
HAL Id: hal-03879416
https://hal.science/hal-03879416v1

Submitted on 30 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a better identification of Bitcoin actors by
supervised learning

Rafael Ramos Tubino, Céline Robardet, Rémy Cazabet

To cite this version:
Rafael Ramos Tubino, Céline Robardet, Rémy Cazabet. Towards a better identification of Bit-
coin actors by supervised learning. Data and Knowledge Engineering, 2022, 142, pp.102094.
�10.1016/j.datak.2022.102094�. �hal-03879416�

https://hal.science/hal-03879416v1
https://hal.archives-ouvertes.fr


Towards a better identification of Bitcoin actors by
supervised learning

Rafael Ramos Tubinoa, Céline Robardetb, Rémy Cazabeta

aUniv Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France
bUniv Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205, F-69621 Villeurbanne, France

Abstract

Bitcoin is the most widely used crypto-currency, and one of the most studied.
Thanks to the open nature of the Blockchain, transaction records are freely
accessible and can be analyzed by anyone. The first step in most analytics work
is to group anonymous addresses into a set of addresses, called aggregates, that
are meant to correspond to unique actors. In this paper, we propose a new
method to discover more accurate address aggregates using supervised learning.
We introduce a way to create a labeled training set based on reliable heuristics
and external information, and propose two methods. The first automatically
finds address aggregates from a set of transactions. The second improves an
address aggregate of a target actor. We empirically validate our results on
large-scale datasets. A striking result of our analysis is that training a model
to recognize the change addresses of a particular actor is more efficient than
using a larger dataset that does not target that particular actor. In doing so,
we clearly show the feasibility and interest of supervised machine learning to
identify Bitcoin actors.

1. Introduction

Introduced in 2009, Bitcoin (BTC) is a crypto-currency based on the prin-
ciple of the Blockchain. It is a decentralized monetary system that operates
without a central authority. The Blockchain acts as an open ledger, where any-
one can verify that the account trying to spend coins owns these coins. The
consequence of this principle is that the transaction data between – pseudony-
mous – actors have been freely accessible since the beginning of the operation
of Bitcoin until today.

The anonymity of these operations is guaranteed by two factors. First, the
transactions are made between pseudonymous Bitcoin addresses corresponding
to public keys of a cryptographic mechanism making it possible to identify the
owner of the coins [1]. Second, anyone is free to create new addresses at any
time without charge. Consequently, the same actor receiving several payments
can use a different address each time, thus prohibiting observers from easily
following their activity.

Preprint submitted to Elsevier



Identifying the multiple addresses used by a same actor is one of the major
challenges of Bitcoin analysis, and is usually the first pre-processing step of
any transactional analysis, as for instance in [2, 3]. Indeed, to describe the
activity of an actor in this system, it is necessary to identify all their transactions
and therefore the different addresses they uses to carry them out. The task
of identifying actors has been considered so far either by ad-hoc heuristics,
or by unsupervised approaches such as the detection of communities in the
graph linking the bitcoin addresses involved in the same transactions, or by
machine learning methods computing vectors in a euclidean space such that
similar address usages are closed in that space. These vectors make possible the
use of clustering methods.

In this article, we rather formalize the problem into a supervised task. Our
objective is to detect so-called change addresses: in Bitcoin, when one needs to
do a payment, one must spend the whole amount received in another payment.
If the amount received is strictly superior to the amount one needs to send, then
the rest (the change) of the transaction is sent to another address of the same
user, a change address. There is no way, from the blockchain data, to know
which address is the change and which is the payment. Recognizing one from
the other is the task of change address detection.

The main difficulty in using supervised learning for this task is to have a
reliable and high quality training set. We propose to build it by an a posteriori
analysis of the Blockchain. At time t, we use all previous information about the
address’s usage to build the descriptive characteristics of the address, and we
assign it a label based on its subsequent use as an entry address for a transaction
involving the same actor as input.

We show that this method yields convincing results. It is able to detect
change addresses that were not found by traditional methods, and thus enlarge
the set of known addresses of an actor. Moreover, having a supervised method
makes it possible to define new tasks, such as the identification of specific actors.
We show that this method is promising, because training a model to recognize
change for a particular actor is much more reliable than training it for all actors
without distinction.

The article is organized as follows. In Section 2, we formally introduce
the problem of identifying Bitcoin actors, and the associated state of the art.
Section 3 presents the dataset, and how we formalize the actor identification
problem into two possible supervised tasks. Section 4 then details the first
of these approaches, which is a transposition of the class actor identification
problem as addressed by similar approaches in the state of the art. Section 5
introduces a different task, whose objective is to identify all transactions of a
particular actor, by specifically training a change address recognition model for
this target actor. Both methods are evaluated in the respective sections. Finally,
Section 6 concludes and provides future directions of research.

2



2. Formalization of the problem and related work

The problem of actor identification and desanonymisation in Bitcoin has
multiple aspects, and needs to be properly defined. We call actor a person, a
group of persons, a company or any entity that owns a set of Bitcoin keys. These
cryptographic keys are composed of a private key which identifies the owner of
the associated public key. The public keys are called in the following Bitcoin
addresses, and are written in clear text in the Blockchain. These addresses are
linked to transactions, being either an input which will be debited, or an output
which will be credited.

Definition 1 (Transaction link). In the Blockchain, the inputs and outputs
of a transaction are associated with an address and an amount. The input to a
transaction is the output of a previous transaction, identified by a transaction
number and an output index, and which has not been used as input by another
transaction before. We call transaction link the tuple (transaction number, out-
put index), whether it is at the input or at the output of a transaction.

A typical Bitcoin transaction consists in debiting some accounts in favor of
some others. If we except mining transactions, all transactions have one or more
inputs, and one or more outputs (see Figure 1a). The sum of all inputs must be
equal to the sum of all outputs plus transaction fees. By definition, each input
must be the output of a previous transaction, and a transaction output must
always be spent in full. This mechanism, known as UTXO (Unspent transaction
output) [4], is a common design for Blockchain-based cryptocurrencies. It is
important to note that, in such a system, there is no account or global balance
for a user: if the user receives two payments on the same Bitcoin address, he
owns these two outputs, but they remain distinct, and can therefore be spent
separately in different transactions, or jointly if they are included as inputs of
the same transaction.

(a) A Bitcoin transaction with n inputs and
m outputs.

(b) Illustration of a Bitcoin transaction with
change output: @c belongs to the same actor
that control addresses @a0 to @an−1.

Figure 1: Illustration of Bitcoin transactions.

By means discussed later in this section, it is possible to identify that a set
of addresses belong to a single actor. The associated set of addresses is called
an address aggregate. By this definition, an aggregate is owned by a single

3



actor, but a single actor can control multiple address aggregates. Also note that
the problem we address in this article is the discovery of address aggregates,
and the association of several address aggregates to possibly the same actor.
This should not be confused with another popular knowledge discovery task
in Bitcoin data, de-anonymizing actors, which involves uncovering the actual
identity – or nature, or category – of actors.

The address aggregate discovery task is typically accomplished with two ap-
proaches: the heuristic of common input addresses and the change address dis-
covery. These two approaches are detailed below.

2.1. The heuristic of common input addresses
The first method for discovering aggregates of addresses takes advantage of

the fact that a user having several transaction links, each with an amount less
than that of the transaction he wishes to carry out, is led to combine them as
input. The co-inputs heuristic has already been mentioned as a possibility in
Satoshi Nakamoto’s white paper describing Bitcoin [1]. It consists of consider-
ing that addresses appearing in transaction links, used as inputs to the same
transaction, belong to the same actor.

Large aggregates of addresses can thus be found by such chains of co-usages,
as was done since the early years of bitcoin [5]. The problem can be effectively
solved in practice by searching for the connected components of the graph ob-
tained by representing each address by a node and each co-appearance as input
of a same transaction by an edge [6]. In the remaining of this article, we will call
this common input addresses approach heuristic H1. This approach is widely
used in the literature, and its effectiveness has been repeatedly confirmed, for
example in [7].

Definition 2 (Heuristic H1). The addresses associated to the input transac-
tion links of a same transaction belong to the same actor.

The strength of heuristic H1 is to have a precision close to 1: all addresses in
the same aggregate actually belong to the same actor, apart from rare exceptions
due to CoinJoin obfuscation. Under the name of CoinJoin, we regroup the
different tools and methods allowing two actors to sign a same transaction,
in the objective or tricking heuristic H1. The techniques and usages of these
approaches have been studied in the literature [8, 9, 10], showing that, although
the phenomenon is real and observed in the Blockchain, it concerns only a
minor fraction of the transactions, with little impact on the identification of
major actors.

Until now, heuristic H1 is still the standard in the literature, and commonly
used as the first step of Bitcoin actor analysis, e.g., [11]. Its main weakness,
however, is that its excellent precision is obtained at the cost of a relatively poor
recall: many addresses or aggregates belonging to the same actor are grouped
in different aggregates.

However, if the entries must be grouped together to collect the quantity of
money necessary for the transaction, it is also almost certain that this amount is

4



strictly greater than that which must be paid to a third party. There is therefore
an excess of money that the user returns to himself using what we call a change
address. Identifying such change addresses makes it possible to group already
found address aggregates and thus increase the recall of the obtained result.

2.2. Change address detection
In a Bitcoin transaction, each input must be the output of a previous trans-

action, and the value received must be used in full. As a result, since the value
of the payment an actor wishes to make at time t is unlikely to exactly match
any of the transaction links it controls at that time, the actor sends the change
(the difference between the transaction inputs and the value he wishes to pay)
to himself, i.e. to an address belonging to him. For example, in the Figure 1b,
the address @c belongs to the same actor as the addresses @a. The address
corresponding to the change is called a change address. Other addresses are
called payment addresses.

Definition 3 (Change and payment addresses). The addresses associated
with the output transaction links of a transaction are either a change address, if
it belongs to the same actor as the input transaction link addresses, or a payment
address if it belongs to a third party.

Identifying whether a transaction has a change address, and which of the
output addresses is the change address is one of the main challenges of the
bitcoin address clustering, known as change address detection. When a change
address is detected, this address can naturally be added to the address aggregate
containing the transaction’s input address(es), thus improving the recall. The
challenge of this operation is that any error can have a catastrophic effect: if
the output address belongs to a different actor, then the aggregates of the two
actors will be merged, and they will be wrongly considered as a single aggregate.

Various methods have been proposed in the literature to tackle the change
detection task. We can classify them into two categories: heuristics and unsu-
pervised learning approaches.

2.2.1. Change address detection heuristics
The first approaches to detect change addresses were based, as H1, on ad-hoc

heuristics, leveraging knowledge of the Bitcoin implementation and observation
of actors behaviors. Found in the literature in different flavors (e.g., [12, 2]),
it uses a system of rules, such as : IF there are exactly two outputs AND
that one of the output addresses has never been seen before AND that the
other address has been seen before, THEN we identify that address as a typical
single used address: a new address created specifically to receive a change. This
heuristic H2 is known to succeed in identifying many correct change addresses.
However it is also well known that it tends to make critical errors merging major
actors together, leading to a collapse of the precision [6]. Other rules can be
added to make the detection more permissive or more restrictive. When used in
applications, manual corrections are usually done to limit these errors [2]. An

5



empirical study comparing these heuristics and their variants can be found in
[13].

2.2.2. Change address detection using unsupervised machine learning
A purely unsupervised method has been proposed in [6], using community

detection (e.g., node clustering) on a graph such that the nodes correspond to
the aggregates found by H1 and the edges connect two nodes if they contain
addresses found in the inputs and the outputs of the same transaction. The
authors propose to use the popular Louvain algorithm for this task to group H1
aggregates that are connected by many edges. The node clusters yielded by the
method are considered the new aggregates. They validate their results based
on a few hundred manually labeled addresses, and found that the results were
more reliable than the ones obtained by H2 heuristic.

Shao et al. [14] propose to use deep neural network and clustering meth-
ods to identify change addresses. In input of their framework, they describe
each address by some statistical features describing the characteristics of the
transaction history in which the address appears. The feature vector associated
with an address is based on transaction history and is represented as a vari-
able length sequence where each element is a concatenation of features related
to a transaction. The length of the sequence corresponds to the size of the
transaction history. From these sequences, they build a representative vector in
Euclidean space to ease the comparisons between sequences. To that end, they
use Word2Vec algorithm where each transaction in the training set is treated as
a word. Skip-gram is about predicting context words appearing near the input
word. Combined with Continuous Bag of Words (CBOW) model, which does
the opposite of skip-gram by guessing a word based on its context words, it
learns dense vectors that preserve the contextual meanings of addresses. Note
that this method does not require a labeled dataset, but instead take only into
account the similarity of the feature description of addresses. The resulting
vectors are used to recognize an unknown address from a given test set using
k-Nearest Neighbors (k-NN) method. They also cluster the addresses using
K-Means on vectors pre-processed by PCA.

3. ML for change address identification via a posteriori interpretation

Our contribution is to learn a predictive model to recognize that a transac-
tion output corresponds to a change address. As in state-of-the-art methods,
we use descriptors calculated from the Blockchain. The novelty of our work lies
in the fact that we propose an original approach to generate a large quantity
of train and test examples based on ground truth built from an a posteriori
interpretation scheme. In this section, we first describe the data we used for
the analysis. We then introduce our machine learning approach, which consists
in defining a supervised learning task on this dataset by introducing labels and
features.

6



3.1. Dataset
Since Blockchain data is available to everyone, we collected all data using a

Bitcoin node, following a process comparable to [15]. We used data from block
0 (January 3, 2009) to block 667542 (January 25, 2021), representing a total of
approximately 600 million transactions. For each transaction, we have access
to the input and output addresses, the amounts associated with each of them,
the transaction fees, the block and its timestamp.

We have augmented this information from an external source, provided by
the walletexplorer.com website, which provides the list of known addresses
for a variety of popular actors in the Bitcoin economy. First, this allows us to
know who particular actors are, helping us to identify some interesting actors
such as Exchange platforms. Second, it makes it possible to identify some known
weaknesses of the H1 heuristic, especially when a same actor is known to possess
multiple H1 aggregates.

3.2. Two Machine Learning tasks
We consider in the following the use of our supervised machine learning

scheme to solve two different problems:

Automatic discovery of enhanced address aggregates. This task (cf. Section
4) aims to predict change addresses using an original approach to generate a
large amount of training examples and ground truth examples, thanks to an
interpretation scheme a posteriori.

User specialized change detection. In some cases, we are not interested in dis-
covering all possible aggregates, but rather we have one or more aggregates of
interest (typically discovered using H1), and we want to improve it by detecting
change addresses related to these addresses. We propose a method (see Section
5) to perform this detection by specializing the learning model on the actor of
interest, and show the relevance of this approach.

3.3. Label assignation
The methods we propose are the first to use supervised machine learning do

detect change outputs. The challenge of the machine learning approach is that
there are no labels in the original Bitcoin data to know if an output is or not
a change output. To overcome this limit, we propose to add such labels to the
dataset, by using a two step approach. In a first step, we apply heuristic H1 to
discover a first level of address aggregates.

Definition 4 (H1 aggregates). Considering a set of transactions T , the set
of H1 address aggregates constructed from T and denoted by A = {A1, . . . , Ap}
is such that ∀i = 1 . . . p, and ∀ two distinct addresses a, b ∈ Ai,∃ a sequence of
pairs of addresses P = (a, c1), (c1, c2), . . . , (cn, b) such as ∀(p, q) ∈ P, ∃t ∈ T
such that p, q ∈ t.input.

7



In the second step we use this information to attribute partial labeling to the
address outputs. In practice, for each transaction output, if we observe that one
of the output addresses belongs to the same aggregate as the transaction input
addresses, then we label that output as the change, while the other outputs are
labeled as non-change. We call this approach H1-labeling.

Definition 5 (H1-labeling). Considering H1 aggregates A = {A1, . . . , Ap},
if there exists a transaction t ∈ T with t.input ⊆ Ai and o ∈ t.output then{

label(o) = change if o ∈ Ai

label(o) = payment otherwise

H1-labeling has two limits: 1) When an output is labeled as payment, we do
not know if it is in fact a genuine payment, or just a limit of the H1 heuristic,
which failed to associate the address in output with the aggregate in input. 2)
The method works only a posteriori, i.e., H1 heuristic is based on the principle
that users eventually tend to combine their addresses in input of the same
transaction. But such combination might occur days, months or years after the
address was used for the first time. We propose different mitigation for these
issues depending on the task.

3.4. Transaction output features
For each transaction output, we compute several features, that we use as

descriptive features in the supervised machine learning approach. These features
are presented in Table 1.

4. Automatic Discovery of Improved Address Aggregates

The H1 and H2 heuristics, as well as methods such as [6, 14], have a common
objective which is to discover aggregates of addresses supposed to belong to the
same actor. One possible application of change address detection is to solve this
problem. More formally, if we consider the graph defined such that each node
is an aggregate discovered by H1, with edges corresponding to change addresses
detected between these nodes, then the improved aggregates are defined by the
connected components of the graph. In other words, if an aggregate sends the
change of at least one of its transactions to another aggregate, then the two
aggregates must in fact be considered as one, belonging to the same actor.

To improve these address aggregates using change detection, the method
we propose consists in creating an induced graph in which the nodes are H1
aggregates, and the edges correspond to the changes detected between them.
Improved aggregates are defined as connected components of this induced graph.

4.1. Ground truth aggregates definition using a posteriori approach and external
source

While H1-labeling allows to constitute a large training corpus, it raises the
question of the ground truth used for validation. The usual machine learning

8



N◦ Description
1 Value associated to the considered output in Satoshi1.
2 The number of prior usages of this address as an output.
3 Total value of the inputs of the transaction (Satoshi).
4 Total value of the output of the transaction (Satoshi).
5 Number of non-zero digits among the 8 last digits of the value

(Satoshi) of the considered. It captures the property of being or
not a round number.

6 The number of decimals of the Bitcoin value.
7 The fraction of the considered output value compared to all out-

puts.
8 The index of the output.
9 The number of inputs of the transaction.
10 The fees paid for this transaction.
11 The output value (Satoshi)
12 The output value (USD)
13 A Boolean indicating if the remaining of the output value, after

removing all zeros equals ’1’
14 A Boolean indicating if the remaining of the output value, after

removing all zeros equals ’5’
15 A Boolean indicating if the remaining of the output value, after

removing all zeros equals ’2’, ’3’, ’4’, ’6’, ’7’, ’8’, ’9’, ’15’, ’25’, ’55’
or ’99’

16 A Boolean being True if this output is smaller than the smallest
input minus transaction fee, False otherwise. In principle, the
change value should be smaller than the smallest input, otherwise
this input was not needed to do the transaction;

17 Shannon entropy of values distribution (for input and for output).
Such diversity indexes allow to differentiate cases were most of the
values come from a single input from these were it is spread more
evenly;

18 Shannon entropy of distribution of different addresses (for input
and for output).

19 The year.
20 The month.
21 The day in the month.
22 The timestamp
23 The day of the week.

Table 1: Transaction output features.

approach would consist in splitting all outputs in two parts, a training set and
a test set, and evaluate the quality of the change recognition in the test set.
However, this approach is not satisfying, for two reasons: 1) At best, it proves
only that the machine learning approach can do as well as the H1 heuristic, since
all positive change examples have been labeled using H1 itself, 2) A very efficient

1A Satoshi is the smallest unit of a Bitcoin, worth one hundred millionth (10−8) of a
Bitcoin.

9



method that would recognize all change addresses, including these missed by H1,
would in fact have a lower score than a method only able to reproduce H1 change
recognition. To circumvent these weaknesses, we propose two solutions.

A posteriori test set. To mitigate the first problem, we define our ground truth a
posteriori. More precisely, we split our dataset in two parts: the studied dataset
D-2017, composed of transactions up to bloc 501950 (December 31, 2017), and
the a posteriori ground truth dataset D-2021, composed of all transactions
up to the end of the collected dataset. We use D-2017 for training and for
evaluation, and we use D-2021 to compute the ground truth aggregates, that
we call H1-AP for a posteriori. The principle is that H1 applied to D-2017 will
incorrectly label some changes as payment, and thus several different aggregates
according to H1 will in fact be merged into a single aggregate in our ground
truth, thanks to the additional information found in D-2021.

External ground truth. To mitigate the second problem, we improve our ground
truth using an external source. We used data extracted from the website Wal-
letExplorer2, commonly used in the literature to recognize known actors (e.g.,
[16, 17]). The website provides for a few hundred aggregates the name of the
actor to which this aggregate corresponds to. Although the exact details of the
process are not known, this information is said to be obtained through manual
collection: since it is enough to know the identity of one address of an aggregate
to label the aggregate, one transaction with a known actor (Exchange platform,
Gambling service, etc.) usually allows to label its whole aggregate. The infor-
mation we are interested in from this website is that, for several known entities,
the website provides several associated aggregates. We leverage this informa-
tion to improve our ground truth: instead of using H1 aggregates in our ground
truth, we create Ground Truth aggregates GT-A by merging H1 aggregates
found on D-2021 according to the actors defined by WalletExlorer. We chose to
split the dataset in 2017 because 1) we want to have enough data after the end
the study dataset to discover change addresses, 2) WalletExplorer is known to
be less reliable for actors after 2017 (missing information). The ground truth
and study datasets are summarized in Figure 2. The types of merges that we
can observe, and the consequence on our evaluation score are summarized in
Figure 3.

4.2. Training and testing protocols
To constitute the training set, we have retained only the transactions com-

posed of two outputs, one being a change and the other not, according to H1-
D-2017. These transactions are the most likely to be correctly labeled because
Bitcoin’s most common behavior is to make a payment in one output and send
the rest to a change address. It also has the advantage of maintaining a balanced
dataset between changes and payment training examples.

2https://www.walletexplorer.com

10



Figure 2: Generation of the studied dataset D-2017 and of the Ground Truth Aggregates
GT-A based on D-2021 and WalletExplorer data.

Our test set (or rather predict set in our case, since it is used for making pre-
dictions but not directly for evaluation) is conversely composed of transactions
having exactly two outputs, none of them being labeled as change according to
H1-D-2017. These transactions are the most likely to have a missing change that
we could detect. We ignore transactions with more than two outputs, as these
may correspond to different and more complex cases. They could be addressed
in future work.

We restricted our analysis to six actors3 from WalletExplorer, for perfor-
mance and reliability of the ground truth. We have collected all transactions
such as the sender of the transaction is among the chosen actors. These actors
have been chosen according to their size (number of transactions), for having
multiple known aggregates, for their diversity (Mining Pool, Exchanges, Gam-
bling services), and for their period of activity, compatible with our a posteriori
approach (activity before and, if possible, after 2017). Having six actors only is
a limit, but reflect our choice of having less data of greater quality, instead of
taking the risk of evaluating our method by comparing it with a biased ground
truth composed of a large number of unknown aggregates.

We finally have at our disposal 520 578 addresses belonging to the six chosen
actors, 354 006 training examples (outputs addresses, 50% change outputs, 50%
paying outputs), and 2 557 002 transaction outputs to evaluate as being or not

3Bter.com, PrimeDice.com, BitcoinVideoCasino.com, FaucetBOX.com, BTCCPool,
BitZino.com.

11



(a) Merging of two H1-D-2017 aggregates be-
longing to a same H1-AP aggregate. Beneficial
Merge.

(b) Merging of two aggregates H1-D-2017 be-
longing to two different actors according to
WalletExplorer. Detrimental Merge.

(c) Merging of two H1-D-2017 aggregates be-
longing to two different H1-AP aggregates be-
longing to the same ground truth. Beneficial
Merge.

Figure 3: Different types of possible merges.

change addresses.

4.3. Machine learning models
We chose to use a decision tree for its ability to learn nonlinear relationships,

its simplicity and its interpretability. More expressive methods such as Random
forest or XGBoost could have been used interchangeably, but the relative per-
formance of different classifiers is beyond the scope of this article. A Grid Search
approach was used to optimize the maximum number of leaves and the mini-
mum number of items per leave, maximizing accuracy through cross-validation.
We used the implementation available in scikit-learn4.

To decide if an output should be considered a change output, we do not
directly use the class provided by the decision tree to avoid the risk of catas-
trophic merge. Indeed, a major pitfall of aggregate discovery is that, since
a single occurrence of one aggregate being identified as receiving the change of
another is enough to merge the two in a single aggregate, a single false positive
(a payment being wrongly identified as a change) can have a catastrophic ef-

4https://scikit-learn.org/

12



fect on the final partition, since two potentially large distinct aggregates would
merge. Conversely, a false negative (a change output being wrongly assumed to
be a payment) is less critical, in particular since a different change transaction
between the two same clusters can be rightfully detected and will be enough to
correct this missed detection.

We propose and test three variants of change detection methods to minimize
catastrophic merges:

M1 – Classification with variable confidence threshold. The reference approach
is to use a variable threshold on the confidence probability of the classification.
By imposing a high confidence value, we detect fewer change transactions, but
reduce the probability of a catastrophic merge. The right threshold is the best
compromise between increasing false negatives and decreasing false positives.

M2 – Limit to one change per transaction. As mentioned when describing the
train and test sets, we focus on transactions that have two outputs. It is known
that these transactions tend to have a single payment and a single change output.
Therefore, if two outputs are classified as a change with confidence above the
threshold, and there is a significant difference (> 1%) between the two, only
the one with higher confidence is classified as a change. If there is less than 1%
difference, we classify both as payment.

M3 – Allowing multiple change outputs for aggregate merges. To avoid that a
single false positive merges two aggregates, we add the constraint that several
change outputs must be observed between two H1 aggregates to merge them.
In practice, we have defined improved aggregate detection as the search for con-
nected components of the induced graph in which the nodes are H1 aggregates
and the edges (u1, u2) represent the existence of a transaction with an address
of u1 as input and an address of u2 as change output. In this variant, we add an
edge in this induced graph only if we observe x > k such transactions between
the two H1 aggregates, with k a threshold. In the following experiments, we use
k = 2, a sufficient limit to observe significant changes.

4.4. Results
To evaluate the performance of our approach, we compare aggregates ob-

tained by the different variants with our ground truth. We use the most common
cluster comparison metrics, namely Homogeneity, Completeness, v-score/NMI,
aNMI and Rand Index.

We first report the Homogeneity scores obtained using H1-AP (Table 2) or
GT-A (Table 3) as ground truth. We observe that the M3 method obtains a
value below 1 with H1-AP, while it obtains a score of 1 using a threshold of
0.8 or more using GT-A as ground truth. This clearly confirms the validity
and relevance of our original validation approach: the M3 variant merges some
aggregates which are considered different using only the information from the
Blockchain (H1 a posteriori), but which are recognized as correct when they are
validated using external ground truth. It thus confirms that the process is able

13



to recognize change addresses that could not have been detected simply by the
H1 heuristic. This has never been shown before. Note that H1 alone also has a
homogeneity score of 1 because it never wrongly merges aggregates.

Since observations are similar for other scores, we will report only the com-
parison with the GT-A ground truth.

Heuristic H1 1.000
Threshold M1 M2 M3
0.7 0.593 0.903 0.780
0.75 0.593 0.903 0.799
0.8 0.644 0.903 0.948
0.85 0.644 0.903 0.948
0.9 0.799 0.903 0.948
0.95 0.920 1.000 0.978

Table 2: Homogeneity Score - Ground truth H1 on D-2021 (H1-AP).

Heuristic H1 1.000
Threshold M1 M2 M3
0.7 0.562 0.890 0.732
0.75 0.562 0.890 0.761
0.8 0.623 0.890 1.000
0.85 0.623 0.890 1.000
0.9 0.761 0.890 1.000
0.95 0.908 1.000 1.000

Table 3: Homogeneity Score - Ground truth enriched with actors from WalletExplorer (GT-
A).

The Completeness measures the gain obtained by rightfully merging the H1-
D-2017 aggregates. We observe in Table 4a that 1) the M1 method fails to
obtain scores higher than the reference H1 score, 2) M2 only succeeds for the
maximum threshold chosen, and 3) M3 makes it possible to improve significantly
relatively to the baseline.

To confirm these results, we use three commonly scores that synthesizes
both aspects captured by Completeness and Homogeneity. The first one is
the v-score (or NMI), which is defined as the harmonic mean of Completeness
and Homogeneity. Given the previous observations, it naturally confirms the
superiority of the results of method M3 (Table 4b).

To make these results more robust, we use two randomly adjusted scores
commonly used in clustering and community detection assessment: the aNMI (Ta-
ble 4c) (random-adjusted version of the NMI), and the Adjusted Rand Index
(ARI) in Table 4d. The two scores confirm the observation that the results
obtained with the M3 method are superior both to the other methods and to
the reference heuristic H1.

14



Heuristic H1 0.626
Threshold M1 M2 M3
0.7 0.593 0.617 0.588
0.75 0.593 0.617 0.597
0.8 0.606 0.617 0.661
0.85 0.606 0.617 0.661
0.9 0.597 0.617 0.661
0.95 0.618 0.627 0.641

(a) Completeness Score - GT-A Ground truth.

Heuristic H1 0.770
Threshold M1 M2 M3
0.7 0.577 0.729 0.652
0.75 0.577 0.729 0.669
0.8 0.614 0.729 0.796
0.85 0.614 0.729 0.796
0.9 0.669 0.729 0.796
0.95 0.736 0.770 0.781

(b) V-Score/NMI - GT-A Ground truth.

Heuristic H1 0.770
Threshold M1 M2 M3
0.7 0.577 0.729 0.652
0.75 0.577 0.729 0.669
0.8 0.614 0.729 0.796
0.85 0.614 0.729 0.796
0.9 0.669 0.729 0.796
0.95 0.736 0.770 0.781

(c) aNMI - GT-A Ground truth.

Heuristic H1 0.481
Threshold M1 M2 M3
0.7 0.286 0.432 0.345
0.75 0.286 0.432 0.351
0.8 0.299 0.432 0.532
0.85 0.299 0.432 0.532
0.9 0.351 0.432 0.532
0.95 0.446 0.481 0.501

(d) Rand Index - GT-A Ground truth.

Table 4: Scores obtained with the different scores. We observe that the M3 method yield the
best scores overall according to all metrics, both among tested variants and compared to H1
baseline, in most contexts.

5. User specialized change detection

In the previous section, we have proposed an original supervised machine
learning based method to solve a common problem in Bitcoin: the detection of

15



address aggregates. The problem was posed in a way comparable to the usual
task tackled by state-of-the-art methods, i.e., the discovery of a set of address
aggregates from a set of transactions.

However, we observed that in the literature, previous methods have in gen-
eral not been reused after their publication, later articles on Bitcoin user analysis
still relying on H1 heuristic to identify address aggregates considered as actors.
From our own experience, we think that there are two main reasons for this
mitigated results:

1. The difficulty to apply and reproduce these results: given the scale of
the Bitcoin data, even computing the simple H1 heuristic is a challenging
task. Computing on the whole dataset a much more complex approach,
requiring to compute various features, and/or computationally expensive
models such as Deep Neural Networks is an even greater challenge.

2. Despite the safeguards added to most methods, including ours, the risk
of catastrophic merges (and in practice the little information we have
about unwanted merges occurring on address aggregates other than the
large known ones) makes the use of these methods a risky choice when
analyzing behaviors in the Bitcoin Blockchain.

This analysis does not contradict the good results obtained by these meth-
ods, as demonstrated in the previous section. However, we think that change
detection would be more actionable for a slightly different task that we define
here: the change detection of individual actors. We argue that in various ap-
plications, researchers and practitioners are mostly interested in analyzing one
particular actor, or a subset of actors of interest (e.g., malicious actors [18, 19],
Mining Pools [20], Major exchanges[21], etc.). In this section, we investigate
how our supervised machine learning approach, contrary to unsupervised ones,
could be used for the change detection on a particular actor, with the objective
to better detecting the activity of this actor in particular.

5.1. Training and testing protocols
To identify the change addresses of a target actor, we first build a dataset of

all the transactions from which this actor has addresses used as input. We then
compute the same features as defined in Section 3.4 for each output of these
transactions. Contrary to the previous section, we do not restrict ourselves to
transactions with two outputs, since we are less concerned about catastrophic
merges, that would be more easily identified with a single actor than with the
millions of aggregates obtained by an aggregate detection on the whole Bitcoin
dataset. Furthermore, we are using all the transactions with at least one known
change output, instead of just one, for the training and testing steps. This
means that all the transactions having multiples known change outputs that
were rejected in the previous section are now present in the dataset.

In addition to the features used in the first part of this work, we used the
number of outputs. This feature was irrelevant before but applicable here, as
now we are using transactions with any number of outputs.

16



To build our training and testing set, we can now rely on the commonly
used supervised machine learning approach: we randomly split all outputs in
two sets: the train and test sets. The quality evaluation process can be framed
as any classification evaluation problem, using the ROC-AUC score. In this
scenario, this score can be interpreted as the probability for a randomly chosen
change output in the test set to have a higher confidence probability to be
a change output than a randomly chosen payment output (according to the
trained classifier). A score of 0.5 thus means that the classifier is doing no-
better than random prediction, while a score of 1 means that all change addresses
have a higher confidence score (probability of class change) than all payment
addresses.

We have selected different Walletexplorer actors, from different categories
and sufficiently active in terms of number of transactions to have statistically
significant results. For each of them, we trained a model to recognize their
change outputs based on their own transactions, using a division of two-thirds
for training and one-third for testing. These models are called targeted models
by opposition to a model learnt from a random sample of 500 000 transactions,
called hereafter un-targeted model. The objective of this comparison is to see
if it is more reliable to train with less data on a single actor, or to have more
training data to better generalize the definition of a change address.

5.2. Results

ROC-AUC
Dataset Score
BTCC.com 0.998672
BitPay.com 0.998158
CoinRoyale.com 0.996111
Bter.com 0.995005
Bitfinex.com 0.992843
Banx.io 0.992029
Cryptsy.com 0.991124
PrimeDice.com 0.981156
500,000 random transactions 0.931392

Table 5: ROC-AUC score for each actor and random transaction datasets.

The ROC-AUC scores for change detection for the targeted models and for
the un-targeted one are shown in Table 5. We can observe that the method
yields very convincing results in most cases, confirming that a machine learning
approach can be learnt to recognize change outputs.

Another obvious point is the difference between the actor’s targeted scores
and the random one. All scores based on an actor activity scores are above 0.98,
while the random transaction one is a little above 0.93. This confirms that the

17



results obtained with previous methods are certainly sub-optimal and could be
widely improved by using targeted learning.

Additionally, we generated a heatmap (see Figure 4) based on the calculated
importance of each feature for each experiment, as well as a visualization of the
learned decision trees with depth limited to 3, to facilitate their interpretation
(Figures 5, 6 and 7).

Figure 4: Heatmap of feature importance for different actors (targeted datasets) and for the
transactions collected randomly (un-targeted dataset). We can observe clear differences in
feature importance both between one or more targeted datasets and between targeted and
un-targeted datasets.

When observing the feature importance heat-map (Figure 4) we can notice
some interesting results:

• Different actors seem to manage differently their transactions: the features
importance vary from one actor to another;

• One of the features (the number of previous appearances of the output
address) is very important in many of the datasets. This element was
known from previous heuristics such as H2, but we can see here that it is
not reliable enough to be used as a single criteria, and that its importance
depends on the actor;

• Contrary to the previous observation, BTCC.com does not rely on the
number of previous appearances of the output address at all. Another
characteristic is very important: the number of decimals of the output
value in BTC;

• The timestamp feature is the most important one for the Bter.com actor.
This can probably be explained by a change in transactions management
at some time;

18



• The most important feature for the un-targeted model (Perc_out) seems
to be of little importance for targeted models.

Beyond this global overview of the results, we can analyze the learned deci-
sion trees to study some actor’s models individually. In this way, we can find
other important information, as well as understand some of the previous ob-
servations. In the following trees, a darker color tone indicates that the node
contains mostly elements of one class (orange for 0, blue for 1). On the contrary,
lighter colored nodes have more mixed examples. Some important findings are:

• When examining Banx.io tree (Figure 5), we can learn that every address
used as a change output is a newly generated address;

• The BTCC.com tree (Figure 6) shows us the importance of the decimal
digits in the output value, as at the first branch it can separate many
payments from change outputs. This shows us that most of the payments
have more "rounded" values;

• Looking at the non-targeted model’s tree (Figure 7), we can see right away
that it has more trouble classifying the outputs, as we found more light
colored nodes than for the others datasets. The absence of a common
way in managing the transactions in the dataset makes it more difficult
to classify the outputs.

These results validate our previous observation that the un-targeted model
is not able to correctly classify the outputs. On the contrary, models trained
with a specific actor approach obtain much higher scores.

Figure 5: Banx.io decision tree.

19



Figure 6: BTCC.com decision tree.

Figure 7: 500,000 random transaction dataset decision tree.

6. Conclusion

In this article, we propose a novel approach for identifying Bitcoin actors
using supervised machine learning. We come up with an original procedure for
building training set, and a validation with a much larger number of addresses
than the previous methods. We have proposed two different uses: 1) one com-
parable to the task addressed in the state of the art, in which we provide a large
set of transactions as input, and provide address aggregates as output, 2) the
other restricted to the discovery of change addresses of a single target actor. We
have shown the interest of the two methods with an empirical evaluation.

The key results of our paper are the following. First, unlike previous ap-
proaches, we used external sources to show that the aggregates we found are
not only able to rediscover the same results as H1 heuristic, but is really improv-
ing on this result. Previous works were either proposing H1 improvement, but
without qualitative evaluation (e.g., H2 heuristics as in [2]), or validating only
using H1 or manual validation (e.g., [6, 14]. Second, we have shown that train-
ing a change detection model for a single actor is more efficient that training
a model for recognition of change addresses in general. In our opinion, such a
targeted application is more actionable than the traditional all-in-one approach.

20



Of course, our work has limits. First, we validated the first approach only
with 6 actors. Although there is no restriction on the number of actors we could
detect, we restricted ourselves to these actors due to the limitations of ground
truth, as we would not have had any relevant ground-truth for an evaluation
on thousdands of aggregates, which, in our opinion, is unreliable: if the ground
truth is built only on H1, then showing that the output of the algorithm is
similar to the ground truth is not a satisfactory approach. For the single-actor
target method, we have proven that it is more efficient to detect change outputs
than to train on the entire dataset, but we have not offered a comprehensive
workflow to automatically discover all addresses of an actor according to this
change detection: to do so, the method must be applied recursively after having
discovered new addresses of the same actor, and, as was done with the M3
variant of the first method, add safeguards to avoid the risk of catastrophic
merges. However, we believe that such a method is beyond the scope of this
article.

We think nevertheless that the work proposed here clearly demonstrates
the feasibility and the interest of supervised machine learning for Bitcoin actor
identification.

References

[1] S. Nakamoto, Open source p2p money (2008).
URL https://bitcoin.org/

[2] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, S. Savage, A fistful of bitcoins: characterizing payments among
men with no names, in: Conference on Internet measurement, 2013, pp.
127–140.

[3] D. Kondor, M. Posfai, I. Csabai, G. Vattay, Do the rich get richer? an
empirical analysis of the bitcoin transaction network, PloS one 9 (2) (2014)
e86197.

[4] S. Delgado-Segura, C. Perez-Sola, G. Navarro-Arribas, J. Herrera-
Joancomarti, Analysis of the bitcoin utxo set, in: International Conference
on Financial Cryptography and Data Security, Springer, 2018, pp. 78–91.

[5] F. Reid, M. Harrigan, An analysis of anonymity in the bitcoin system, in:
Security and privacy in social networks, Springer, 2013, pp. 197–223.

[6] R. Cazabet, R. Baccour, M. Latapy, Tracking bitcoin users activity using
community detection on a network of weak signals, in: Complex Networks
and Applications, 2018, pp. 166–177.

[7] M. Harrigan, C. Fretter, The unreasonable effectiveness of address clus-
tering, in: Intl IEEE Conferences on Ubiquitous Intelligence Comput-
ing, 2016, pp. 368–373. doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-
SmartWorld.2016.0071.

21



[8] M. Möser, R. Böhme, The price of anonymity: empirical evidence from a
market for bitcoin anonymization, Journal of Cybersecurity 3 (2) (2017)
127–135.

[9] M. Möser, R. Böhme, Anonymous alone? measuring bitcoin’s second-
generation anonymization techniques, in: 2017 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), IEEE, 2017, pp. 32–41.

[10] M. Harrigan, C. Fretter, The unreasonable effectiveness of address cluster-
ing, in: 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing,
Advanced and Trusted Computing, Scalable Computing and Communica-
tions, Cloud and Big Data Computing, Internet of People, and Smart World
Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), IEEE, 2016,
pp. 368–373.

[11] D. Kondor, N. Bulatovic, J. Steger, I. Csabai, G. Vattay, The rich still
get richer: Empirical comparison of preferential attachment via linking
statistics in bitcoin and ethereum, arXiv preprint arXiv:2102.12064 (2021).

[12] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, S. Capkun, Eval-
uating user privacy in bitcoin, in: Financial Cryptography and Data Secu-
rity, 2013, pp. 34–51.

[13] J. D. Nick, Data-driven de-anonymization in bitcoin, Master’s thesis, ETH-
Zürich (2015).

[14] W. Shao, H. Li, M. Chen, C. Jia, C. Liu, Z. Wang, Identifying bitcoin users
using deep neural network, in: Int. Conf. on Alg. and Arch. for Parallel
Proces., 2018, pp. 178–192.

[15] J. A. Emery, M. Latapy, Full bitcoin blockchain data made easy, in: Ad-
vances in Social Networks Analysis and Mining, 2021.

[16] D. Ermilov, M. Panov, Y. Yanovich, Automatic bitcoin address clustering,
in: IEEE International Conference on Machine Learning and Applications
(ICMLA), IEEE, 2017, pp. 461–466.

[17] M. Möser, A. Narayanan, Resurrecting address clustering in bitcoin, arXiv
preprint arXiv:2107.05749 (2021).

[18] A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, G. Sri-
vastava, M.-Y. Chen, Cryptocurrency malware hunting: A deep recurrent
neural network approach, Applied Soft Computing 96 (2020) 106630.

[19] S. Dalal, Z. Wang, S. Sabharwal, Identifying ransomware actors in the
bitcoin network, arXiv preprint arXiv:2108.13807 (2021).

[20] N. Tovanich, N. Soulié, N. Heulot, P. Isenberg, An empirical analysis of pool
hopping behavior in the bitcoin blockchain, in: 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), IEEE, 2021, pp.
1–9.

22



[21] M. Jourdan, S. Blandin, L. Wynter, P. Deshpande, Characterizing entities
in the bitcoin blockchain, in: 2018 IEEE international conference on data
mining workshops (ICDMW), IEEE, 2018, pp. 55–62.

23


