches the Gaussian value K` = 3, due to the inherent small-scale intermittency. Central panel: Scale ` at which
fluctuations δU1,2 become uncorrelated (K` ≈ 3). Data from the day 17/10/1999 were omitted since K` > 3 ∀`). The
horizontal dashed line represents the average, 〈`〉 = 3400 sec. Right panel: Probability distribution functions P (δU1,2) at scale
`K=3, for each sample (except for the sample of 17/10/1999). Full symbols indicate δU1, empty symbols δU2. A standard
zero-mean and unit-variance Normal distribution is superimposed (dashed line).

at smaller scales that produce non-Gaussian statistics.
K`(δUi)−1 represents an heuristic estimate of the order
of the fractional space filling factor. The left panel of
Figure 3 shows the scaling of K`(δUi) for the three ve-
locity components of sample on 15/10/1999, in range of
scales ` ∈ [10, 5000] sec, along with the associated Gaus-
sian limit value (horizontal dashed line). Fluctuations of
the δU1,2 components become uncorrelated at `1 = 3650
sec and `2 = 5500 sec, respectively. The right panel
of Figure 3 shows the large-scale (`K=3) PDFs P (δU1,2)
for all samples, estimated after the usual standardiza-

tion δUi =
[
δUi − µ(1)

δUi

]
σUi
−1 (i.e. subtracting the mean

value of the fluctuations and dividing by the standard
deviation), with superimposed the corresponding zero-

mean, unit-variance normal distribution (dashed line) su-
perimposed. Heavy-tailed distributions are observed at
all scales ` for P (δU3). However, it should be pointed
out that a fully developed phenomenology does not exist
for all the dynamic regimes presented here. Therefore,
the largest scale of interest has been defined by using an
average scale 〈`3〉. As illustrated in the central panel of
Figure 3, fluctuations become uncorrelated, with large-
scale Kurtosis K`(δUi) ≈ 3 (i = 1, 2), in the (sample-
dependent) range of scale `3 ≡ `K=3 ∈ [0.3, 2.2] h, with
average scale 〈`3〉 ≈ 3400 sec, plotted as a dashed line
in the central panel. The component δU3 never reaches
the Gaussian value K`(δU3) = 3, regardless of the sam-
ple, probably due to the small-scale intermittency of the
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stratified atmospheric flow [5, 16, 69–71]. For this rea-
son, it has been excluded from the calculation of the
large-scale average. In light of this, a range of scales
` ∈ [2∆t, 72000∆t] (0.1 → 3600 sec) has been selected
for the analysis, enclosing both the inertial sub-range and
the larger scales affected by mean flow instabilities, such
as local shear or buoyancy.

B. Scale-dependent dimension and persistence of
the phase space trajectories

The local properties of the different boundary layer
regimes are investigated in the dynamical systems
framework by applying two metrics obtained by sam-
pling the recurrences of a state of interest Û` =
{δU1(`), δU2(`), δU3(`)} in the PS. For each scale `, a pair
of parameters (D`(t) and θ`(t)) can be obtained, enabling
us to investigate the instantaneous scale-dependent fea-
tures of the velocity field fluctuations. This method, first
proposed in Alberti et al. [72], has recently been applied
to laboratory experiments on Von Kármán fluids, and
represents an extension of a previous method based on
generalized fractal dimensions [73, 74]. The first parame-
ter is the local dimension D`(t), describing the geometry

of the system’s trajectory in a region of the PS around Û`,
and represents a measure of the active number of degrees
of freedom. According to its definition, the dimension
D is a standard measure of the geometrical complexity
of the PS. For D = 3, the PS is uniformly covered by
the fluctuations; for D = 2 the turbulent fluctuations
are constrained on a two-dimensional plane, and along
a one-dimensional line for D = 1. In the latter cases,
anisotropy exists in the system, for example when turbu-
lent fluctuations are stronger in certain directions. For
all non-integer values of D, the PS geometry of the tur-
bulent fluctuations is predominantly fractal. The con-
cept of dimension can be extended to a multi-scale de-
scription. A scale-dependent measure of the geometri-
cal properties of turbulent fluctuations, D`(t), can also
be introduced, with ` indicating a spatial scale. In this
case, the topological properties of fluctuations can change
scale by scale. If the dimension does not depend of the
scale, D`(t) = const ∀`, then the PS has scale-invariant
topology. In that case, the turbulent fluctuations are
constrained to explore a specific fraction of the PS at all
scales. The second parameter used for the description of
the SBL is the inverse persistence θ`(t). This parameter
is related to the system’s typical residence time in the
neighborhoods of Û`, which is a measure of how long the
system persists in states that closely resemble Û`, there-
fore measuring the clustering of the PS [32, 75–77]. The
parameter θ`(t) gives a scale-dependent measure of the
characteristic time-scale of the turbulent “decorrelation”.
For θ` → 0, the system persistence is infinite at scale `,
indicating that its dynamical state does not change with
time. In terms of turbulent fluctuations, the structures
at a given scale are destabilized by the nonlinear strain-

ing or by other decorrelation effects arising during the
turbulent cascade. When θ`(t) increases, the state Û` is
rapidly destabilized and varies continuously over time.
The turbulent structures are then characterized by fast
eddy decorrelation time scales and lower levels of persis-
tence. Based on the analysis of several different dynam-
ical systems, four limiting pairs of parameters D`(t), θ`(t)
can be identified as follows. (I) for D → 0 (lower values
of D) and θ = 0, the system lies in the vicinity of a sta-
ble fixed point and is therefore in a highly predictable
state. Examples include a flow composed of structures
with slow decorrelation time, or turbulence suppression
due to a large scale mean flow. (II) for D → 0 and θ = 1,
the system lies near a saddle-node where two fixed points
move towards each other, collide, and mutually annihi-
late, as for example in systems with shorter decorrelation
time where the large-scale mean flow tends to abruptly
reconfigure over time. (III) For D →∞ (higher values of
D) and θ → 0, the system is on the edge of the attrac-
tor, or in a disordered state characterized by multiple
minima of the potential. An example is given by flows
characterized by a large-scale forcing acting as an energy
source for faster time-evolving turbulent structures. (IV)
D →∞ and θ = 1 represent an exotic state of the system
that is hardly observed. For each scale, the instanta-
neous metrics are obtained by sampling the whole PS and
searching for recurrences of its various possible configura-
tions (either similar or different configurations). Let ξ be

a given state of the PS, and let g(ξ) = − log
[
dist(Û`, ξ)

]
be the logarithmic return. By selecting an upper thresh-
old s as the q-th quantile of g(ξ), the Freitas-Freitas-
Todd theorem modified by Lucarini et al. [32] states that
the cumulative distribution of exceedence converges to a
Generalized Pareto-like distribution (GPD):

P(ξ − s) ∼ exp

[
−θ g(ξ)− s

σ

]
, (3)

where D = σ−1 is the instantaneous dimension and
0 ≤ θ ≤ 1 is the inverse persistence [78]. The GPD
arises as the asymptotic distribution of recurrences be-
cause of the relationship already discovered by Poincaré:
in chaotic systems, the probability of getting close to
a small set centered around a point ξ of the underly-
ing attractor decreases exponentially with the size of the
set. The Poincaré recurrence theorem also motivates the
choice of g(ξ) because: (i) the negative sign turns the
minima into maxima, for which the GPD was originally
devised; (ii) using a logarithmic weight for the recur-
rences rewards values close to the chosen point, ξ. The
combined effect of i) and (ii) ensures convergence to the
exponential term of the GPD, where the dimension is
simply given by the inverse of the scale parameter σ, and
thus is directly proportional to the spread of the trajec-
tories within the ball around ξ.

The contours of both D`(t) and θ`(t) in the time-`
plane are shown in Figure 4 for three different regimes.
In particular, the top row of Figure 4 depicts the evolu-
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FIG. 4. [color online] Local dimension D`(t) (left column) and dynamical stability index θ`(t) (right column), obtained from the

PS state Û`, projected on the plane (Time−`), for the continuous turbulent sample on 15/10/1999 (top row), the intermittent
sample on 18/10/1999 (central row), and the radiative sample on 14/10/1999 (bottom row). All values D`(t) > 4 have been
set to 4 in order to enhance the readability of the maps. All maps refer to station 1.

tion of D`(t) and θ`(t) for a continuously turbulent sam-
ple (15/10/1999). At all scales, the number of degrees
of freedom is approximately D`(t) ' 3, reaching larger
values only at some specific times and/or scales. This in-
dicates the existence of an external forcing, highlighted
by the magenta vertical stripes (see Figure 4, top row,
left panel). The same behavior is observed for the sam-
ple recorded on 17/10/1999 (not shown). The uniformity
of D` over the entire range of scales ` can be also clearly
seen by looking at the PDF P (D`), shown in Figure 5,
top row, left panel, where the scale ` is color coded. In-
deed, all distributions collapse on the same right-tailed
PDF with a characteristic peak at D` ' 3, showing that
the PDFs are independent of the scale.

The inverse persistence θ`(t) presents a rapid variation
with `, with steady evolution over time (Figure 4, top
row, right panel). Two distinct sectors can be identified,
with a cutoff at ` ≈ 1 sec: one containing the small scales
of the inertial sub-range, 2∆t ≤ ` ≤ 1 sec, and the other
composed of large-scale fluctuations or energy injection
sources in the range of scales 1 < ` ≤ 〈`3〉 sec. The first
sector is characterized by a rapid decrease from θ` ' 0.94
at ` = 2∆t to θ` = 0.69 at θ` = 〈`3〉, indicating unsta-
ble behavior of this portion of the scale-dependent PS.
In other words, the PS starts to develop unstable orbits
with the formation of strange attractors [79, 80]. The
second range of scales presents an almost homogeneous
distribution of θ`, up to ` ≥ 200 sec, where a slight de-

crease is observed in the average θ`. Such behavior is
also seen in the evolution of the scale-dependent PDF
P (θ`) (Figure 5, bottom row, left panel). Starting from
a narrow PDF peaking at θ` = 0.94 at the smallest scale,
the increment of the scale results in the broadening of
the PDF, with a peak shifted to smaller θ`. Finally, for
scales in the range 90 < ` ≤ 〈`3〉 sec, all PDFs collapse on
the same distribution, with a peak at θ` = 0.64. Despite
the difference in the turbulent heat flux H and in latent
heat flux LvE, the same behavior is also observed for the
second turbulent sample, on 17/10/1999. In fact, both
samples exhibit comparable friction velocity u? (strong
turbulent mixing), which characterizes the surface shear,
constraining the PS dynamics for both metrics.

A completely different situation is observed for the in-
termittent sample on 18/10/1999 and for the radiative
sample on 14/10/1999 (see Figure 4, left panels, cen-
tral and bottom row, respectively). In both cases, the
time-` plane of the local dimension D` is fragmented
in to multiple temporal regions, each characterized by
strong variability. Contrary to the continuous turbu-
lent case, here the local dimension presents a complex
temporal evolution, strictly connected to the scale un-
der analysis. In particular, the local dimension is con-
tinuously “stretched and expanded” with an excursion
enclosed in the range 0.1 ≤ D` ≤ 10, indicating a con-
tinuous “local” reorganization of the turbulent fluctua-
tions. As shown in Figure 5, top row, central and right
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FIG. 5. [color online] Probability distribution functions of the local dimensionality D` (top row) and inverse persistence
parameter θ` (bottom row), for three distinct regimes: continuous turbulent 17/10/1999, intermittent 18/10/1999, and radiative
19/10/1999 respectively. Each PDF is color coded according to the scale ` under analysis.

panels, the main difference among the continuous turbu-
lent and radiative/intermittent samples is the reduction
of the PS dimensionality, which highlights a transition
from a three-dimensional structure to lower-dimensional
ones. Both PDFs are described by similar heavy right
tails at large scales, but have different shapes at smaller
scales. In particular, the intermittent sample presents a
stronger reduction of the dimensionality up to D` ≈ 0.10
with respect to the radiative samples, which are charac-
terized by a lower bound for the dimensionality, of the
order of D` ≈ 0.60. In this situation, the exchanges of
sensible and latent heat between the surface and the at-
mosphere is stronger than the turbulent mixing u?, and
the flow is composed by discrete parcels carrying different
values of temperature, momentum and moisture, which
can affect the local properties and the dimensionality of
the process.

For the inverse persistence θ`, the time-` plane for both
the intermittent and the radiative samples can be divided

into three groups of scales, separated by two distinct cut-
offs (Figure 4 central and bottom rows, right panels).
The first group consists of all scales 2∆t ≤ ` ≤ 1 sec,
whose boundaries are sharp and clearly observable in the
intermittent case (Figure 4 central row, right panel) and
smoother in the radiative case. The second group is com-
posed of all scales 1 < ` ≤ 55 sec. Finally, the third group
is composed of scales 55 < ` ≤ 〈`3〉 sec. All scales in the
first and second groups are strongly unstable. The PDFs
evolve when passing from θ` ≈ 0.92 to θ` ≈ 0.70 for the
fist group, and from θ` ≈ 0.95 to θ` ≈ 0.8 for the sec-
ond group. A secondary peak (less visible in the PDFs
P (D`)), located at θ` ≈ 0.30 for the intermittent case and
θ` ≈ 0.35 for the radiative case, is observed. This indi-
cates a bi-stable distribution of the fluctuations, so that
the PS possesses multiple repelling or attracting points.

Finally, the secondary transition to a more stable dy-
namics is observed at larger scales, representing the third
group. By analyzing the time-scale maps, the inverse
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persistence parameter shows clusters of different size in
both time and scale (Figure 4, central and bottom rows,
right panels). The distributions P (θ`) tend to collapse on
a wider distribution, which encompasses a larger range
of variation, 0.1 ≤ θ` ≤ 0.6 (see Figure 5, bottom row,
central and right panels), with the core of the distribu-
tion peaked at θ` ≈ 0.35 for the intermittent case and
θ` ≈ 0.50 for the radiative case. In particular, the in-
termittent cases shows a wider PDF than the radiative
cases. The latter are characterized by strong decrease of
the left tail of the PDFs, followed by a scale-dependent
secondary peak in the range 0.15 ≤ θ` ≤ 0.20, probably
due to the different properties among of the various flow
parcels.

Figures 6, 7, 8, and 9 show PS projections of D` and
θ`, at three different scales, for the intermittent sample
on 18/10/1999, and for the continuous turbulent sam-
ple on 15/10/1999, respectively. All maps were con-
structed from the intersection of all points composing
the state vector Û` normal to the plane {0, 0, 1} (left
column), {0, 1, 0} (central column), and {1, 0, 0} (right
column) respectively, taken at δUi = 0. In all cases,
a key parameter to discriminates the behavior of D`(t)
and θ`(t) is the amplitude of the fluctuations. In fact,
at all scales, structures with lower dimensionality and
persistence are characterized by lower energy levels. As
the scale increases, more higher-dimensional and stable
regions appear on the edges of the map. For the inter-
mittent sample, at scale ` = 0.4 the inverse persistence
(figures 6, top row) presents an almost isotropic cylindri-
cal structure, extending along the δU3 component. Such
a structure is composed of an unstable internal region
θ` ≈ 0.6 (plane defined by the components δU1,2) con-
tained in a stable region θ` ≤ 0.45 (planes δU1,3 and
δU2,3), consistent with the results obtained for the Kur-
tosis. As the scale increases, the stable region tends to
extend in the peripheral regions of the plane, and the
unstable region tends to concentrate in a structure com-
posed of two distinct lobes, symmetric with respect to a
plane perpendicular to the phase pace (specular struc-
ture). The intersection cuts the plane δU1,2 with an
angle φ ≈ 50◦ (Figure 6, second row, left panel). The
symmetric structure is particularly evident for the plane
Û` ≡ {δU1, 0, δU3}, and ` = 600 sec (Figure 6 central col-
umn, second and third rows), with a quasi-symmetrical
reflection along the central line δU2 = 0. Such a “but-
terfly” structure, observed in the unstable region of the
plane, somewhat resembles the two-lobed strange attrac-
tor observed in the low-dimensional Galerkin truncation
of the Navier-Stokes equations, whose appareance is a
consequence of the instability of all the orbits present in
the system [80, 81]. The same behavior is observed for

Û` ≡ {0, δU2, δU3} with the plane along the line δU1 = 0,
and also for larger scales (e.g., ` = 3600 sec, Figure 6,
central and right panels, bottom row).

Similar structures have been observed for the radia-
tive sample. Both regimes also present the characteristic
double-peaked PDFs.

The continuous turbulent sample presents a simpler
and rather homogeneous structure of the PS. In fact, at
small scales the phase plane presents a spherical struc-
ture with an unstable core in the central region (small-
amplitude fluctuations, Figure 8, top row). The map
becomes anisotropic, and is surrounded by an external
shell of stable fluctuations whose thickness increases as
the scale exceeds the inertial sub-range (large-amplitudes
fluctuations, Figure 8 central row). Above the threshold
` ≈ 2 sec, the thickness of the external stable shell re-
mains almost constant, while the shape of the map be-
comes stretched and elongated, by shrinking along the
dimension δU3 up to scales comparable with 〈`3〉. An
example is shown in the bottom row of Figure 8, for the
scale ` ≥ 3600 sec, where the map presents an oblate
spheroidal structure.

Concerning the dimensionality of the system, a rich
and complex structure is observed in the projection of
D` for the intermittent samples (Figure 7), where the
PS presents a strong dependence on the scale `. In the
left column of Figure 7 is reported the evolution of the
PS Û` = {δU1, δU2, 0} as a function of the scale. Starting
from an isotropic map composed of a very small spot with
D` ≈ 1 embedded in a higher dimensional cluster, the PS
undergoes a continuous transformation, characterized by
the emergence of multiple clusters of low dimensional-
ity, whose size and number increase with `. The pro-
jection on the other two planes, Û` = {δU1, 0, δU3} and

Û` = {0, δU2, δU3} (Figure 7, central and right columns,
respectively), again presents a stretching along δU3, and
a transition from a quadripolar structure (Figure 7, top
row, central panel) to the 2-lobed mirror symmetric
structure (Figure 7, bottom row, central panel), in the
range of scales 2∆t ≤ ` ≤ 1000 sec. The evolution of
the radiative sample follows a similar path, character-
ized by the emergence of small low-dimensional clusters
embedded in a higher-dimensional background, and the
formation of a mirror symmetric structure (not shown).

The continuous turbulent samples present a simple and
uniform structure for D`, as illustrated in Figure 9. In
these cases, the PS presents a D` = 3 core in the center
of the plane, surrounded by a higher-dimensional shell,
whose thickness decreases with the scale. The structure
is weakly anisotropic on a single plane that depends on
the scale, and strongly anisotropic on the other two. For
example, at ` = 0.4 sec (Figure 9, top row) the structure

is weakly anisotropic in the plane Û` = {δU1, δU2, 0},
and strongly anisotropic, with a stretched and elongated
shape on Û` = {δU1, 0, δU3} and Û` = {0, δU2, δU3}. The
situation is reversed for larger scales, e.g. ` = 600 sec
and ` = 3600 sec (Figure 9, central and bottom rows,
respectively), where the anisotropic structure is observed

for the plane Û` = {δU1, 0, δU3}, and stretched in the

planes Û` = {δU1, δU2, 0} and Û` = {0, δU2, δU3}.
To check for spatial dependence of the two indicators,

in Figure 10 we show the temporal average of the two
metrics obtained at different satellite stations, for all the
regimes presented in table I. For the continuous turbu-
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FIG. 6. [color online] Poincaré maps for the intermittent sample 18/10/1999 on three different planes (columns) and at three
different scales (rows) for the inverse persistence θ`. The space evolves with the scale from a dense unstable region, extending
along the component δU3 and embedded in a more stable region (top row), to a specular symmetric structure with two unstable
lobes embedded in a stable region (central and bottom rows). On the plane δU1,2, the evolution presents a disordered spatial
distribution of multiple regions, characterized by both stable and unstable regions respectively (left column).
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FIG. 8. [color online] Poincaré maps for the continuous turbulent sample 15/10/1999 on three different planes (columns) and
at three different scales ` (rows) for the inverse persistence θ`. Starting from a fully unstable region, with an almost isotropic
shape, in the range of scales comparable with the inertial sub-range (top row) the system evolves with the scale ` towards a
stretched structure, characterized by an unstable region embedded in a stable one of constant thickness (central and bottom
rows). The strongly anisotopic structure is particular evident along the dimension δU3.
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FIG. 9. [color online] Poincaré maps for the continuous turbulent sample 15/10/1999 on three different planes (columns)
and at three different scales (rows) for the dimensionality D`. The dimensionality presents a similar structure on all planes
composed of a three-dimensional central region surrounded by an higher dimensional shell for extreme values. An inversion of
the anisotropy is observed as the scale increases. For the inertial range (top row), the system is almost isotropic on the plane
δU1,2 and strongly stretched along the dimension δU3 such structure is reverted (central and bottom rows), since the system
appear almost isotropic on the plane δU1,3 and strongly stretched along the dimension δU2.
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FIG. 10. [color online] Temporally-averaged local dimensionality 〈D`〉 (top row) and inverse persistence parameter 〈θ`〉 (second
row) measured at three different satellite stations, for the continuous turbulent sample on 15/10/1999 (left column), the
intermittent sample on 18/10/1999 (central column), and the radiative sample on 19/10/1999 (bottom column). Third and
bottom row: comparison of the average dimensionality and inverse persistence for two distinct samples of each regime of Table I,
for a single station.
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lent sample on 15/10/1999, all stations present the same
values of both 〈D`〉 and 〈θ`〉 (Figure 10, first column, left
panels, first and second row). The local dimensionality
shows a constant value 〈D`〉 = 3.1, indicating a global
three-dimensional structure of the PS, with only a weak
effect of the large scale forcing (〈D`〉 > 3), which is in-
dependent of the station under analysis. Moreover, the
same behavior is observed for the inverse persistence pa-
rameter: all stations present the same decreasing behav-
ior. The two sectors observed in the dynamical stability
index θ` for sample 15/10/1999 (figure 4 top row, right
panel) are still evident. The first group is characterized
by a rapidly decreasing curve over the range of scales
2∆t ≤ ` ≤ 1 sec, passing from 〈θ`〉 = 0.9 to 〈θ`〉 = 0.6
at ` ≈ 2 sec. The second cluster has a constant value of
the inverse persistence 〈θ`〉 = 0.6 in the range of scales
2 ≤ ` ≤ 1000 sec, with a slow decrease to 〈θ`〉 = 0.55
at very large scales. The turbulent fluctuations explore
the entire three-dimensional PS under the effect of strong
mixing.

In the central column of Figure 10, we show the re-
sults obtained for the intermittent sample on 18/10/1999.
Interestingly, the local dimensionality presents a differ-
ent scale-by-scale dependence up to a station-dependent
limit scale. In fact, an increasing 〈D` is observed for
the various stations starting form 〈D`〉 ≈ 1.7 (mixed
two-dimensional sheet and tangled wires structures) up
to 〈D`〉 ' 3 (Figure 10, first row, central column, cen-
tral panel), where the fluctuations cover the entire PS at
the scale ` ≈ 200 sec. However, the path to the three-
dimensional structure is not the same, but rather strictly
dependent on the station. The convergence to a similar
trend is retrieved only at large scales ` ≥ 200. Such com-
plex behavior could be due to the continuous fragmen-
tation and distortion of the various flow parcels result-
ing from the competition between thermal- and shear-
induced fluctuations, and such competition could cre-
ate self-organized large-scale structures (approximately
of the order of the distance between the various satellite
stations) able to “transport” with their motion smaller
eddies with different local characteristics [82, 83]. Despite
the strong variations in the dimensionality, a smoother
evolution is observed for 〈θ`〉 (Figure 10, second row,
central column, central panel). All stations present the
same decreasing trend, within small-amplitude varia-
tions, from 〈θ`〉 = 0.90 at ` = 2∆t to 〈θ`〉 = 0.49 at
large scale 〈`3〉. Moreover, the three sections observed
in the time−` plane are still evident: the first section in
the range 2∆t ≤ ` ≤ 100 sec, is characterized by a fast
decrease; the second cluster in the range 2 ≤ ` ≤ 100 sec,
is characterized by quasi-constant behavior; and finally a
third range for ` > 200 sec, is characterized by strongly
stable fluctuations.

A comparison of 〈D`〉 and 〈θ`〉 for two different sam-
ples of each group is shown in the third and fourth rows
of Figure 10. The two continuous turbulent cases show
the same behavior for 〈D`〉 and 〈θ`〉. Small variations
in 〈θ`〉 are observed for ` > 10 sec, probably due to the

different thermal properties of the flow. Similar behav-
ior is observed for the intermittent samples. In terms of
mean dimensionality, these both have the characteristic
peak at ` = 200 sec, with small differences in the inter-
mediate range of scales 4∆t ≤ ` ≤ 40 sec, while a slight
difference in the inverse persistence becomes noticeable
for ` ≥ 20 sec. For the radiative sample (14/10/1999
and 19/10/1999), the discrepancy for both metrics is ev-
ident at all scales (Figure 10, right column). The dimen-
sionality differs already at small scales, and reaches its
minimum at ` ≈ 100 sec, after which it increases again.
The same trend is observed for the inverse persistence,
with the only difference that 〈θ`〉 seems to converge to
a constant value after ` ≈ 100 sec. Since the thermal
parameters are exactly comparable, with the exception
of LvE, the heat flux from the Earth’s surface to the at-
mosphere potentially affects the local properties of the
turbulent fluctuations.

Finally, the transient regime demonstrates mixed be-
havior with elements common to the other regimes for
both D` and θ` respectively. These include, for example,
a constant dimensionality or the variation from D` < 3 to
a fully three-dimensional structure D` = 3. This mixed
behavior is strictly sample- and site-dependent.

In classical theory of isotropic, fully developed turbu-
lence [40], the hierarchy of fluctuations at all scales is
generated by nonlinear straining effects, giving rise to en-
ergy transfer towards smaller scales. The field correlation
decay is then attributed to nonlinear interactions among
triads of wave vectors, and within this framework, the
global energy cascade rate scales as ε ∼ u3L−1, where
u is the rms turbulence amplitude and L the energy-
containing scale. Similarly, a scale-dependent energy cas-
cade rate can be introduced as ε` ∼ u3``

−1 ∼ u2`τ
−1
` ,

where ` represents the local scale and τ` defines the
scale-dependent decorrelation time. In Fourier space,
the amplitude of the fluctuations at scale ` = 1/k is

uk =
√
kE(k), where E(k) = ε2/3k−5/3. As a result,

the nonlinear time at scale k is τk = k−1u−1k , indicat-
ing that smaller and less energetic scales are character-
ized by shorter decorrelation time. Such features are
robustly captured by the measure, 〈θ`〉, which can be
considered as a “global proxy” of the cascade proper-
ties. Indeed, smaller scales are characterized by lower
persistence. With an extremely short decorrelation time,
these are continuously affected by the energy flowing
from larger scales to the inertial sub-range. As the scale
` increases, the turbulent structures show increasing per-
sistence, due to the slower decorrelation time. This is
observed up to a characteristic scale, comparable with
the peak of the Von Kármán spectrum (figure 2), rep-
resenting the coherent structures of the flow. At larger
scales, the persistence slowly increases, indicating a mod-
ification in the PSD exponent or a plateau (depending
on the specific sample), separating the fine-scale from
the large-scale motions (e.g., gravity waves, mesoscale
disturbances, or synoptic-scale variability), reaching its
maximum (minimum 〈θ`〉) at ` = 3600 sec. This be-
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havior is robust and only slightly dependent on 〈D`〉, in-
deed, despite the small variations (sample or site specific)
observed, the behavior is consistent in each regime ana-
lyzed. In fact, whether the fluctuations densely cover
the whole three-dimensional space or are constrained to
a lower dimensionality, the smaller scales, characterized
by fast decorrelation time, are the easiest to destabilize,
and have lower persistence. Conversely, larger scales (the
more energetic coherent structures) have higher persis-
tence. The parameter 〈D`〉 is more of a “local proxy” of
the flow properties, or, in other words it can be consid-
ered as a proxy for the anisotropy of the flow. It seems
to be related to the mechanical and thermal properties
of the flow due to the atmospheric conditions (e.g. u?,
and the heat fluxes).

IV. CONCLUSIONS

In this work the properties of the turbulent stable
boundary layer, observed over six nights of the CASES-99
experiment, have been investigated in terms of dynami-
cal systems theory. This was done by sampling the recur-
rences of a state of interest Û`, over a fairly wide range
of temporal scales `, whose maximum value 〈`3〉 = 3600
sec was empirically determined based on the Kurtosis of
the fluctuations.

Continuous turbulent samples, where the dynamic is
governed by the strong turbulent mixing (comparable
friction velocity u? for both samples), are characterized
by constant local dimensions D` ≈ 3 at all scales, indicat-
ing that the system is able to explore the whole PS, inde-
pendent of the scale. The inverse persistence θ` presents
a steep variation (indicating a cutoff) that separates the
strongly unstable dynamics of the inertial range from the
stable dynamics at larger scales (>90 s), where the distri-
butions P (θ`) collapse on the same shape. The PS pro-
jections reveal a weakly anisotropic spherical structure,
characterized by a central core with D` = 3 surrounded
by a higher dimensional shell with scale-dependent thick-
ness. Similarly, the inverse persistence θ` shows a central
core of unstable fluctuations and a surrounding external
shell of stable fluctuations.

In the intermittent and radiative samples the local di-
mension D` is strongly scale-dependent and spatially in-
homogeneous, with values in the range 0.1 ≤ D` ≤ 3.
This indicate a continuous reorganization of the phase
space, and two distinct cutoff scales have been observed
in the dynamic. For ` ≡ 〈`3〉 the phase space undergoes
a series of continuous transformations characterized by
the emergence of multiple clusters of low dimensional-
ity, whose size and number increases with the scale for
D`. At smaller scales, the distributions P (D`) peak on
a lower dimensional structure, specifically D ≈ 1 for the
radiative cases, and D ≤ 1 for the intermittent samples.
The system is therefore not able to explore the entire 3D
phase space, but, rather, the dynamics are constrained to
a lower-dimensional space at certain times or in certain

spatial zones. As the scale increases and exceeds the in-
ertial sub-range, the system shifts to a three-dimensional
structure, D = 3, with the PDFs convergence on a com-
mon shape only being retrieved at larger scales, ` ≥ 200
sec. The inverse persistence presents a nearly isotropic
coaxial cylindrical structure at small-scales (` ≤ 1 sec),
consisting of an unstable internal region with θ` ≥ 0.55
and an external stable region with θ` ≤ 0.45. As the scale
increases, this stable region tends to extend toward the
peripheral regions of the plane, while the unstable region
tends to concentrate in to two distinct symmetric lobes
characterized by a specular structure. This transition is
accompanied by a shift in the P (θ`) distributions toward
lower θ` values (higher stability), with the core of the dis-
tribution peaking at θ` ≈ 0.35 for the intermittent case
and at θ` ≈ 0.50 for the radiative case. Moreover, the
PDFs P (D`) and P (θ`) present multiple peaks, probably
related to the local competition of thermal and shear-
induced fluctuations.

Summarizing, the study of the two metrics D` and θ`
presented here enabled us to disentangle the characteris-
tics of the various flow regimes, and to identify the pres-
ence of sharp changes in the dynamics at specific cutoff
temporal scales. Moreover, the two parameters can be
considered as proxies for interesting features of the flow.
In particular, the inverse persistence θ`, robustly cap-
tures the “global properties” of the turbulent cascade,
by identifying the scale-by-scale variation of the decorre-
lation time for the turbulent structures embedded in the
flow, while the local dimensionality D` is mostly related
to the “local properties” of the flow, and can be consid-
ered as a proxy for the anisotropy of the flow. However,
further studies are necessary in order to obtain an ex-
haustive description of the turbulent fluctuations in the
framework of the dynamical system theory. The analysis
also highlighted the emergence of overlapping space and
time multi-dimensional structures in the dynamics, and
that for different regimes thermal effects can be differ-
ent. Finally, we determined the scale-dependent nature
of persistence. The results presented in this work indi-
cate that local dimension and inverse persistence can be
useful analysis tools for dynamical systems characterized
by scale and spatial variability, such as SBL turbulence.

ACKNOWLEDGMENTS

FC acknowledges the contribution received from EU-
H2020 program ERA-PLANET through the project
”iGOSP” (Grant Agreement: 689443), funded under
H2020-SC5-15-2015 ”Strengthening the European Re-
search Area in the domain of Earth Observation”, from
FET Proactive project ”I-Seed”, funded under Horizon
2020 research and innovation programme (Grant agree-
ment: 101017940), and from EU-H2020 project ”Euro-
GEO Showcases: Applications Powered by Europe” (e-
shape) (Grant Agreement: 820852), funded under H2020-
SC5-2018-2 ”Strengthening the benefits for Europe of the



16

Global Earth Observation System of Systems (GEOSS) - establishing EuroGEO”.

[1] R. B. Stull, An introduction to boundary layer meteo-
rology, 1st ed., Atmospheric and Oceanographic Sciences
Library (Kluwer Academic Publishers, Dordrecht, 1988).

[2] J. R. Garratt, The Atmospheric Boundary Layer (Cam-
bridge Atmospheric and Space Science Series), Cam-
bridge Atmospheric and Space Science Series (Cambridge
University Press, 1992).

[3] J. Zhang, J. Guo, S. Zhang, and J. Shao, Inertia-gravity
wave energy and instability drive turbulence: evidence
from a near-global high-resolution radiosonde dataset,
Climate Dynamics 10.1007/s00382-021-06075-2 (2022).

[4] A. M. Obukhov, Some specific features of at-
mospheric turbulence, Journal of Geophys-
ical Research (1896-1977) 67, 3011 (1962),
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JZ067i008p03011.

[5] A. MUSCHINSKI, R. G. FREHLICH, and B. B. BAL-
SLEY, Small-scale and large-scale intermittency in the
nocturnal boundary layer and the residual layer, Journal
of Fluid Mechanics 515, 319–351 (2004).

[6] J. C. Wyngaard, Atmospheric Turbulence, Annual Re-
view of Fluid Mechanics 24, 205 (1992).

[7] G. Amati, R. Benzi, and S. Succi, Extended self-
similarity in boundary layer turbulence, Phys. Rev. E
55, 6985 (1997).

[8] B. J. H. Van de Wiel, R. J. Ronda, A. F. Moene, H. A. R.
De Bruin, and A. A. M. Holtslag, Intermittent turbulence
and oscillations in the stable boundary layer over land.
part i: A bulk model, Journal of the Atmospheric Sci-
ences 59, 942 (2002).

[9] W. Wei, H. S. Zhang, F. G. Schmitt, Y. X. Huang, X. H.
Cai, Y. Song, X. Huang, and H. Zhang, Investigation of
turbulence behaviour in the stable boundary layer using
arbitrary-order hilbert spectra, Boundary-Layer Meteo-
rology 163, 311 (2017).

[10] E. Kit, C. M. Hocut, D. Liberzon, and H. J. S. Fernando,
Fine-scale turbulent bursts in stable atmospheric bound-
ary layer in complex terrain, Journal of Fluid Mechanics
833, 745 (2017).

[11] F. Carbone, D. Telloni, A. G. Bruno, I. M. Hedge-
cock, F. De Simone, F. Sprovieri, L. Sorriso-Valvo,
and N. Pirrone, Scaling properties of atmospheric wind
speed in mesoscale range, Atmosphere 10, 10.3390/at-
mos10100611 (2019).

[12] C.-H. Moeng, A large-eddy-simulation model for the
study of planetary boundary-layer turbulence, Journal
of Atmospheric Sciences 41, 2052 (1984).

[13] C. Meneveau and K. R. Sreenivasan, The multifractal
nature of turbulent energy dissipation, Journal of Fluid
Mechanics 224, 429–484 (1991).

[14] K. R. Sreenivasan and P. Kailasnath, An up-
date on the intermittency exponent in turbulence,
Physics of Fluids A: Fluid Dynamics 5, 512 (1993),
https://doi.org/10.1063/1.858877.

[15] C. Rorai, P. D. Mininni, and A. Pouquet, Turbulence
comes in bursts in stably stratified flows, Phys. Rev. E
89, 043002 (2014).

[16] Feraco, F., Marino, R., Pumir, A., Primavera, L.,
Mininni, P. D., Pouquet, A., and Rosenberg, D., Ver-

tical drafts and mixing in stratified turbulence: Sharp
transition with froude number, EPL 123, 44002 (2018).

[17] L. Mahrt, Stably stratified atmospheric boundary layers,
Annual Review of Fluid Mechanics 46, 23 (2014).

[18] F. Barbano, L. Brogno, F. Tampieri, and S. Di Sabatino,
Interaction between waves and turbulence within the
nocturnal boundary layer, Boundary-Layer Meteorology
10.1007/s10546-021-00678-2 (2022).

[19] G. D. Hess, B. B. Hicks, and T. Yamada, The impact of
the wangara experiment, Boundary-Layer Meteorology
20, 135 (1981).

[20] J. C. Kaimal and J. C. Wyngaard, The kansas and min-
nesota experiments, Boundary-Layer Meteorology 50, 31
(1990).

[21] W. Wei, H. S. Zhang, F. G. Schmitt, Y. X. Huang, X. H.
Cai, Y. Song, X. Huang, and H. Zhang, Investigation of
turbulence behaviour in the stable boundary layer using
arbitrary-order hilbert spectra, Boundary-Layer Meteo-
rology 163, 311–326 (2017).

[22] E. Kit, E. Barami, and H. J. S. Fernando, Structure
functions in nocturnal atmospheric boundary layer tur-
bulence, Physical Review Fluids 6, 084605 (2021).

[23] C.-H. Moeng and P. P. Sullivan, A comparison of shear-
and buoyancy-driven planetary boundary layer flows,
Journal of Atmospheric Sciences 51, 999 (1994).

[24] M. Lesieur, Large-eddy simulations of turbulence (Cam-
bridge Univ Press, 2005).

[25] R. Stoll, J. A. Gibbs, S. T. Salesky, W. Anderson,
and M. Calaf, Large-eddy simulation of the atmospheric
boundary layer, Boundary-Layer Meteorology 177, 541
(2020).

[26] S. Sukoriansky, E. Kit, E. Zemach, S. Midya, and H. J. S.
Fernando, Inertial range skewness of the longitudinal ve-
locity derivative in locally isotropic turbulence, Phys.
Rev. Fluids 3, 114605 (2018).

[27] B. Saltzman, Finite amplitude free convection as an ini-
tial value problem—i, Journal of Atmospheric Sciences
19, 329 (1962).

[28] E. N. Lorenz, Deterministic Nonperiodic Flow, Journal
of the Atmospheric Sciences 20, 130 (1963).

[29] M. Ghil, P. Read, and L. Smith, Geophysical flows as
dynamical systems: the influence of hide’s experiments,
Astronomy & Geophysics 51, 4.28 (2010).

[30] G. Nevo, N. Vercauteren, A. Kaiser, B. Dubrulle, and
D. Faranda, Statistical-mechanical approach to study
the hydrodynamic stability of the stably stratified at-
mospheric boundary layer, Phys. Rev. Fluids 2, 084603
(2017).

[31] A. Hochman, P. Alpert, T. Harpaz, H. Saaroni, and
G. Messori, A new dynamical systems perspective
on atmospheric predictability: Eastern mediterranean
weather regimes as a case study, Science Advances 5,
eaau0936 (2019).

[32] V. Lucarini, D. Faranda, and J. Wouters, Universal be-
haviour of extreme value statistics for selected observ-
ables of dynamical systems, Journal of Statistical Physics
147, 63 (2012).

[33] D. Faranda, G. Messori, and P. Yiou, Dynamical proxies



17

of north atlantic predictability and extremes, Scientific
Reports 7, 41278 (2017).

[34] E. O. L. UCAR/NCAR, Cases-99 (2015).
[35] G. S. Poulos, W. Blumen, D. C. Fritts, J. K. Lundquist,

J. Sun, S. P. Burns, C. Nappo, R. Banta, R. Newsom,
J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen,
Cases-99: A comprehensive investigation of the stable
nocturnal boundary layer, Bulletin of the American Me-
teorological Society 83, 555 (2002).

[36] D. C. Fritts, C. Nappo, D. M. Riggin, B. B. Balsley,
W. E. Eichinger, and R. K. Newsom, Analysis of ducted
motions in the stable nocturnal boundary layer during
cases-99, Journal of the Atmospheric Sciences 60, 2450
(2003).

[37] D. Vickers and L. Mahrt, Observations of the cross-wind
velocity variance in the stable boundary layer, Environ-
mental Fluid Mechanics 7, 55 (2007).

[38] L. Mahrt and R. Mills, Horizontal diffusion by submeso
motions in the stable boundary layer, Environmental
Fluid Mechanics 9, 443 (2009).

[39] F. Carbone, T. Alberti, L. Sorriso-Valvo, D. Telloni,
F. Sprovieri, and N. Pirrone, Scale-dependent turbulent
dynamics and phase-space behavior of the stable at-
mospheric boundary layer, Atmosphere 11, 10.3390/at-
mos11040428 (2020).

[40] A. N. Kolmogorov, , C. R. Acad. Sci. U.R.S.S 36, 301
(1941).

[41] L. Mahrt, Stratified atmospheric boundary layers,
Boundary-Layer Meteorology 90, 375 (1999).

[42] T. Foken, Micrometeorology , Vol. 308 (Springer Berlin
Heidelberg, 2017).

[43] B. Galperin, S. Sukoriansky, and P. S. Anderson,
On the critical richardson number in stably stratified
turbulence, Atmospheric Science Letters 8, 65 (2007),
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/asl.153.

[44] Z. Sorbjan, Gradient-based scales and similarity
laws in the stable boundary layer, Quarterly Journal
of the Royal Meteorological Society 136, 1243 (2010),
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.638.

[45] D. Golder, Relations among stability parameters in the
surface layer, Boundary-Layer Meteorology 3, 47 (1972).

[46] M. Motta, R. J. Barthelmie, and P. Vølund,
The influence of non-logarithmic wind speed
profiles on potential power output at dan-
ish offshore sites, Wind Energy 8, 219 (2005),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.146.

[47] S. Basu, A simple recipe for estimating atmo-
spheric stability solely based on surface-layer
wind speed profile, Wind Energy 21, 937 (2018),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2203.

[48] B. J. H. Van de Wiel, A. F. Moene, R. J. Ronda, H. A. R.
De Bruin, and A. A. M. Holtslag, Intermittent turbulence
and oscillations in the stable boundary layer over land.
part ii: A system dynamics approach, Journal of the At-
mospheric Sciences 59, 2567 (2002).

[49] B. J. H. Van de Wiel, A. F. Moene, O. K. Hartogensis,
H. A. R. De Bruin, and A. A. M. Holtslag, Intermittent
turbulence in the stable boundary layer over land. part iii:
A classification for observations during cases-99, Journal
of the Atmospheric Sciences 60, 2509 (2003).

[50] G. E. Willis and J. W. Deardorff, On the use
of taylor’s translation hypothesis for diffusion
in the mixed layer, Quarterly Journal of the
Royal Meteorological Society 102, 817 (1976),

https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49710243411.
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