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We introduce a class of second-order accurate finite volume schemes defined on two dimensional unstructured meshes. They satisfy a global discrete entropy stability for an arbitrary strictly convex entropy provided the second-order discretization verifies a dissipative inequality. These schemes do not require usual limitation techniques. Numerical experiments are performed to assess the accuracy and the shock capturing efficiency of the schemes.

Introduction

This work is devoted to the numerical approximation of the weak solutions of d ≥ 1 conservation laws in two space dimensions given by ∂ t w + ∂ x 1 f 1 (w) + ∂ x 2 f 2 (w) = 0, (x 1 , x 2 ) ∈ R 2 , t > 0, where x = (x 1 , x 2 ) T and t are respectively the space and time variables. The unknown state vector w(x, t) is defined on Ω a non-empty convex open subset of R d , f 1 , f 2 : Ω → R d are two given flux functions in C 2 (Ω, R d ). In order to ensure the hyperbolicity of the above system, it is assumed that the d × d jacobian matrices ∇f 1 (w), ∇f 2 (w) are such that the matrix ∇f 1 (w)n 1 + ∇f 2 (w)n 2 , is diagonalizable for all unit vectors n = (n 1 , n 2 ) in R 2 and for all w in Ω. We consider w 0 : R 2 → Ω a given measurable function of L ∞ (R 2 ) prescribed as an initial value of w at time t = 0. We recast the system of conservation laws into the following form

∂ t w + ∇ x • F (w) = 0, x ∈ R 2 , t > 0, w(x, t = 0) = w 0 (x), x ∈ R 2 , (1) 
where

∇ x = (∂ x 1 , ∂ x 2 )
T is the standard gradient operator and F = (f 1 , f 2 ) T : Ω → R 2d .

As the solutions of (1) may develop discontinuities in a finite time [START_REF] Lax | Shock waves and entropy[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF][START_REF] Serre | Systems of conservation laws[END_REF] (see also [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF][START_REF] Godlewski | Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications[END_REF][START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF]), the weak solutions are in general not unique. To select among weak solutions, we generally require that w satisfies additionally

∂ t η (w) + ∇ x • G (w) ≤ 0, in D ′ R 2 × (0, +∞) , (2) 
for all couple entropy-entropy flux (η, G), where η : Ω → R is a convex function and G = (g 1 , g 2 ) T ∈ C 1 (Ω, R 2 ) is such that ∇η(w) T ∇f µ (w) = ∇g µ (w) T , ∀(w, µ) ∈ Ω × {1, 2} .

In the case of scalar conservation laws (i, e d = 1) some uniqueness results have been exhibited with the entropy inequalities [START_REF] Godlewski | Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications[END_REF]. But, for a general system in two space dimensions, such inequalities are not sufficient to avoid non admissible discontinuities [START_REF] Brezina | On contact discontinuities in multi-dimensional isentropic euler equations[END_REF]. Nevertheless, from a numerical point of view, the entropy inequalities can characterize the computational stability. In particular, a formal integration of (2) over R 2 gives R 2

∂ t η w(x, t) dx ≤ 0, t > 0.

(3) Several high-order numerical schemes able to mimic a discrete version of (3) on Cartesian meshes have already been introduced [START_REF] Fisher | High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains[END_REF][START_REF] Chandrashekar | Entropy stable finite volume scheme for ideal compressible mhd on 2-D cartesian meshes[END_REF][START_REF] Chandrashekar | Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations[END_REF][START_REF] Carpenter | Entropy stable spectral collocation schemes for the navierstokes equations: discontinuous interfaces[END_REF][START_REF] Zhao | A hermite WENO scheme with artificial linear weights for hyperbolic conservation laws[END_REF][START_REF] Rathan | A modified fifth-order WENO scheme for hyperbolic conservation laws[END_REF][START_REF] Coquel | Second order entropy diminishing scheme for the Euler equations[END_REF][START_REF] Carpenter | High-order entropy stable formulations for computational fluid dynamics[END_REF][START_REF] Fjordholm | Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[END_REF][START_REF] Shu | Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[END_REF][START_REF] Liu | A high-order discontinuous Galerkin method for 2D incompressible flows[END_REF]. From a general point of view, the arbitrary geometry of the mesh is in general an obstacle to conjugate high resolutions and the entropy stability [START_REF] Tsoutsanis | Stencil selection algorithms for WENO schemes on unstructured meshes[END_REF][START_REF] Shu | Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[END_REF][START_REF] Carpenter | High-order entropy stable formulations for computational fluid dynamics[END_REF][START_REF] Liu | A robust reconstruction for unstructured WENO schemes[END_REF]. As a matter of fact, high-order schemes on unstructured meshes are sometimes proposed with incomplete stability properties [START_REF] Desveaux | An entropy preserving MOOD scheme for the euler equations[END_REF][START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF][START_REF] Perthame | A variant of van Leer's method for multidimensional systems of conservation laws[END_REF][START_REF] Berthon | Second-order MUSCL schemes based on dual mesh gradient reconstruction (DMGR)[END_REF][START_REF] Chauvin | A colocalized scheme for threetemperature grey diffusion radiation hydrodynamics[END_REF] or without stability proof [START_REF] Fürst | Second and Third Order Weighted ENO Scheme on Unstructured Meshes[END_REF][START_REF] Farmakis | WENO schemes on unstructured meshes using a relaxed a posteriori MOOD limiting approach[END_REF][START_REF] Hu | Weighted essentially non-oscillatory schemes on triangular meshes[END_REF][START_REF] Liu | A robust reconstruction for unstructured WENO schemes[END_REF][START_REF] Liu | WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes[END_REF][START_REF] Balsara | An efficient class of WENO schemes with adaptive order for unstructured meshes[END_REF]. This obstacle has been mainly successfully overcame with the introduction of a dual mesh [START_REF] Ray | Entropy stable scheme on two-dimensional unstructured grids for Euler equations[END_REF] or within the DG SBP(-SAT) [START_REF] Abgrall | Analysis of the SBP-SAT stabilization for finite element methods part I: Linear problems[END_REF][START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF][START_REF] Fernández | Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates[END_REF][START_REF] Chen | Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes[END_REF] framework. With the DG SBP(-SAT) methods, many high-order schemes working on arbitrary meshes and satisfying a semi-discrete version of (3) have been introduced [START_REF] Chen | Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes[END_REF][START_REF] Yan | Entropy-stable discontinuous Galerkin difference methods for hyperbolic conservation laws[END_REF][START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF][START_REF] Chan | On discretely entropy conservative and entropy stable discontinuous Galerkin methods[END_REF][START_REF] Schnücke | Entropy stable discontinuous Galerkin schemes on moving meshes for hyperbolic conservation laws[END_REF][START_REF] Fernández | Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates[END_REF][START_REF] Vilar | Cell-centered discontinuous galerkin discretizations for twodimensional scalar conservation laws on unstructured grids and for one-dimensional lagrangian[END_REF]. But, the design of high-order schemes verifying a fully discrete version of ( 3) is challenging and often require implicit time discretizations [START_REF] Kuzmin | Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems[END_REF][START_REF] Busto | On thermodynamically compatible finite volume schemes for continuum mechanics[END_REF][START_REF] Yan | Entropy-stable discontinuous Galerkin difference methods for hyperbolic conservation laws[END_REF][START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF][START_REF] Friedrich | Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws[END_REF] or specific relaxation Runge-Kutta time integrations [START_REF] Ranocha | Relaxation runge-kutta methods: Fully discrete explicit entropy-stable schemes for the compressible euler and navier-stokes equations[END_REF][START_REF] Ketcheson | Relaxation runge-kutta methods: Conservation and stability for inner-product norms[END_REF][START_REF] Gaburro | High order entropy preserving ADER-DG schemes[END_REF].

In this work, we extend the schemes introduced in [START_REF] Badsi | A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws[END_REF] to bi-dimensional cases. We propose to study a class of explicit second-order numerical schemes defined on unstructured meshes and that verify a fully discrete version of [START_REF] Balsara | An efficient class of WENO schemes with adaptive order for unstructured meshes[END_REF]. A discrete analogous of (3) is not sufficient to avoid non-entropic solutions. Nevertheless, it provides an upper bound of the global discrete entropy and thus ensures a form of computational stability. The present schemes are based on an explicit non-linear procedure and do not require additional stabilization techniques as slope limiters used in MUSCL strategy for instance [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF]. We approximate the weak solutions of (1) within the standard cell-centered finite volume framework. At first, we consider a set of discrete times (t n ) n∈N where all of them are separated with a constant step ∆t > 0. Secondly, we consider a spatial mesh T composed of cells (C i ) i∈T where the surface of each of them is denoted |C i | > 0. We approximate w(•, t n ) with piecewise constant functions denoted w ∆ (•, t n ) and defined on each cells C i as follows:

w ∆ (x, t n ) = w n i , if x ∈ C i , with w n i ≈ 1 |C i | C i w(x, t n )dx, ∀i ∈ T . (4) 
Starting with the sequence (w n i ) i∈T , the updated sequence (w n+1 i ) i∈T will be computed according to the following explicit cell-centered finite volume scheme

w n+1 i = w n i - ∆t |C i | j∈N (i) |Γ ij |F ij , ∀i ∈ T , (5) 
where N (i) denotes a neighborhood of the cell i, |Γ ij | is the length of the edge between the cells i and j and F ij ∈ R d is a conservative numerical flux function. The rest of the paper is organized as follows.

In Section 2, we provide a finite volume approximation of the gradient that does not need standard limitation techniques. In Section 3, we introduce a methodology to derive explicit second-order schemes [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF]. Section 4 is devoted to the proof of the global discrete entropy stability satisfied by our formal second-order schemes. Numerical results are presented in Section 5 to illustrate the accuracy and the stability of the proposed finite volumes schemes.

Unlimited gradient approximation

A discrete gradient defined on unstructured grids can be derived with several methods [START_REF] Shima | Green-Gauss/weighted least squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids[END_REF][START_REF] Landeira | High order finite volume schemes on unstructured grids using moving least squares reconstruction. application to shallow water dynamics[END_REF][START_REF] Montagnier | Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes[END_REF][START_REF] Desveaux | Contribution à l'approximation numérique des systèmes hyperboliques[END_REF]. The main techniques need the solving of a linear system coupling all the unknown of the mesh [START_REF] Betchen | An accurate gradient and hessian reconstruction method for cell centered finite volume discretizations on general unstructured grids[END_REF][START_REF] Nishikawa | An implicit gradient method for cell centered finite volume solver on unstructured grids[END_REF] or a fix point procedure [START_REF] Syrakos | On the order of accuracy of the divergence theorem (Green-Gauss) method for calculating the gradient in finite volume methods[END_REF][START_REF] Syrakos | A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods[END_REF][START_REF] Deka | A new green-gauss reconstruction on unstructured meshes. part i: gradient reconstruction[END_REF] or a dual mesh [START_REF] Coudière | The discrete duality finite volume method for convection diffusion problems[END_REF][START_REF] Lissoni | DDFV method : applications to fluid mechanics and domain decomposition[END_REF][START_REF] Domelevo | A finite volume method for the laplace equation on almost arbitrary two-dimensional grids[END_REF]. The popular methods having an admissible computational time consist in strong assumptions on the mesh [START_REF] Eymard | A cell-centred finite volume approximation for second order partial derivative operators with full matrix on unstructured meshes in any space dimension[END_REF][START_REF] Herbin | Benchmark on discretization cchemes for anisotropic diffusion problems on general grids[END_REF], or in solving a least square problem [START_REF] Hiroaki | An efficient cell-centered finite-volume method with face-averaged nodalgradients for triangular grids[END_REF][START_REF] Wang | Accuracy analysis of gradient reconstruction on isotropic unstructured meshes and its effects on inviscid flow simulation[END_REF]. The least square methods are very powerful but their accuracy are genuinely dependent to the weights [START_REF] Caraeni | Unstructured-grid third order finite volume discretization using a multistep quadratic data reconstruction method[END_REF][START_REF] Vaassen | An implicit high order finite volume scheme for the solution of 3d navier-stokes equations with new discretization of diffusive terms[END_REF] and to the stencil used [START_REF] Mavriplis | Revisiting the least squares procedure for gradient reconstruction on unstructured meshes[END_REF][START_REF] Diskin | Accuracy of gradient reconstruction on grids with high aspect ratio[END_REF]. Almost of these methods require limitations techniques that may be difficult to define on unstructured grids [START_REF] Coquel | Second order entropy diminishing scheme for the Euler equations[END_REF][START_REF] Berthon | Second-order MUSCL schemes based on dual mesh gradient reconstruction (DMGR)[END_REF].

In this work, let consider a mesh T of R 2 composed of cells (C i ) i∈T for which the mass center is x i , the surface is |C i | > 0 and the perimeter is |P i | > 0. The edge between the cells i and j is denoted Γ ij (see Figure 1) and |Γ ij |, x ij denote its length and its middle respectively. The normal vector

n ij = (n ij 1 , n ij 2 ) T ∈ R 2 of the edge Γ ij is oriented from i to j. The set of edges is E and we define x ij = Γ ij ∩ [x i , x j ]. C i C j n ij x i x j x ij x ij ij
Figure 1: Interface Γ ij between two cells i and j on a mesh T .

In this work, we assume that for all cells i of the mesh T the following conditions are satisfied

M i = I 2 - j∈N (i) |Γ ij | |C i | n ij (x ij -x ij ) T ∈ GL 2 (R) , (6a) 
M -1 i = h→0 O(1), (6b) 
where I 2 is the identity matrix of size two. The condition (6a) is very few restrictive on the choice of the mesh. Indeed, it is clear that all Cartesian meshes satisfy (6a): in this case M i becomes identity matrix. Moreover, the meshes obtained from a local deformation of a Cartesian mesh work as long as M i is diagonally dominant at least. Empirically, the meshes containing triangular cells and convex quadrangle cells seem to work. For each edge Γ ij of given cell i verifying (6a), we can define the set of

R 2 vectors (b ij ) j∈N (i) such that b ij = |Γ ij | |C i | M -1 i n ij , ∀(i, j) ∈ T × N (i). (7) 
Thanks to the well known property j∈N (i) |Γ ij |n ij = 0 (see for instance [START_REF] Syrakos | A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods[END_REF] for details), we have

j∈N (i) b ij = 0.
Using the conditions [START_REF] Berthon | Second-order MUSCL schemes based on dual mesh gradient reconstruction (DMGR)[END_REF] and following an approach close to one described in [START_REF] Betchen | An accurate gradient and hessian reconstruction method for cell centered finite volume discretizations on general unstructured grids[END_REF][START_REF] Syrakos | A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods[END_REF], we propose in the sequel a method to approximate the gradient on unstructured meshes. Our method is explicit, linear and local and so easily parallelizable. Proposition 2.1 (Discrete gradients). Consider a mesh T made of cells verifying (6a), u a given smooth function and

u i = 1 |C i | C i u(x)
dx, then a first-order gradient approximation of u at the cell i is given by

∇ x u i = ∂ x 1 u i ∂ x 2 u i T = j∈N (i) u ij b ij 1 b ij 2 T , ∀i ∈ T , (8) 
where the vectors b • are defined in [START_REF] Betchen | An accurate gradient and hessian reconstruction method for cell centered finite volume discretizations on general unstructured grids[END_REF], and with

u ij = |x i -x ij |u j + |x j -x ij |u i |x i -x j | , where |•| denotes the euclidean norm of R 2 .
Proof. Let denote u (l) the l -th component of the d-vector u. Thus, we have ∇ x u (l) ∈ R 2 . From the Green-Gauss theorem we have

1 |C i | C i ∇ x u (l) dx = 1 |C i | C i ∂ x 1 u (l) ∂ x 2 u (l) T dx, = 1 |C i | C i ∂ x 1 u (l) dx 1 |C i | C i ∂ x 2 u (l) dx T , = 1 |C i | j∈N (i) Γ ij u (l) (x (ξ)) n ij 1 dξ, 1 |C i | j∈N (i) Γ ij u (l) (x (ξ)) n ij 2 dξ T , = 1 |C i | j∈N (i) Γ ij u (l) (x (ξ)) dξ n ij .
But, a Taylor expansion around x ij in the above equation yields to

Γ ij u (l) (x (ξ)) n ij dξ = h→0 Γ ij u (l) (x ij ) + (x(ξ) -x ij ) T ∇ x u (l) (x ij ) n ij dξ + O h 3 , = h→0 |Γ ij | u (l) (x ij ) + (x ij -x ij ) T ∇ x u (l) (x ij ) n ij + O h 3 . (9) 
But,

u (l) (x ij ) = h→0 u (l) ij + O h 2 , |Γ ij |(x ij -x ij ) T ∇ x u (l) (x ij ) = h→0 |Γ ij |(x ij -x ij ) T ∇ x u (l) (x i ) + O(h 3 ),
where the second equation holds since

|Γ ij ||x ij -x ij | = h→0 O(h 2
). As a consequence, using the above results in the equation ( 9), we obtain

Γ ij u (l) (x (ξ)) n ij dξ = h→0 |Γ ij | u (l) ij n ij + (x ij -x ij ) T ∇ x u (l) (x i ) n ij + O h 3 .
Now, using the property (a T b)c = (ca T )b that holds for all vectors (a, b, c) of R 2 , the above equation reformulates as follows:

Γ ij u (l) (x (ξ)) n ij dξ = h→0 |Γ ij | u (l) ij n ij + n ij (x ij -x ij ) T ∇ x u (l) (x i ) + O h 3 .
As a consequence, we deduce

∇ x u (l) (x i ) = h→0 1 |C i | C i ∇ x u (l) dx + O(h 2 ), = h→0 j∈N (i) 1 |C i | Γ ij u (l) (x(ξ))n ij dξ + O(h 2 ), = h→0 j∈N (i) |Γ ij | |C i | u (l) ij n ij + (n ij (x ij -x ij ) T )∇ x u (l) (x i ) + O(h 2 ) + O(h 2 ), = h→0 j∈N (i) |Γ ij | |C i | u (l) ij n ij + j∈N (i) |Γ ij | |C i | n ij (x ij -x ij ) T ∇ x u (l) (x i ) + O(h).
From the above equation, we finally have

I 2 - j∈N (i) |Γ ij | |C i | n ij (x ij -x ij ) T ∇ x u (l) (x i ) = M i ∇ x u (l) (x i ) = h→0 j∈N (i) |Γ ij | |C i | u (l) ij n ij + O(h), = h→0 j∈N (i) u (l) ij M i b ij + O(h).
As, according to (6), M i is invertible and

M -1 i = h→0
O(1), we deduce the expected formula.

The discrete gradients introduced in Proposition 2.1 are ingredients that will be useful for the second-order scheme derivation. The next section deals with the derivation of the scheme.

Second-order entropy stable finite volume schemes

We design a second-order of space accuracy scheme according to the following characterization (for more details see for instance [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF], Proposition 2.26). Proposition 3.1 (Second-order accuracy scheme [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF]). Consider a mesh T made of cells (C i ) i∈T . For all edges Γ ij of a given cell i, let an integer l ij ≥ 2 and F ij : (R d ) l ij → R d be a continuous function. Consider a numerical scheme under the form

w n+1 i = w n i - ∆t |C i | j∈N (i) |Γ ij |F ij w n i , ..., w n j , ∀i ∈ T ,
where w n i , ..., w n j denotes a l ij -tuple of R d containing w n i , w n j at least. For a given edge Γ ij , a numerical flux F ij is a second-order of space accuracy if

|Γ ij |F ij u i , ..., u j = h→0 n T ij Γ ij F (u(x(ξ))) dξ + O(h 3 ), = h→0 2 µ=1 Γ ij f µ u(x(ξ)) n ij µ dξ + O(h 3 ), ( 10 
)
where u is a given smooth function, u α = 1 |C α | Cα u(x)dx and h is a characteristic length of the mesh cells.

In order to derive second-order numerical schemes at the interface Γ ij , we denote the numerical flux F ij for the sake of clarity and we consider

|Γ ij |F ij = n T ij Γ ij F (u(x(ξ))) dξ O3 -|Γ ij | λ 2 (u j -u i ) + |Γ ij |d i,j A ij , ∀Γ ij ∈ E, (11) 
where

Γ ij F (u(x(ξ))) dξ O3 is a consistent approximation of the integral flux Γ ij F (u(x(ξ))) dξ. The term A ij ∈ R d verifies A ji = -A ij
for the sake of conservation and λ > 0 represents the numerical viscosity coefficient. The main idea of this work is to select A ij to compensate at a continuous level the first-order stabilization termλ 2 (u j -u i ). After that, in order to keep the entropy stability proprieties, A ij will be discretized on a different stencil that one used forλ 2 (u j -u i ). As a consequence, the term λ 2 (u j -u i ) + d i,j A ij will not be null and will drive the numerical diffusion of the scheme. First of all, we proceed to the integral flux discretization with enough accuracy. Lemma 3.1 (Integral flux discretization). Consider an edge Γ ij of an arbitrary mesh T and u a smooth function for which we set

u i = 1 |C i | C i u(x)dx. Consider Γ ij F (u(x(ξ))) dξ O3 = |Γ ij | F ij + (x ij -x ij ) T ∇ x F ij , (12) 
with

F ij = |x i -x ij |F (u j ) + |x j -x ij |F (u i ) |x i -x j | , ∇ x F ij = |x i -x ij |∇ x F j + |x j -x ij |∇ x F i |x i -x j | ,
where (∇ x F α ) α∈{i,j} is a first-order consistent approximation of the gradient of F at the cell α that writes

(x ij -x ij ) T ∇ x F α = 2 µ=1 (x ij -x ij ) µ ∂ xµ F α , = 2 µ=1 (x ij -x ij ) µ ∂ xµ f 1 α ∂ xµ f 2 α T , = 2 µ=1 (x ij -x ij ) µ ∇f 1 (u α )∂ xµ u α ∇f 2 (u α )∂ xµ u α T , ∀α ∈ {i, j} , with (∂ xµ u α ) µ∈{1,2} a first-order consistent approximation of (∂ xµ u) µ∈{1,2} at the cell α, then Γ ij F (u(x(ξ))) dξ O3 = h→0 Γ ij F (u(x(ξ))) dξ + O(h 3 ).
Proof. Since u is assumed regular, a standard Taylor expansion around x ij yields

Γ ij F u (x (ξ)) dξ = h→0 Γ ij F u (x ij ) + (x(ξ) -x ij ) T ∇ x F u (x ij ) dξ + O(h 3 ) = h→0 |Γ ij | F (u (x ij )) + (x ij -x ij ) T ∇ x F (u (x ij )) + O(h 3 ). (13) 
We observe that

F (u i ) = F u(x ij ) + (x i -x ij ) T ∇ x F u(x ij ) + O(h 2 ), F (u j ) = F u(x ij ) + (x j -x ij ) T ∇ x F u(x ij ) + O(h 2 ). (14a) (14b) 
Computing

|x j -x ij |×(14a)+|x i -x ij |×(14b), we have |x j -x ij |F (u i ) + |x i -x ij |F (u j ) = |x i -x ij | + |x j -x ij | F u(x ij ) + |x j -x ij |(x i -x ij ) T + |x i -x ij |(x j -x ij ) T ∇ x F u(x ij ) + O(h 2 ), = |x i -x j |F u(x ij ) + O(h 2 ).
As the same computations can be done to approximate ∇ x F (u (x ij )), we deduce

F (u (x ij )) = h→0 F ij + O(h 2 ), ∇ x F (u (x ij )) = h→0 ∇ x F ij + O(h 2 ).
Plugging these expressions in the intermediate result [START_REF] Carpenter | Entropy stable spectral collocation schemes for the navierstokes equations: discontinuous interfaces[END_REF], we deduce the expected formula.

We work now on the selection of the terms A ij . These correction terms have to be designed to preserve the second-order accuracy of the numerical flux. In this regard, we propose the following lemma.

Lemma 3.2 (A ij characterization). Consider a regular function u and denote

u i = 1 |C i | C i u(x)dx.
For all edges Γ ij localized between two cells i and j of an arbitrary mesh T , consider A ij under the form

|x i -x j |A ij = |x j -x ij |A i,ij + |x i -x ij |A j,ij , (15) 
with

(A i,ij , A j,ij ) ∈ (R d ) 2 . If, |x i -x j |A α,ij = λ 2 (x j -x i ) T * ∇ x u α = λ 2 2 µ=1 (x j -x i ) µ * ∂ xµ u α , ∀α ∈ {i, j} , (16) 
where * ∇ x u α is a consistent first-order discretization of the gradient of u at the cell α, then

- λ 2 (u j -u i ) + A ij |x i -x j | = h→0 O h 2 .
Before to prove the above lemma, we highlight that * ∇ x u α are not equal to the discrete gradients presented in Section 2. The discrete gradient * ∇ x u α are used to compute the anti-diffusion term A ij that is needed for the second-order accuracy. But, in order to ensure the global discrete entropy stability, the quantities * ∇ x u α require specific discretizations that will be detailed at the end of this section. Now, we prove Lemma 3.2.

Proof. A Taylor expansion around

x ij yields - λ 2 (u j -u i ) = h→0 - λ 2 (x j -x i ) T ∇ x u(x ij ) + O h 2 , = h→0 - λ 2 (x j -x i ) T |x j -x ij | * ∇ x u i + |x i -x ij | * ∇ x u j |x i -x j | + O h 2 ,
As a consequence, using the definition of A ij given by ( 15), we deduce

- λ 2 (u j -u i ) + A ij |x i -x j | = h→0 |x j -x ij | |x i -x j | - λ 2 (x j -x i ) T * ∇ x u i + |x i -x j |A i,ij + |x j -x ij | |x i -x j | - λ 2 (x j -x i ) T * ∇ x u j + |x i -x j |A j,ij + O(h 2 ).
Finally, using the definitions of (A α,ij ) α∈{i,j} given by [START_REF] Chandrashekar | Entropy stable finite volume scheme for ideal compressible mhd on 2-D cartesian meshes[END_REF] in the above equation, we deduce the expected result.

The terms A ij given by ( 15)-( 16) combined to the integral flux discretization [START_REF] Carpenter | High-order entropy stable formulations for computational fluid dynamics[END_REF] ensure that the numerical flux [START_REF] Caraeni | Unstructured-grid third order finite volume discretization using a multistep quadratic data reconstruction method[END_REF] verifies Proposition 3.1. As a consequence, we formally have a second-order scheme. According to Lemma 3.2, A ij is designed to compensate the diffusive termλ 2 (u j -u i ) and needs a definition of discrete gradients * ∇ x u i , * ∇ x u j . In this regard, we propose:

4 Global entropy stability

Using the section 3, the second-order accuracy scheme writes

w n+1 i = j∈N (i) |Γ ij | |P i | w n i - ∆t|P i | |C i | F n ij , F n ij = |x i -x ij | |x i -x j | 2 µ=1 f µ (w n j )n ij µ + 2 ν=1 (x ij -x ij ) µ ∇f ν (w n j )∂ xµ w n j n ij ν + |x j -x ij | |x i -x j | 2 µ=1 f µ (w n i )n ij µ + 2 ν=1 (x ij -x ij ) µ ∇f ν (w n i )∂ xµ w n i n ij ν - λ 2 (w n j -w n i ) + |x i -x j |A n ij , ∀(i, j) ∈ T × N (i), (18) 
with |x i -x j |A n ij = |x j -x ij |A n i,ij + |x i -x ij |A n j,ij , |x i -x j |A n i,ij = λ 2 (x j -x i ) T * ∇ x w n i,ij , |x i -x j |A n j,ij = λ 2 (x j -x i ) T * ∇ x w n j,ji , (19) 
where the discrete gradients * ∇ x w n i,ij , * ∇ x w n j,ji can be computed with the equation [START_REF] Chauvin | A colocalized scheme for threetemperature grey diffusion radiation hydrodynamics[END_REF]. Let state now our result about the global entropy stability satisfied by the second-order scheme [START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF]. For the convenient, we define the following discrete Sobolev space

l ∞ (T ) = (w i ) i∈T ∈ (R d ) Card(T ) | max i∈T ∥w i ∥ ∞ < +∞ ,
where ∥•∥ ∞ denotes the usual euclidean and uniform norms of R d . We have: Theorem 4.1 (Global entropy stability). For a given mesh T , consider a strictly convex entropy η ∈ C 2 (Ω, R) and a non constant sequence (w n i ) i∈T in l ∞ (T ), spatially compactly supported and such that i∈T η(

w n i )|C i | is finite. Assume i) the existence of a compact set K ⊂ Ω such that dist(K, ∂Ω) > 0 and (w n i ) i∈T ⊂ K, ii) the vectors (A n ij ) ij∈E verify A n ji = -A n ij
for all edges Γ ij and are such that

1 0 Γ ij ∈E |Γ ij |∇ 2 η w n i + s(w n j -w n i ) w n j -w n i • A n ij |x i -x j |ds < 0, (20) 
then there exists λ > 0 large enough, ∆t > 0 small enough such that the updated sequence (w n+1 i ) i∈T given by the second-order scheme ( 18) is included in Ω and verifies the following global entropy stability

i∈T η(w n+1 i ) -η(w n i ) ∆t |C i | ≤ 0. ( 21 
)
Before proceeding to the proof of Theorem 4.1, let precise our assumptions. The assumption i) enforces the sequence (w n i ) i∈T to be bounded and included in a compact subset K of Ω such that dist(K, ∂Ω) > 0. For instance for the Euler equations with a perfect gas, the admissible set is

Ω = {w = (ρ, ρu, ρv, ρE) T ∈ R 4 | ρ > 0, E -u 2 /2 -v 2 /2 > 0}.
The assumption i) ensures that the density ρ and the pressure p = (γ -1)(ρE -ρu 2 /2 -ρv 2 /2), where γ > 1 is the adiabatic constant, are strictly away from the vacuum and bounded from above. Since it is extremely difficult to prove a such robustness without requirement to limitation techniques [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF][START_REF] Perthame | On positivity preserving finite volume schemes for Euler equations[END_REF], this type of assumption is commonly accepted (see for instance [START_REF] Serre | Systems of conservation laws[END_REF][START_REF] Hiltebrand | Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws[END_REF]). This assumption also ensures the existence of a time step ∆t > 0 small enough such that (w n+1 i ) i∈T ⊂ Ω (see [START_REF] Badsi | A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws[END_REF]Lemma 4.1] for the details). If Ω = R d , this first assumption can be omit. The inequality [START_REF] Clain | A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (MOOD)[END_REF] stands for a dissipation inequality relatively to a given strictly convex entropy η. This inequality concerns a global summation of A n ij over the edges of the mesh that may be easily computed because no specific orientation between i and j is needed. The main originality of this work is to select the Θ-matrices required for the discrete gradient * ∇ x • (see the equation ( 17)) to satisfy the inequality [START_REF] Clain | A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (MOOD)[END_REF]. We give now a lemma that justifies the existence of admissible parameters for which the inequality (20) holds.

Lemma 4.1 (Dissipation inequality). For a given mesh T made of cells verifying the assumptions (6), consider a strictly convex entropy η ∈ C 2 (Ω, R) and a non constant sequence (w n i ) i∈T in l ∞ (T ) and spatially compactly supported. Assume the existence of a compact set K ⊂ Ω such that dist(K, ∂Ω) > 0 and assume (w n i ) i∈T ⊂ K.For a given edge Γ ij of E, if the discrete gradients * ∇ x w n i,ij , * ∇ x w n j,ji given by ( 17) are endowed with the following parameters:

Θ n ij = θ n ij I d , Θ n ji = θ n ji I d , (22) 
where θ n ij , θ n ji are reals such that

θ n ij = -θ n ji = -κ n sign(ζ n i,j -ζ n j,i ), κ n > 2 max 0, i∈T j∈N (i) |Γ ij | (x j -x i ) T |x i -x j | ∇ x (|x j -x ij |r n i,j + |x i -x ij |r n i,i ) i∈T j∈N (i) |Γ ij | ζ n i,j -ζ n j,i , (23) 
where

ζ n i,j = (x j -x i ) T ∇ x r n i,i -(x j -x i ) T ∇ x r n i,j , (x j -x i ) T ∇ x r n i,α = m∈N (α) |x m -x αm |r n iα + |x α -x αm |r n im |x α -x m | ((x j -x i ) T b αm ), r n im = 1 0 (1 -s)∇ 2 η w n i + s(w n m -w n i ) (w n m -w n i ) • (w n m -w n i )ds, = η(w n m ) -η(w n i ) -∇η(w n i ) • (w n m -w n i ),
then the inequality (20) is satisfied.

Proof. At first, using the parameters given by ( 22) in the equation ( 17), we have

* ∇ x w n i,ij = θ n ij ∇ x w n i + (1 -θ n ij )∇ x w n j , * ∇ x w n j,ji = θ n ji ∇ x w n j + (1 -θ n ji )∇ x w n i , (24) 
where ∇ x • denotes the discrete gradients derived in Section 2. From the above equations, and from the definition of A n ij given by [START_REF] Chen | Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes[END_REF], it is clear that A n ji = -A n ij . As a consequence, and since (w n i ) i∈T is spatially compactly supported, we reorganize the summation over Γ ij as follows:

1 0 Γ ij ∈E |Γ ij |∇ 2 η w n i + s(w n j -w n i ) w n j -w n i • A n ij |x i -x j |ds = ij∈E |Γ ij | ∇η(w n j ) -∇η(w n i ) • A n ij |x i -x j |, = - ij∈E |Γ ij | ∇η(w n j ) • A n ji |x j -x i | + ∇η(w n i ) • A n ij |x i -x j | , = - i∈T j∈N (i) |Γ ij |∇η(w n i ) • A n ij |x i -x j |, = - i∈T , j∈N (i) 
|Γ ij |∇η(w n i ) • A n i,ij |x j -x ij | + A n j,ij |x i -x ij | .
Now, injecting the equation [START_REF] Desveaux | Contribution à l'approximation numérique des systèmes hyperboliques[END_REF] in the above equation we deduce

1 0 Γ ij ∈E |Γ ij |∇ 2 η w n i + s(w n j -w n i ) w n j -w n i • A n ij |x i -x j |ds = - λ 2 i∈T , j∈N (i) 
|Γ ij |∇η(w n i ) • (x j -x i ) T * ∇ x w n i,ij |x j -x ij | |x i -x j | + (x j -x i ) T * ∇ x w n j,ji |x i -x ij | |x i -x j | , = - λ 2 i∈T , j∈N (i) |Γ ij | |x j -x ij | |x i -x j | θ n ij ∇η(w n i ) • ((x j -x i ) T ∇ x w n i ) + (1 -θ n ij )∇η(w n i ) • ((x j -x i ) T ∇ x w n j ) , - λ 2 i∈T , j∈N (i) |Γ ij | |x i -x ij | |x i -x j | θ n ji ∇η(w n i ) • ((x j -x i ) T ∇ x w n j ) + (1 -θ n ji )∇η(w n i ) • ((x j -x i ) T ∇ x w n i ) .
But, according to the gradient approximations (8), we have

∇η(w n i ) • ((x j -x i ) T ∇ x w n α ) = m∈N (α) |x m -x αm | |x α -x m | ∇η(w n i ) • w n α ((x j -x i ) T b αm ) + m∈N (α) |x α -x αm | |x α -x m | ∇η(w n i ) • w n m ((x j -x i ) T b αm ), = m∈N (α) |x m -x αm | |x α -x m | ∇η(w n i ) • (w n α -w n i ) ((x j -x i ) T b αm ) + m∈N (α) |x α -x αm | |x α -x m | ∇η(w n i ) • (w n m -w n i ) ((x j -x i ) T b αm ), = m∈N (α) |x m -x αm | |x α -x m | η(w n α ) -η(w n i ) -r n iα ((x j -x i ) T b αm ) + m∈N (α) |x α -x αm | |x α -x m | η(w n m ) -η(w n i ) -r n im ((x j -x i ) T b αm ), = (x j -x i ) T ∇ x η(w n α ) -(x j -x i ) T ∇ x r n i,α ,
where we have used the properties of the vectors b, j∈N (i) b ij = 0 and a Taylor expansion with the integral form of the reminder that writes η(w n i ) • (w n m -w n i ) = η(w n m ) -η(w n i ) -r n im . So, injecting the previous considerations in the first computation, we deduce

1 0 Γ ij ∈E ∇ 2 η w n i + s(w n j -w n i ) w n j -w n i • A n ij |x i -x j |ds = - λ 2 i∈T j∈N (i) |Γ ij |(x j -x i ) T * ∇ x η(w n i,ij ) |x j -x ij | |x i -x j | + * ∇ x η(w n j,ji ) |x i -x ij | |x i -x j | =0 (sum of convervative terms) + λ 2 i∈T j∈N (i) |Γ ij |(x j -x i ) T θ n ij ∇ x r n i,i + (1 -θ n ij )∇ x r n i,j |x j -x ij | |x i -x j | + λ 2 i∈T j∈N (i) |Γ ij |(x j -x i ) T θ n ji ∇ x r n i,j + (1 -θ n ji )∇ x r n i,i |x i -x ij | |x i -x j | .
where we have defined

* ∇ x η(w n i,ij ) = θ n ij ∇ x η(w n i ) + (1 -θ n ij )∇ x η(w n j ), * ∇ x η(w n j,ji ) = θ n ji ∇ x η(w n j ) + (1 -θ n ji )∇ x η(w n i ).
Now, introducing ζ n i,j ,and ζ n j,i in the previous computation and rearranging the terms, we have

2 λ 1 0 Γ ij ∈E ∇ 2 η w n i + s(w n j -w n i ) w n j -w n i • A n ij |x i -x j |ds = i∈T , j∈N (i) |Γ ij | |x i -x j | (|x j -x ij |θ n ij -|x i -x ij |θ n ji )ζ n i,j + i∈T , j∈N (i) |Γ ij | |x i -x j | (x j -x i ) T ∇ x (|x j -x ij |r n i,j + |x i -x ij |r n i,i ), = i∈T , j∈N (i) |Γ ij | 2|x i -x j | (|x j -x ij |θ n ij -|x i -x ij |θ n ji )(ζ n i,j -ζ n j,i ) + i∈T , j∈N (i) |Γ ij | |x i -x j | (x j -x i ) T ∇ x (|x j -x ij |r n i,j + |x i -x ij |r n i,i ),
which is negative according to [START_REF] Deka | A new green-gauss reconstruction on unstructured meshes. part i: gradient reconstruction[END_REF].

From a general point of view, many choices of Θ-matrices are possibles. We will give some examples in the next section that will be devoted to the numerical experiments. Now we proceed to the proof of Theorem 4.1.

Proof. Let consider a strictly convex entropy η ∈ C 2 (Ω, R). Thanks to the assumption i), there exists ∆t > 0 small enough such that w n+1 i ∈ Ω for all i in T . Assuming such condition holds and using the convexity proprieties of η, we have

η(w n+1 i ) = η j∈N (i) |Γ ij | |P i | w n i - ∆t|P i | |C i | F n ij ≤ j∈N (i) |Γ ij | |P i | η w n i - ∆t|P i | |C i | F n ij .
Using a Taylor expansion with the integral form of the remainder in the above inequality, we deduce

η(w n+1 i ) ≤ η(w n i ) - ∆t|P i | |C i | j∈N (i) |Γ ij | |P i | ∇η(w n i ) • F n ij + ∆t|P i | |C i | 2 1 0 (1 -s) j∈N (i) |Γ ij | |P i | ∇ 2 η w n i -s ∆t|P i | |C i | F n ij F n ij • F n ij ds, ∀i ∈ T .
But, the above equation integrated over the domain reads

i∈T η(w n+1 i ) -η(w n i ) ∆t |C i | ≤ - i∈T j∈N (i) |Γ ij |∇η(w n i ) • F n ij + i∈T ∆t|P i | |C i | 1 0 (1 -s) j∈N (i) |Γ ij |∇ 2 η w n i -s ∆t|P i | |C i | F n ij F n ij • F n ij ds.
Now, we have to prove that the right hand side of the above inequality can be negative. So, we give a more convenient form of the term

-i∈T j∈N (i) |Γ ij |∇η(w n i ) • F n ij .
Using the definition of the numerical flux given by ( 18), we have

- i∈T j∈N (i) |Γ ij |∇η(w n i ) • F n ij = i∈T , j∈N (i) 
|Γ ij |R n ij - i∈T j∈N (i) |Γ ij |∇η(w n i ) • - λ 2 (w n j -w n i ) + |x i -x j |A n i,j , with R n ij = |x i -x ij | |x i -x j | ∇η(w n i ) • 2 µ=1 f µ (w n j )n ij µ + 2 ν=1 (x ij -x ij ) µ ∇f ν (w n j )∂ xµ w n j n ij ν + |x j -x ij | |x i -x j | ∇η(w n i ) • 2 µ=1 f µ (w n i )n ij µ + 2 ν=1 (x ij -x ij ) µ ∇f ν (w n i )∂ xµ w n i n ij ν .
Since the vectors (A n ij ) ij∈E verifies A n ji = -A n ij for all edges Γ ij , we can write

- i∈T j∈N (i) |Γ ij |∇η(w n i ) • - λ 2 (w n j -w n i ) + |x i -x j |A n i,j = Γ ij ∈E |Γ ij |(∇η(w n j ) -∇η(w n i )) • - λ 2 (w n j -w n i ) + |x i -x j |A n i,j , = - λ 2 1 0 Γ ij ∈E |Γ ij |∇η 2 w n i + s(w n j -w n i ) w n j -w n i • w n j -w n i ds + 1 0 Γ ij ∈E |Γ ij |∇η 2 w n i + s(w n j -w n i ) w n j -w n i • |x i -x j |A ij ds, = - λ 2 1 0 Γ ij ∈E |Γ ij |∇η 2 w n i + s(w n j -w n i ) w n j -w n i • w n j -w n i ds + λ 2 1 0 Γ ij ∈E |Γ ij |∇η 2 w n i + s(w n j -w n i ) w n j -w n i • |x j -x ij | |x i -x j | (x j -x i ) T * ∇ x w n i,ij ds + λ 2 1 0 Γ ij ∈E |Γ ij |∇η 2 w n i + s(w n j -w n i ) w n j -w n i • |x i -x ij | |x i -x j | (x j -x i ) T * ∇ x w n j,ji ds < 0,
which is negative according to the inequality [START_REF] Clain | A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (MOOD)[END_REF]. Thanks to the assumption i), the term i∈T j∈N (i) |Γ ij |R n ij is necessary finite. As a consequence, we deduce the existence of a finite numerical diffusion λ > 0 such that -

i∈T j∈N (i) |Γ ij |F n ij • ∇η(w n i ) < 0. (25) 
Finally, if ∆t verifies in addition

0 < ∆t ≤ i∈T j∈N (i) |Γ ij |F n ij • ∇η(w n i ) 1 0 (1 -s) i∈T j∈N (i) |Γ ij ||P i | |C i | ∇ 2 η w n i -s ∆t|P i | |C i | F n ij F n ij • F n ij ds , ( 26 
)
then we deduce the expected result.

The next section deals with the numerical experiments.

5 Numerical results

Methods

The scheme [START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF] was implemented in C and parallelized with some OpenMP instructions. In order to reduce the time computations, the all constant coefficients needed for the discrete gradient (8) are computed before the time loop. As usual, the updated sequence (w n+1 i ) i∈T is computed with a loop on the edges of the mesh. We illustrate the accuracy and the stability performances of our schemes [START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF] with the Euler equations for a diatomic perfect gas in which We use standard Cartesian meshes and irregular triangle meshes generated with FreeFem ++ [START_REF] Hecht | New development in FreeFem++[END_REF]. The Cartesian meshes verify the assumptions ( 6) and we numerically verify that the unstructured triangle meshes satisfy the assumption (6a). The Figure 2 shows an example of unstructured meshes used.

Figure 2: On the left, the square [0, 10] 2 meshed with FreeFem ++ [START_REF] Hecht | New development in FreeFem++[END_REF] (≈ 5 000 cells), on the right, zoom on the triangular cells generated by FreeFem ++ [START_REF] Hecht | New development in FreeFem++[END_REF].

We proceed to high-order time discretization using SSP Runge-Kutta methods [START_REF] Gottlieb | Total variation diminishing runge-kutta schemes[END_REF][START_REF] Gottlieb | Strong stability-preserving high-order time discretization methods[END_REF][START_REF] Gottlieb | On high order strong stability preserving runge-kutta and multi step time discretizations[END_REF]. Since these methods only depend on convex combination of first-order times sub-steps, the main entropy stability result 4.1 is preserved. Our main stability result 4.1 is established without consideration for the boundaries conditions. But, in finite domains as ones used for the following test cases, the boundaries conditions may play a central role in the entropy dissipation. As a consequence, we consider the criterion

i∈T η(w n+1 i ) -η(w n i ) ∆t |C i | + Γ ij * ∈∂E |Γ ij * |n T ij * G(w n j * ), (DEI) 
where ∂E and j * denote respectively the edges on the boundaries of the mesh T and the ghost cells. The criterion (DEI) includes the boundary conditions and it is a modified version of [START_REF] Coquel | Second order entropy diminishing scheme for the Euler equations[END_REF]. The boundary conditions are implemented in ghost cells and we have to precise a value for w n j * and a value for the gradient ∇ x w n j * . For the periodic boundary conditions, we fix w n j * = w n p , ∇ x w n j * = ∇ x w n p where p is the index of the periodic cell corresponding to the cell i. For the in flow boundary conditions, the equalities 

w n j = w B + (x j -x ij ) T ∇ x w n i , ∇ x w n j * = ∇ x w n i hold
n j * = w n i , ∇ x w n j * = ∇ x w n i .
In the case of reflection boundary conditions, the velocity component along the boundaries has to be null. This condition writes un ij * 1 + vn ij * 2 = 0. For the gradient, we impose ∇ x w n j * = ∇ x w n i . For w n j * , we define

u ∥ i = u n i n ij * 1 + v n i n ij * 2 , u ⊥ i = u n i n ⊥ ij * 1 + v n i n ⊥ ij * 2 ,
where n ⊥ ij * is an unit orthogonal vector to n ij * and we lay down

w n j * =     1 0 0 0 0 n ij * 1 n ij * 2 0 0 n ⊥ ij * 1 n ⊥ ij * 2 0 0 0 0 1     -1         ρ n i + (x j * -x i ) T ∇ x ρ n i 0 + (x j * -x ij * ) T ∇ x ρ n i u ∥ i ρ n i u ⊥ i + (x j * -x i ) T ∇ x ρ n i u ⊥ i ρ n i E n i + (x j * -x i ) T ∇ x ρ n i E n i         ,
where the above matrix is always invertible since it is a rotation matrix. According to Theorem 4.1, the Θ-matrices, λ, ∆t have to be selected in order to satisfy the inequalities ( 20)-( 25)-( 26) respectively. Lemma 4.1 and the proof of Theorem 4.1 exhibit formulas to enforce the desired inequalities. However, these formulas are very computationally expensive and are clearly not usable to carry out practical applications in an acceptable time computing. A close 1D version of the formulas ( 25)-( 26) is implemented and tested for the 1D Burger equation in [START_REF] Badsi | A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws[END_REF]. In 1D, the numerical viscosity is near to the standard and the CFL seems far from to the optimal one. As the present schemes extend the 1D schemes [START_REF] Badsi | A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws[END_REF], it is reasonable to assume that the same conclusions holds in 2D case. As a consequence, we use following heuristic choices that are motivated by the 1D analysis done in [START_REF] Badsi | A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws[END_REF]. For the matrix (Θ n ij ) ij∈E required for the discrete gradients introduced in (17), we set two distinct configurations

Θ n a,ij = |x j -x ij | |x i -x j | I d , and, Θ n b,ij = diag 1≤l≤d tanh(δ (l) ij -δ (l) ji ), (27) 
where

δ (l) ij = (x j -x i ) T |x i -x j | ∇ x (w n j ) (l) 2 = m∈N (j) |x m -x jm |(w n j ) (l) + |x j -x jm |(w n m ) (l) |x i -x j ||x j -x m | ((x j -x i ) T b jm ) 2 .
The couple λ, ∆t are taken equal to

λ = max ij∈E |r ij (w n j )|, |r ij (w n i )| , λ∆t|P i | |C i | ≤ 1 2 , ∀i ∈ T ,
where |r ij (w)| is the spectral radius of the matrix ∇f 1 (w)n ij 1 +∇f 2 (w)n ij 2 . In order to preserve convex set Ω, we add a MOOD procedure [START_REF] Clain | A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] to our scheme. Within this paradigm, if the second-order scheme (18) endowed with the above heuristics does not preserve Ω, then a correction is done with the standard first-order numerical scheme.

Accuracy performances

The measure of the accuracy performance of the second-order scheme ( 18) is led with the isentropic vertex problem as described in [START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF][START_REF] Spiegel | A survey of the isentropic Euler vortex problem using high-order methods[END_REF]. We work on the square [0, 10] 2 , and we assume that the gas verifies at the initial time

ρ = 1 - γ -1 2γ ϕ 2 (x) 1 γ-1 , (1 -u, 1 -v) T = ϕ(x) (x -x 0 ) T , p = 1 - γ -1 2γ ϕ 2 (x) γ γ-1 , with ϕ(x) = ϵe -α(1-∥x-x 0 ∥ 2
2 ) , ϵ = 5 2π , α = 0.5, x 0 = (5, 5) T . Under these conditions, the exact solution is a regular vertex advected in the diagonal direction. The final time is 0.1, We prescribe periodic conditions on all the boundaries of the domain. We select λ and ∆t as described in 5.1. The Figure 3 shows the results on Cartesian grid and on unstructured mesh. The tables 1, 2 report the rate of convergence of the variable ρ for both types of meshes and for the parameters

(Θ n a,ij ) ij∈E -(Θ n b,ij ) ij∈E .
Figure 3: Density profile at time t = 0.1 for the isentropic vertex problem. On the top left and right second-order approximation given by the scheme (18) endowed with the (Θ a,ij ) ij∈E matrices on Cartesian grid (6400 cells) and on unstructured mesh (≈ 5 000 cells) respectively. On the bottom left and right second-order approximation given by the scheme (18) endowed with the (Θ b,ij ) ij∈E matrices on Cartesian grid (6400 cells) and on unstructured mesh (≈ 5 000 cells) respectively.

Second-order scheme errors on Cartesian grids cells h L |x i -x j | and for the (Θ n b,ij ) ij∈E configuration given by [START_REF] Diskin | Accuracy of gradient reconstruction on grids with high aspect ratio[END_REF].

Thanks to the free limitations strategy, the second-order is observed on Cartesian meshes. On unstructured grids, some cells do not seem satisfy the assumption (6b) which slightly spoils the results, but the order of convergence remains accurate.

Riemann problems

We study three Riemann problems from [START_REF] Kurganov | Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers[END_REF]. The unit square is divided into four quadrants formed with the line x = 1/2 and y = 1/2 and for each problems (ρ, u, v, p) T is initialized by constant states in each quadrant as described in the Table 3 For all the problems, the final time is 0.3 and we impose homogeneous Neumann boundary conditions on all the boundaries of the domain. The domain is dicretized with a Cartesian mesh having 1000 cells per direction and with an unstructured triangle mesh having approximately 10 6 cells. The time step ∆t and the numerical viscosity λ are selected as described in the section 5.1. The Figure 4-5-6 show the numerical results for the problem KT3, KT5, KT6 respectively. For the comparative, we also plot the result of the standard first-order scheme.

Figure 4: Density profile at time t = 0.3 for the Riemann problem KT3. On the top left, standard first-order approximation, on the top right, time evolution of the discrete global entropy (DEI), on the bottom left and right, second-order approximation given by the scheme (18) endowed with the (Θ n b,ij ) ij∈E matrices given by ( 27) on Cartesian grid and on unstructured mesh respectively.

For the problem KT3, the matrices (Θ n a,ij ) ij∈E do not enforce the inequality [START_REF] Clain | A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (MOOD)[END_REF] and so are not usable to simulate this problem. With the matrices (Θ n b,ij ) ij∈E , we observe a good accuracy of the solution computed on the Cartesian grid. A slight deformation is observed for the waves localized close to the boundaries of the unstructured mesh. The spurious oscillations into the DEI curve suggest that the choices of (Θ n b,ij ) ij∈E , λ, ∆t are less robust on the unstructured meshes than on the Cartesian grids. This remark is corroborated by the MOOD procedure that was only necessary on the unstructured mesh. In this case, the number of cells modified with the MOOD procedure does not exceed 10 -4 % of the total cell numbers. On both type of meshes, the criterion (DEI) is negative.

Figure 5: Density profile at time t = 0.3 for the Riemann problem KT5. On the top left, standard first-order approximation, on the top right, time evolution of (DEI), on the center left and right, second-order approximation with the (Θ n a,ij ) ij∈E matrices on Cartesian grid and on unstructured mesh respectively, on the bottom left and right, second-order approximation with the (Θ n b,ij ) ij∈E matrices on Cartesian grid and on unstructured mesh respectively. Figure 6: Density profile at time t = 0.3 for the Riemann problem KT6. On the top left, standard first-order approximation, on the top right, time evolution of (DEI), on the center left and right, second-order approximation with the (Θ n a,ij ) ij∈E matrices on Cartesian grid and on unstructured mesh respectively, on the bottom left and right, second-order approximation with the (Θ n b,ij ) ij∈E matrices on Cartesian grid and on unstructured mesh respectively.

For the KT5 and for the KT6 problems, the solutions are acceptable for both Θ-matrices and for both type of meshes. On the unstructured mesh, we observe Kelvin Helmholtz instabilities with the matrices (Θ n a,ij ) ij∈E . These instabilities do not appear on the Cartesian grids. Such differences between Cartesian grids and unstructured meshes have already been observed in [START_REF] Desveaux | Contribution à l'approximation numérique des systèmes hyperboliques[END_REF]] with a second-order scheme that uses polynomial reconstructions. According to [START_REF] Clain | A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (MOOD)[END_REF], the Kelvin Helmholtz instabilities may be a qualitative measure of the scheme diffusivity. The results provide with the (Θ n b,ij ) ij∈E matrices are more diffusive than the (Θ n a,ij ) ij∈E matrices ones. As a consequence, for the KT5-KT6 problems, the results may be probably more accurate with the (Θ n a,ij ) ij∈E configuration. For both problems, the MOOD procedure is useless for both type of meshes and for both matrices (Θ n a,ij ) ij∈E , (Θ n b,ij ) ij∈E . The discrete entropy stability criterion (DEI) is negative.

A mach 3 wind tunnel with a step

We study a diatomic Mach 3 perfect gas flow in a wind tunnel containing a step on the bottom as introduced in [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF]. At the initial time the flow verify ρ = 1.4, (u, v) = (3, 0), p = 1. On the left we impose an in flow boundary condition with the initial condition values. On the top, on the bottom and on the step, we fix reflection boundaries conditions. On the right, as the gradients are assumed to be equal to zero, we prescribe homogeneous Neumann boundaries conditions. Under these conditions, the corner in the step is singular and the flow develops a rarefaction wave. The final time is 4. We use the parameters (λ, ∆t) described Section 5.1 and the (Θ n b,ij ) ij∈E matrices. The figure 7 reports the density results for the second-order scheme (18) on an unstructured triangle mesh having approximately 10 5 cells. For the comparative, we also plot the result the standard first-order scheme.

Figure 7: Density profile at time t = 4 on unstructured triangle mesh (≈ 10 5 cells) for the Mach 3 wind tunnel with a step problem. On the left, standard first-order approximation, and second-order approximation given by the scheme (18) endowed with the (Θ n b,ij ) ij∈E matrices given by ( 27). On the right, DEI time evolution.

The matrices (Θ n a,ij ) ij∈E do not satisfy the inequality (20) and so are not usable for this test case. With the matrices (Θ n b,ij ) ij∈E , the MOOD process was applied at most on 2 • 10 -3 % of the total cell numbers.

The results are acceptable but the Kelvin-Helmholtz instabilities which may occur in the tunnel (see for instance [START_REF] Desveaux | Contribution à l'approximation numérique des systèmes hyperboliques[END_REF]Figure 2.20]) are not visible in the Figure 7. The DEI criteria is genuinely oscillating and the global entropy stability is lost. As suspected in Section 5.3 for the KT3 problem, these instabilities mainly come from the unstructured triangular mesh. To illustrate this purpose, the same problem is run on a mesh made of uniform triangles. Keeping the parameters λ, ∆t, and the (Θ n b,ij ) ij∈E matrices described in Section 5.1, the Figure 8 shows some cells of the mesh and the results. Figure 8: Density profile at time t = 4 on structured triangle mesh (≈ 10 5 cells) for the Mach 3 wind tunnel with a step problem. On the left, standard first-order approximation, and second-order approximation given by the scheme (18) endowed with the (Θ n b,ij ) ij∈E matrices given by [START_REF] Diskin | Accuracy of gradient reconstruction on grids with high aspect ratio[END_REF]. On the right, some cells of a structured triangle mesh and DEI time evolution.

On structured triangle mesh, the MOOD procedure is used for at most 0.025% of the total cell numbers and according to Figure 8, the DEI is negative except for few time iterations.

Double mach reflection of a strong shock

In this section we investigate a gas flow in a wind along a reflecting wall [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF]. The domain is included in the box [0, 1.9]×[0, 1.3]. At x = 1/6, the reflecting wall makes a 30 • angle with the horizontal axis and extends to the right boundary [START_REF] Berthon | Second-order MUSCL schemes based on dual mesh gradient reconstruction (DMGR)[END_REF]. At the initial time the gas is inert and verify ρ = 1.4, (u, v) = (0, 0), p = 1. In order to create a shock wave, we impose on the left boundary a constant in flow verifying ρ = 8, (u, v) = (8.25, 0) and p = 116.5. On the top, on the bottom and on the reflecting wall, we impose reflecting boundary conditions. As the gradients are assumed to be null on the right, we lay down a homogeneous Neumann condition. The final time is 0.15, the time step and the numerical viscosity are chosen as mentioned in the section 5.1. We work with the matrix (Θ n b,ij ) ij∈E given by [START_REF] Diskin | Accuracy of gradient reconstruction on grids with high aspect ratio[END_REF]. The figure 9 shows the density results on an unstructured triangle mesh having approximately 10 6 cells. For the comparative, we also plot the result the standard first-order scheme. Figure 9: Density profile at time t = 0.15 on unstructured triangle mesh (≈ 10 6 cells) for the double mach reflection of a strong shock problem. On the left, standard first-order approximation, on the right second-order approximation given by the scheme (18) endowed with the (Θ n b,ij ) ij∈E matrices given by [START_REF] Diskin | Accuracy of gradient reconstruction on grids with high aspect ratio[END_REF]. On the bot, DEI time evolution.

The matrices (Θ n a,ij ) ij∈E do not satisfy the inequality (20) and thus provide unacceptable instabilities for this test case. The scheme results with the matrices (Θ n b,ij ) ij∈E are acceptable. Nevertheless, the Kelvin-Helmholtz instabilities which may occur near the wall (see for instance [START_REF] Desveaux | Contribution à l'approximation numérique des systèmes hyperboliques[END_REF]Figure 2.19], [START_REF] Clain | A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (MOOD)[END_REF]Fig 14]) are not visible in the Figure 9. At the beginning of the simulation, the DEI criteria is slightly positive then it becomes negative. Since the same remark holds for the usual first-order scheme and as inferred in the above sections, these instabilities are probably due to the unstructured triangle mesh. The MOOD process was applied at most on 10 -4 % of the total cell numbers.

Conclusion

In this work, we have introduced a class of explicit second-order schemes defined on two dimensional unstructured meshes. The schemes do not require additional slope limiters. If a dissipation inequality is satisfied and under an appropriate choice of the artificial numerical coefficient and the time step, the schemes satisfy a global discrete entropy stability. From a numerical point of view, we have proposed two particular second-order discretizations. Depending on problems and on meshes, the dissipation inequality may be computational expansive.

w

  = (ρ, ρu, ρv, ρE) T F (w) = (ρu, ρu 2 + p, ρuv, (ρE + p)u) T (ρv, ρuv, ρv 2 + p, (ρE + p)v) T , where the pressure p is given by p = (γ -1) ρE -ρu 2 /2 -ρv 2 /2 , with γ = 1.4 and the convex set Ω is {w = (ρ, ρu, ρv, ρE) T ∈ R 4 | ρ > 0, p > 0}. We endow the Euler equations with the pair entropy, entropy-flux η(w) = -ρln(p/ρ γ ), G(w) = -ρln (p/ρ γ ) (u, v) T .

  where w B are the physical imposed values. The homogeneous Neumann boundary conditions are prescribed as w

Table 1 :

 1 Errors and order evaluations for the second-order accurate scheme[START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF] for the continuous Euler solution, with h = maxΓ ij ∈E |x i -x j |and for the (Θ n a,ij ) ij∈E configuration given by (27).

			1	order L 2	order L ∞	order
	400	5.0E-01 9.7E-02 -	2.6E-02 -	2.3E-02 -
	1600	2.5E-01 2.1E-02 2.2	5.3E-03 2.3	4.4E-03 2.4
	6400	1.2E-01 4.4E-03 2.3	1.1E-03 2.3	8.6E-04 2.3
	10000 1.0E-01 2.7E-03 2.2	6.6E-04 2.2	5.3E-04 2.2
	14400 8.3E-02 1.9E-03 2.1	4.4E-04 2.1	3.5E-04 2.2
		Second-order scheme errors on irregular triangle grids
	cells	h	L 1	order L 2	order L ∞	order
	116	1.1E+00 3.4E-01 -	7.8E-02 -	4.0E-02 -
	524	5.7E-01	9.1E-02 2.0	2.0E-02 2.1	1.3E-02 1.7
	1148	4.2E-01	4.7E-02 2.1	1.1E-02 1.9	7.3E-03 1.8
	5262	1.9E-01	1.1E-02 1.8	2.7E-03 1.8	3.3E-03 1.0
	10394 1.4E-01	5.9E-03 2.0	1.5E-03 1.9	1.7E-03 2.1
		Second-order scheme errors on Cartesian grids
	cells	h	L 1	order L 2	order L ∞	order
	400	5.0E-01 9.9E-02 -	2.8E-02 -	2.7E-02 -
	1600	2.5E-01 2.2E-02 2.2	5.8E-03 2.3	5.3E-03 2.4
	6400	1.2E-01 4.6E-03 2.2	1.2E-03 2.2	1.2E-03 2.1
	10000 1.0E-01 2.9E-03 2.0	7.9E-04 2.0	8.5E-04 1.7
	14400 8.3E-02 2.0E-03 2.0	5.5E-04 2.0	6.1E-04 1.8
		Second-order scheme errors on irregular triangle grids
	cells	h	L 1	order L 2	order L ∞	order
	116	1.1E+00 3.4E-01 -	8.2E-02 -	4.9E-02 -
	524	5.7E-01	9.3E-02 2.0	2.1E-02 2.1	1.3E-02 2.0
	1148	4.2E-01	4.4E-02 2.4	1.0E-02 2.3	6.8E-03 2.1
	5262	1.9E-01	1.0E-02 1.8	2.4E-03 1.8	2.2E-03 1.5
	10394 1.4E-01	5.0E-03 2.3	1.2E-03 2.3	1.1E-03 2.1

Table 2 :

 2 Errors and order evaluations for the second-order accurate scheme[START_REF] Chen | Entropy stable high-order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws[END_REF] for the continuous Euler solution, with h = max

	Γ ij ∈E

  .

	Quadrant	KT3 problem	KT5 problem	KT6 problem
	[0, 1 2 [×[0, 1 2 ] (0.138, 1.206, 1.206, 0.029) T	(1, 0.75, 0.5, 1) T	(1, -0.75, 0.5, 1) T
	[0, 1 2 [×[ 1 2 , 1]	(0.5323, 1.206, 0, 0.3) T	(2, -0.75, 0.5, 1) T	(2, 0.75, 0.5, 1) T
	[ 1 2 , 1] × [0, 1 2 ]	(0.5323, 0, 1.206, 0.3) T	(3, 0.75, -0.5, 1) T	(3, -0.75, -0.5, 1) T
	[ 1 2 , 1] × [ 1 2 , 1]	(1.5, 0, 0, 1.5) T	(1, -0.75, -0.5, 1) T	(1, 0.75, -0.5, 1) T

Table 3 :

 3 Initial data for Riemann problems.
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