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ABSTRACT:
Reliable fundamental frequency ( f0) extraction algorithms are crucial in many fields of speech research. The current

bulk of studies testing the robustness of different algorithms have focused on healthy speech and/or measurements of

sustained vowels. Few studies have tested f0 estimations in the context of pathological speech, and even fewer on

continuous speech. The present study evaluated 12 available pitch detection algorithms on a corpus of read speech

by 24 speakers (8 healthy speakers, 8 speakers with Parkinson’s disease, and 8 with head and neck cancer). Two

fusion methods’ algorithms have been tested: one based on the median of algorithms and one based on the fusion

between the best algorithm for voicing detection and the algorithm that generates the most accurate f0 estimations on

voiced parts. Our results show that time-domain algorithms, like REAPER, are best for voicing detection while deep

neural network algorithms, like FCN- f0, yield better accuracy for the f0 values on voiced parts. The combination of

REAPER and FCN- f0 yields the best ratio performance/implementation complexity, since it generates less than 4%

errors on voicing detection and less than 5% of gross errors in the estimation of the f0 values for all speaker groups.
VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0015143
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I. INTRODUCTION

The measurement of the fundamental frequency ( f0) is

an essential element of automatic speech processing, partic-

ularly in the study of prosody. It is, therefore, crucial to

have a good estimate of this parameter. Many algorithms

have been developed for estimating the fundamental fre-

quency of healthy speech recorded under good conditions

(without noise), which provide very good f0 approximations

(see Sec. II). In the context of pathological speech, the cal-

culation of precise f0 variations is necessary because most

pathologies have an impact on voice quality, more specifi-

cally on speakers’ inability to maintain a stable fundamental

frequency (jitter, shimmer) (Jim�enez-Jim�enez et al., 1997).

In addition, the dynamics of the fundamental frequency in a

sentence defines the intonation, which corresponds to the

voice “melody.” Intonation provides main communicative

functions and is a powerful tool for the illocutionary and

structural interpretation of the speaker’s message (Di Cristo,

2016). Yet, some pathologies can lead to a poor control of

intonation that can induce confusion as to the type of sen-

tence the speaker is trying to produce (Le Dorze et al.,
1994), which affects both his/her intelligibility and compre-

hensibility. When we want to model intonation or stress

patterns from the f0, these types of errors can lead to dis-

torted interpretations over large time spans.

It is, therefore, crucial to use an f0 extraction algorithm,

which is as accurate as possible and avoids gross estimation

errors (such as dividing by two or doubling the real value of

the fundamental frequency) or errors in the detection of

voiced or unvoiced areas. When working on large corpora

of pathological voice recordings, such as Cesari et al.
(2018), this issue is even more challenging because the

amount of data does not allow for precise manual annota-

tions. The objective of the present study is, therefore, to test

several different algorithms in the particular context of path-

ological voice, such as those resulting from head and neck

cancers (H&NC) or Parkinson’s disease (PD).

Several performance evaluation studies of pitch detec-

tion algorithms have been designed on non-pathological

speech (de Cheveign�e and Kawahara, 2001; Str€ombergsson,

2016) and it seems that auto-correlation function (ACF)

from Praat (Boersma and Weenink, 2020) and the YIN algo-

rithms (de Cheveign�e and Kawahara, 2002) are good meth-

ods for typical, healthy voices. Some studies also looked

into the evaluation of noisy speech, which best corresponds

to real recording conditions (Jouvet and Laprie, 2017;

Luengo et al., 2007). These results show that, while all the

evaluated algorithms provide comparable results on healthy

speech, an increase in background noise results in a loss of

algorithm performance, specifically with regard to the detec-

tion of voicing. More specifically, the robust algorithm for

pitch tracking (RAPT) and the robust epoch pitch estimator

(REAPER) algorithms seem to provide good results on
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noisy data while the ACF algorithm does not provide good

results on noisy speech. Indeed, according to Jouvet and

Laprie (2017), ACF generates an error rate of 4.6% for voic-

ing detection on noise-free speech, but this rate increases to

16.2% with the addition of noise with a signal to noise ratio

(SNR) level of 10 db, while the REAPER error rate only

increases from 5% to 8.3% with the same SNR level.

Pathological speech was evaluated marginally in some stud-

ies, such as Parsa and Jamieson (1999). The authors com-

pared seven pitch detection algorithms on sustained vowels

of pathological speech where the patients showed benign

vocal lesions, such as polyps, nodules, and cysts. They

showed that among the compared algorithms, the ACF and

average magnitude difference function (AMDF) algorithms

were good fits for pathological voices. Later on, Jang et al.
(2007) also compared seven pitch detection algorithms on

sustained vowels. This last study concluded that the ACF

(Boersma and Weenink, 2020) performed best on their data-

set. Tsanas et al. (2014) compared 10 pitch detection algo-

rithms on a sustained vowel task and showed that the

sawtooth waveform inspired pitch estimator (SWIPE) and

the nearly defect-free (NDF) algorithms provide the best f0
estimates on their dataset. They also proposed a new combi-

nation algorithm based on Kalman filters that was 16%

more accurate than the best algorithm tested. According to

this brief review of literature, the next step is to test pitch

detection algorithms in connected pathological speech,

which has, to our knowledge, never been addressed. The

present study tackles this issue on two different pathologies:

H&NC and PD. These pathologies have quite different

impacts on f0: H&NC present a variety of f0 alterations (e.g.,

hoarseness, dysfluences interrupting coherent intonation

groups) while PD does not so much impact the global lin-

guistic features of f0 but rather the dynamics of f0 variations.

These two pathologies, thus, allow for complementary

insight on f0 detection algorithms. Furthermore, a compari-

son between the classical algorithms of pitch detection and

the new emerging methods (Ardaillon and Roebel, 2019;

Kim et al., 2018) based on deep neural networks could be

interesting.

Closer to our present goals, the study by Jouvet and

Laprie (2017) using speech in noise was of particular inter-

est to help us determine which algorithms to test on our

pathological speech corpora. Specifically, algorithms whose

performances were highest were chosen, and they have been

sorted according to their differences of implementation

(spectral vs time domain; post- vs pre-processing). In addi-

tion to these algorithms, three additional algorithms have

been integrated: pitch estimation filter with amplitude com-

pression (PEFAC), an algorithm that is in the spectral

domain with or without pre- or post-processing (Gonzalez

and Brookes, 2014), that was designed to perform on noisy

speech; convolutional representation for pitch estimation

(CREPE) (Kim et al., 2018), which uses a pre-trained con-

volutional neural network; and fully convolutional networks

for f0 detection (FCN- f0) (Ardaillon and Roebel, 2019),

which is a fully-convolutional neural network that has been

trained to optimize both f0 computation and voicing detec-

tion while the other deep neural network algorithm, CREPE,

has been optimized for f0 estimation only. Section II

presents the different fundamental frequency detection algo-

rithms that have been selected for this study. Section III

describes the voice recordings and the method used to

extract the real values of f0 and also the evaluation metrics

used to evaluate the performances of the algorithms. Finally,

Sec. IV presents our results and proposes leads to under-

stand the differences observed between healthy and patho-

logical speech with the various tested algorithms.

II. FUNDAMENTAL FREQUENCY DETECTION
ALGORITHMS

Speech researchers need reliable fundamental frequency

detection programs and have a wide variety of choice (see

Sec. II A). In the case of pathological speech research, it is

much trickier to decide which f0 algorithm is best suited for

degraded voice quality. This section describes our selection

process leading to the choice of the f0 algorithms that will

be used in our testing section. The programs were selected

primarily on the basis of their availability and ease of

access, to fit the ecological situation of most speech

researchers interested in f0 detection. Our selection was also

motivated by the need to cover a large variety of algorithms

based on temporal and frequency representations, and those

based on deep learning methods. It is commonly acknowl-

edged that most f0 extraction algorithms can be decomposed

in three steps:

• First, a pre-processing of the signal can be applied to

remove unnecessary information. For example, yet

another algorithm for pitch tracking (YAAPT) (Kasi and

Zahorian, 2002) applies a bandpass filter between 100 Hz

and 900 Hz to the signal, while some algorithms apply a

low-pass filter on the raw signal [e.g., the YIN algorithm

(de Cheveign�e and Kawahara, 2001) or the REAPER

algorithm from Google-Open-Source (2015)].
• Then, candidates’ values of f0 are extracted using, for

example, temporal or spectral representations of the

signal.
• Finally, a step of post-processing takes the pitch candi-

dates and chooses those more likely to be good f0 estima-

tions. For example, CREPE (Kim et al., 2018) applies a

Viterbi smoothing to remove isolated or incoherent values

(sudden drops or increases of f0). Some algorithms also

use dynamic programming (Bellman, 1954) like

REAPER, RAPT (Ghahremani et al., 2014), or YAAPT

(Kasi and Zahorian, 2002), allowing sudden jumps in the

final f0 curve to be minimized.

Aside from these common prerequisites and even

though their global architectures are generally similar, pitch

detection algorithms implementations otherwise differ in

many ways. We purposely used these programs with default

parameters, as researchers commonly do when first using

such algorithms. Section II A will present the different

approaches underlying the f0 extraction algorithms.
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A. Pitch detection algorithms typology

The f0 information can be retrieved using time-domain

representations of signal or frequency domain representa-

tions. Time-domain algorithms generally use the autocorre-

lation algorithm which consists of extracting a signal

window of a few milliseconds and searching whether the

detected pattern is repeated in successive signal windows.

This method computes the correlation between two win-

dowed signals. The resulting f0 value will consist of the

delay s between windows that present the best correlation.

Some of them use a slightly different method called cross

correlation which computes the correlation between the sig-

nal and a modified version of itself like a downsampled ver-

sion of the signal.

The following methods use time-domain algorithms:

ACF (Boersma, 2000), YIN (de Cheveigne and Kawahara,

2002), AMDF (Ross et al., 1974) and REAPER are based

on the autocorrelation algorithm, while RAPT (Talkin and

Kleijn, 1995) and enhanced RAPT (Ghahremani et al.,
2014) use cross correlation to extract pitch candidates.

As far as frequency domain algorithms are concerned,

the f0 values are selected by looking at the occurrence of the

f0 harmonics in the spectrum. In the present study, the fol-

lowing algorithms were chosen: PEFAC (Gonzalez and

Brookes, 2014) and SWIPE (Camacho and Harris, 2008),

which are known to be robust even for noisy speech signals

(Jouvet and Laprie, 2017).

Some algorithms can also use information from time

and frequency domains to refine their selection of pitch val-

ues, such as NDF (Kawahara et al., 2005) and YAAPT

(Kasi and Zahorian, 2002) for which the combination allows

selection of the most likely pitch candidates.

Finally, new kinds of algorithms use deep neural net-

works like CREPE (Kim et al., 2018) or FCN-f0 (Ardaillon

and Roebel, 2019). These methods rely on machine learning

techniques, where the algorithm is trained to compute f0 val-

ues from a raw signal with no explicit procedure. It is, thus,

difficult to know what kind of information from the signal

those algorithms use and whether it works in the time

domain, the frequency domain, or both. These methods,

however, provide robust results. The list of algorithms

selected for the present study is given in Table I.

B. Algorithm merging

In addition to the above algorithms, we decided to inte-

grate techniques based on combinations of different algo-

rithms to test whether these combinations can reduce

common errors. Indeed, autocorrelation-based algorithms

tend to produce halving f0 errors (estimated f0 two times

smaller than the real value) while methods based on fre-

quency domain produce more doubling errors (estimated f0
two times bigger than the real value). It is, thus, interesting

to mix time and frequency domain algorithms to compensate

for their respective common errors. An example of previous

mixing f0 algorithms techniques can be found in Espesser

(1999) with the toolkit MES-SignAix (Espesser, 1996),

which used a majority vote between different algorithms.

Tsanas et al. (2014) also used a median vote between

10 different pitch f0 algorithms as a baseline for algorithm

combinations. They found no improvement over the NDF

algorithm alone on the raw accuracy of f0 estimation on a

sustained vowel task. However, we believe that using a sim-

ple median filtering on top of complementary algorithms

(which produce different kinds of f0 estimations errors) can

improve the reliability of f0 measurements. They also used a

method based on a Kalman filter to merge different algo-

rithm results. This latter method provides promising results

on their sustained vowels dataset. Unfortunately, the code-

base of their algorithm is not publicly available.

With this in mind, two simple methods for merging

algorithms were selected. The first method is a “majority

vote” obtained by using the median between the different

values of several selected algorithms (Hess, 2008; Soquet,

1994; Espesser, 1999). The choice of the median allows us

to eliminate gross f0 errors. At least three different algo-

rithms were computed at a time: because each algorithm

generates different results on the same file, the median of

these values was used as the f0 estimate. A 10 ms frame was

chosen to comply with the pseudo-stationary property of the

TABLE I. List of algorithms tested in the present study, with a link to the chosen implementation. The last three columns indicate whether the algorithm

works on the signal’s time or spectral domain, or whether it uses deep learning.

Algorithm Implementation Time domain Spectral Neural network

ACF (Boersma, 2000) Praat X

AMDF (Ross et al., 1974) Snack Sound toolkit (Kåre, 2005) X

REAPER (Google-Open-Source, 2015) https://github.com/google/REAPER X

RAPT (Talkin and Kleijn, 1995) Snack Sound toolkit (Kåre, 2005) X

Enhanced RAPT (Ghahremani et al., 2014) Kaldi (Povey et al., 2011) X

Yin (de Cheveigne and Kawahara, 2002) https://github.com/patrice.guyot/Yin X

NDF (Kawahara et al., 2005) STRAIGHT (Kawahara, 2018) X X

YAAPT (Kasi and Zahorian, 2002) MATLAB implementation (Zahorian and Hu, 2016) X X

SWIPE (Camacho and Harris, 2008) Speech signal processing toolkit (Tokuda et al., 2017) X

PEFAC (Gonzalez and Brookes, 2014) VOICEBOX (Brookes, 2018) X

CREPE (Kim et al., 2018) https://github.com/marl/crepe X

FCN-f0 (Ardaillon and Roebel, 2019) https://github.com/ardaillon/FCN-f0 X
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speech signal (Hess, 2008). An illustration of the method is

described in Table II.

The second merging method consists of the actual

fusion/combination of two algorithms, by taking an algo-

rithm (Algorithm A) that is particularly efficient on the cal-

culation of the f0 value and another algorithm that is very

accurate on the voicing detection (Algorithm B). Algorithm

B is then used to select the voiced time windows and

Algorithm A gives the estimated f0 values in those windows.

Table III describes the method used.

III. EXPERIMENTAL SETUP

A. Recordings description

This work is part of the ANR project RUGBI 2018-2023

(RUGBI, 2018-2023) in which the main goal is to find spe-

cific speech markers that impact speakers’ intelligibility. Two

pathological speech corpora from this project were used.

The first corpus is taken from the Carcinologic Speech

Severity Index (C2SI) project (see Acknowledgements), in

which 127 speakers were recorded, consisting of 40 control

subjects and 87 patients who had been treated for cancer of

the oral cavity or pharynx. Speakers were recorded in sev-

eral tasks (such as sustained /a/, non-words reading, short-

text reading, picture description, prosodic functions encod-

ing) For a complete description of the corpus, see Woisard

et al. (2021).

Our second source of pathological speech is the Aix

Hospital Neuro (AHN) corpus, with 209 recordings of PD

patients (112 controls) described in Ghio et al. (2012). A

subset of this corpus is used in the RUGBI project. Speakers

also recorded several tasks, such as those described in the

C2SI corpus plus additional tasks specifically designed for

this pathology (e.g., diadochokinesis, singing, breathing).

Both corpuses used the same short-text reading (Daudet,

1870), which was used in the present study to test the f0
algorithms on connected speech. This task has been chosen

to have consistent recordings between the different speakers

(the first four sentences of the text are common to both cor-

pora), but also because the recordings are relatively long

(ranging from 20 to 70 s). A subset of 24 speakers composed

of 8 healthy patients, 8 patients with H&NC, and 8 patients

with PD (4 men and 4 women in each group) has been

selected.

The selection of patient files was based on perceptual

analysis conducted by specialized clinicians to assess the

quality of patients’ voices on the reading task. Speakers

with the most degraded voice quality were selected to test

the algorithms under the most difficult conditions. In total,

the corpus is composed of 120 sentences (40 per group) and

represents roughly 13 min of recordings.

B. Manual f0 annotations

1. Manual correction of period detection errors

Since the files were not recorded using an Electro-

Glotto-Graph, it was necessary to fully annotate the f0 manu-

ally. To do so, the Praat software (Boersma and Weenink,

2020) was used to perform a first automatic annotation using

an algorithm based on the autocorrelation of the signal

(Boersma, 2000). This annotation was then manually cor-

rected at the signal level by indicating the boundaries of

each pattern to obtain a fundamental frequency correspond-

ing to the real value (illustration on Fig. 1). Once corrected,

the fundamental frequency curve was extracted with values

every 10 ms (Fig. 2).

Our resulting manual annotated f0 constitutes our refer-

ence (gold standard) and was then compared to the outputs

of all the algorithms described in Sec. II A.

2. Simultaneous f0 zones (diplophonia)

When analyzing pathological speech, we encounter

numerous instances where the fundamental frequency seems

to drop abruptly, with periodic patterns that double in length

in the signal. An example is shown in Fig. 3.

The length of the patterns at the beginning of the signal

corresponds to a frequency of about 126 Hz; a new periodic

pattern suddenly appears, which is much longer (66 Hz) and

disappears after a few milliseconds. This phenomenon leads

to simultaneous frequencies, one quite low and another usu-

ally an octave higher. From a perceptual point of view, this

results in a hoarse voice and an indeterminate fundamental

frequency (Keating et al., 2015). Further studies need to be

run to better encompass this phenomenon, but they go

beyond the scope of our paper. These complex areas have

been annotated to observe how the algorithms behave on

these segments. In these zones, the annotation of the f0 value

was performed using a linear interpolation between the pre-

vious (stable) f0 values and the following values. This choice

is justified by the fact that these segments are relatively

TABLE II. Illustration of the merging of algorithms by the resulting f0
median vote: The first column indicates the start time of the 10 ms frame, the

next 3 columns are the estimated values by an example of 3 different algo-

rithms, and the last column with boldface values is the f0 median voting.

Time (s) f0 Yin f0 ACF f0 SWIPE f0 Median

0 0 140 0 0

0.01 0 189 181 181

0.02 170 173 169 170

— — — — —

TABLE III. Illustration of the merging of algorithms by fusion/

combination. The last column with bold values represents the final f0 esti-

mation based on the two previous columns. The voicing detection is based

on A (if there is a 0 in A then it is reported on the resulting combination

value) and the estimated f0 values are taken from the Algorithm B.

Time (s) Algorithm B Algorithm A f0 Combination

0 0 140 0

0.01 173 189 189

0.02 170 180 180

0.03 0 0 0

— — — —
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short (less than 100 ms on average) and are, thus, hardly per-

ceived as sudden f0 drops. These complex periodic areas are

actually quite rare. In total, in this corpus, simultaneous fre-

quencies represent:

• 0.9% of voiced segments for healthy speech
• 4.5% of voiced segments for cancer patients (with a maxi-

mum of 13% for one speaker)
• 1.5% of voiced segments for PD patients.

C. Metrics

To have an objective evaluation of the quality of the dif-

ferent algorithms, three metrics and four sub-metrics classi-

cally used were computed to exhaustively evaluate the

computation of f0 (Jouvet and Laprie, 2017; Drugman and

Alwan, 2011; Babacan et al., 2013; Chu and Alwan, 2009).

These metrics allow us to describe the different types of errors

produced by the algorithms, whether they are voicing detec-

tion errors or errors in the estimation of the real value of f0:

• Voicing detection error (VDE), which measures the 10 ms

frame proportion containing errors in the detection of

voicing; two sub-metrics for voicing detection were also

added
• False negative rate (FNR), which computes the proportion

of voiced frame detected as unvoiced by the algorithm
• False positive rate (FPR), which computes the proportion

of unvoiced frame detected as voiced by the algorithm
• Gross pitch error (GPE), which measures the proportion

of frames where the estimated value differs from the real

value by more than 20%
• The proportion of frames where the estimated value is at

least 20% higher than the reference value (�2)
• The proportion of frames where the estimated value is at

least 20% lower than the reference value (�2)

FIG. 1. (Color online) Example of annotation: the automatic marking of periodic pattern boundaries from Praat is at the top and the manually corrected

annotation is at the bottom of the figure. Note that the first two periods on the left were not detected as voiced and an unvoiced segment at the end was

detected as periodic.

FIG. 2. (Color online) Example of file annotation from a healthy speaker on the sentence, “Monsieur Seguin n’avait jamais eu de bonheur avec ses chèvres.”
Automatic f0 from Praat is at the top and the manually corrected annotation is at the bottom. Each blue point corresponds to a f0 value for a 10 .ms frame.
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• FFE ( f0 frame error), which measures the frame propor-

tion where an error was detected, whether it is a voicing

detection error or a gross pitch error.

D. Experimental protocol

Each of the 12 algorithms (see Table I) were then exe-

cuted on all audio files, respecting the recommended sam-

pling frequencies for each algorithm and using the default

settings of the different implementations. Unfortunately,

some algorithms are quite sensitive to parameters like pitch

range, silence threshold and it is necessary to adjust them

for each speaker. However, we purposely chose not to mod-

ify them, to evaluate which algorithms best adapt to the data

quickly. The f0 estimate was calculated on 10 ms

windows (Hess, 2008), which corresponds to the generated

annotations (see Sec. III B). Some algorithms generate a

voicing probability score, which makes it possible to deter-

mine whether the analyzed window contains a fundamental

frequency value. It is then possible to test different thresh-

olds to determine whether the portion of the signal is voiced.

For example, one can consider that if the probability is

less than 80%, then the estimate of the f0 is set to 0. To

determine an optimal threshold, for each algorithm, the

threshold that minimizes the VDE metric (see Sec. III C)

was chosen.

If the algorithm used does not generate a voicing proba-

bility, then the unvoiced sections are set to 0 by the algo-

rithm and the metrics are computed directly.

IV. RESULTS

We now present the results obtained with the different

algorithms described in Table I, with the manual annotations

described in Sec. III B as a reference (gold standard). In

addition to these algorithms, the median vote described in

2.2 was computed on 5 methods: AMDF, Kaldi, NDF, FCN-

f0, and REAPER. The median vote was applied to these 5

methods because they give the best vote results, and they

are based on various calculation methods. The results of the

median vote will be referred to as “median” in Figs. 4–6.

Finally, the combination of two algorithms was also

computed using REAPER as a basis for the detection of

voicing, and the values estimation was given by the FCN- f0

method. This choice is based on the fact that REAPER gen-

erates the best overall results concerning the voicing detec-

tion and FCN- f0 provides the most accurate estimates of f0
on our dataset. The results of the combination of those two

algorithms will be referred to as hh Combi ii in the follow-

ing figures.

First, the global results for the VDE were analyzed,

then GPE, and the final step consists in analyzing mixed

errors (FFE metric). These tests were done after excluding

speech areas with simultaneous fundamental frequencies

(Sec. III B 2). All the detailed results are included in the Sec.

V presented in Table IV.

A. Voicing detection

Figure 4 shows the results obtained for different algo-

rithms, on the metric VDE. The abscissa shows the different

algorithms that have been tested, while the proportion

(between 0 and 1) of analysis frame windows (10 ms) with a

VDE is shown on the ordinate. The figure compares the

results from the “Healthy group”, the group with H&NC,

and the group with PD.

It seems that algorithms based on the signal time

domain give the best results for voicing detection. The

RAPT, ACF, and AMDF algorithms give similar results

with about 5% of windows containing a voicing error on the

voices of speakers with H&NC and PD, and about 4% for

control speakers. REAPER algorithm seems to be the best

one for patients with H&NC and PD with 3.5% of errors on

speech of patients with H&NC cancer, 3.3% on speech of

patients with PD, and 3.6% for healthy speakers.

The majority of errors in these algorithms are found at

the beginning and end of the voiced segments where detec-

tion usually starts slightly too early and ends too late. One

can notice that the methods based on deep neural networks

provide good results with about 8% of VDE, which is, how-

ever, not as good as the time-domain algorithms. This could

be explained by the fact that the voicing decision has to be

made by using a hard threshold on probabilities that can

lead to isolated errors if the threshold is not strict enough.

The results for the patients with PD also show the same

trend with time-domain methods being more effective for

voicing detection with about 4% of errors. The median

FIG. 3. (Color online) Example where the fundamental frequency seems to decrease suddenly by an octave.
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voting and YAAPT also gave similar results to time-domain

algorithms.

It is noteworthy that the results obtained on the VDE metric

are surprising because, for many algorithms, the performances

are comparable in pathological and non-pathological speech.

B. Gross pitch errors

Figure 5 represents the results for the metric GPE, i.e.,

the percentage of voiced frames for which an algorithm has

generated a value distanced by more than 20% from the real

value of f0.

For this metric, methods based on neural networks give

good results with 1% errors for CREPE and 0.5% for FCN-

f0 on pathological voices. On the other hand, methods based

on autocorrelation give good results on healthy speech, but

produce more errors on pathological voice with much higher

variations between speakers. A large part of these errors

come from a one-octave estimation below the real value for

time domain methods. Globally, GPE yields fewer good

results for pathological speech compared to healthy speech,

which confirms that the evaluation of the exact f0 value on

pathological speech is harder than for healthy, clean speech.

Surprisingly, the results are really good for PD patients,

and are really close to the results for healthy speakers.

Indeed, almost all algorithms give good results with less

than 3% of mistakes. No difference in favor of one method

or the other can be noticed. Overall, the performance of the

algorithms on voices of speakers with H&NC show more

errors on the determination of the f0 value than for the two

other groups.

C. f0 frame errors

Figure 6 represents the results for the metric f0 FFE, i.e., the

percentage of frames where the algorithm has made a mistake,

whether it is a voicing detection mistake or a gross pitch one.

Based on Fig. 6, it is difficult to choose one algorithm

that outperforms the others. However, some of them provide

relatively good results with little variation between speakers

(small error bars). For example, YAAPT (which uses both

time domain and spectral domain of the signal) provides

FIG. 4. (Color online) Results on voicing detection errors: Blue boxplots represent VDE for control speakers, orange boxplots are for speakers with H&NC,

and green boxplots are for PD patients. Each boxplot represents an error percentage (lower percentages are optimal).

FIG. 5. (Color online) Results on gross pitch errors: Blue boxplots represent GPE for control speakers, orange boxplots are for speakers with H&NC, and

green boxplots are for PD patients. Each boxplot represents an error percentage (lower percentages are better).
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good results with only 7% of frames containing errors for

pathological and healthy speech. FCN- f0 also gives good

and stable results with 7.3% of error for cancer patients and

6.2% for healthy speakers.

Finally, for PD patients, the results are again similar to

those on healthy speakers. The algorithms with best detec-

tion performance are YAAPT, ACF, AMDF, and the merg-

ing methods.

D. Simultaneous f0 zones

Concerning the simultaneous f0 areas from the diplo-

phonia phenomenon described in Sec. III B 2, we decided

not to make a quantitative evaluation of the various pitch

detection algorithms because it concerns too few segments

(n ¼ 35). Instead of computing statistics, a qualitative analy-

sis were performed by looking more in detail at the out-

comes for these particular zones. As indicated in Sec.

III B 2, the f0 values in these areas were annotated as an

interpolation of the previous and next f0 values. The reason

behind this choice is that, for our future experiments, we

will study stress and intonation patterns on the same corpus

of pathological speech. To have a good estimation of the lin-

guistic implementation of f0, it is crucial to have a regular,

precise f0 curve and avoid sudden drops or increases. On the

other hand, it is also valuable to have algorithmic estima-

tions of f0 sudden changes when searching to precisely char-

acterize pathological speech. We we chose to compare

different algorithms to our manual annotation (in black) for

this reason.

After analyzing the results on the 35 overlapping f0 inter-

vals, a trend can be observed. The algorithms based on the time

domain of the signal tend to show a sudden drop by an octave,

as exhibited by the ACF curve in Fig. 7. The ACF algorithm

generates a drop by an octave for 28 intervals (80%). Also,

some algorithms avoid the drop by doing an interpolation

between the previous and the following f0 values. Typically,

YAAPT seems to provide consistent results with 24 intervals

(69%) in this particular case. Also, the neural network algo-

rithms, like FCN- f0, often give stable f0 curves like YAAPT,

but they also tend to tag these superposed f0 patterns as

unvoiced segments.

V. DISCUSSION AND CONCLUSION

This paper analyzed the performance from 12 algo-

rithms based on time domain, frequency domain, or deep

neural network techniques on clinical data including healthy

speech, speakers with H&NC, and speakers with PD. Two

methods of merging algorithms (combi and median) were

also tested to determine whether the potential performance

improvement induced by these merges was sufficient to alle-

viate its inherent technical constraints. The main objectives

were to test the following:

(1) a large amount of widely used pitch detection algo-

rithms for these two particular diseases, because they

yield different f0 detection problems

(2) these algorithms on connected speech, which is more

ecological for automatic pitch detection tools but never-

theless never proposed in similar studies.

The experiments were run on a corpus composed of 24

French speakers (8 healthy, 8 for H&NC, 8 for PD) perform-

ing a reading task. The performance of the algorithms was

tested through three metrics: VDE for voicing detection,

GPE for estimation accuracy, and FFE for overall perfor-

mance. A test were also computed based on a selection of

three algorithms representative of time or frequency domain

and deep neural network on specific speech areas with

simultaneous f0 typical of the diplophonia phenomenon.

Indeed, although these simultaneous f0 areas are relatively

scarce, it is interesting to characterize the algorithms’

behavior for future research.

Regarding the three metrics (VDE, GPE, FFE), our

results indicate that algorithms based on the temporal study

of the signal generate better results for voice detection.

FIG. 6. (Color online) Results on f0 frame errors for patients with H&NC and patients with PD: each boxplot represents an error percentage (lower percen-

tages are better). Blue boxplots represent FFE for healthy speakers, orange boxplots are for speakers with H&NC, and green boxplots are for speakers with

PD.
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Indeed, ACF, REAPER, and AMDF algorithms offer the

best VDE values with similar results for all speaker types

(healthy or pathological) with an error rate below 5%. The

algorithms using deep neural network however are most

efficient to account for the accuracy of the estimates (GPE).

Indeed, CREPE and FCN- f0 produce less than 0.5% gross

errors on healthy and Parkinsonian individuals. As a

reminder, an estimation is considered as a gross error when

it differs by more than 20% from the reference value. The

results for speakers with H&NC generally yield worse GPE

values, regardless of the algorithm chosen. Despite this,

CREPE and FCN generate less than 1.5% error on average

for this type of speech.

By running the three metrics on the fusion algorithm

methods, our results indicate that the “median” algorithm

fusion method using five algorithms (AMDF, Kaldi,

NDF, FCN- f0, and REAPER) generates overall better

results than these methods taken individually. The

median vote yields less than 4% of VDE for all speaker

groups and less than 5% of GPE. However, the perfor-

mance improvement does not seem to be significant

enough to justify the technical cost (implementation and

execution time) of running five algorithms. On the other

hand, our results on the “combi” algorithm fusion method

indicate that the simple combination of two methods

(mixing REAPER for detecting voicing and FCN- f0 for

estimating the f0 value) is efficient enough as it generates

results at least similar to the “median” vote (around 5%

of VDE and less than 3% of GPE), while executing only

2 algorithms.

To summarize, time-domain methods are best for voic-

ing detection while deep neural networks generate more

accurate f0 estimations. Using a combination of just two

algorithms (REAPER for good voicing detection and FCN-f0

for accurate estimations) is a good compromise between

performance and computational complexity.

From a clinical point of view, choosing the fittest f0
detection algorithm is a crucial element depending on the

studies one wishes to perform. However, this choice is

rarely justified in clinical studies of pathological speech

pitch. This study allowed us to highlight the strengths and

weaknesses of different methods. It may, thus, help to best

choose the relevant algorithm (or combination of algo-

rithms) in future clinical studies, depending on the finality

and purpose of the research. For example, if a study is par-

ticularly interested in the presence or absence of voicing,

the use of an algorithm, such as ACF or AMDF, seems rec-

ommended as we did in Vaysse et al. (2022) where we mea-

sured the f0 on a large corpora of Parkinsonian speech.

Conversely, if one is mostly interested in retrieving the

mean f0 values of a corpus, it is more interesting to use

methods, such as REAPER, FCN- f0, or NDF, which gener-

ate robust estimates even if some voiced areas are missed.

Interestingly, our results indicate that the same f0 extraction

algorithms (NDF and FCN- f0 for accurate pitch estimation

and REAPER or ACF for voicing detection) turn out to be

the most reliable for speakers with PD and H&NC.
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APPENDIX: RAW RESULTS

The raw results of the tested algorithms are presented in Table IV.
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