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Statistical graph models aim at representing graphs as random realization among a set of possible graphs.
To evaluate the quality of a model M with respect to an observed network G, most statistical model selec-
tion methods rely on the probability that G was generated by M, which is computed based on the entropy
of the associated microcanonical ensemble. In this paper, we introduce another possible definition of
the quality of fit of a model based on the edit distance expected value (EDEV). We show that adding a
geometric structure to the microcanonical ensemble induces an alternative perspective which may lead
to select models which could potentially generate more different graphs, but whose structure is closer to
the observed network. Finally we introduce a statistical hypothesis testing methodology based on this
distance to evaluate the relevance of a candidate model with respect to an observed graph.

Keywords: statistical graph model, graph ensemble, entropy, statistical hypothesis testing, edit distance.

1. Introduction

The study of large and complex systems in domains as diverse as physics, biology, computer science
or social science brings forward interaction networks which are neither regular, nor random. The inter-
action structure follows no clear pattern, as in a grid for example, but it often presents remarkable
properties such as a heterogeneous degree distribution (scale-free) [1], small average distances (the
small-world phenomenon) [18], a high level of transitivity and community structure [12], which are not
present in random graphs. This suggests that interactions are the result of a random process following
some constraints which shape the resulting network.

Various statistical models have been proposed to describe such constrained random graphs: the
configuration model, which preserves degree distribution; the stochastic blockmodel, which preserves
local densities; spatial models, which focus on distance between nodes [16]. A review of statistical
graph models can be found in [7] and an introduction to their formalism in [4].

This diversity of parametric models raises the issue of model selection: considering one specific
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graph, which model is the most relevant? And with which set of parameters? Considering models
as ensembles makes it possible to leverage results from statistical physics and information theory to
perform model selection [5], in particular using maximum likelihood estimators [17] or equivalently the
minimum description length [8]. In this framework, a model is considered to be good for a given graph
if it generates it with high probability, i.e. if the associated ensemble has a small entropy. Therefore,
many papers have focused on computing the entropy of various graph ensemble [3], [14], [20]. A
whole methodology for community detection based on those principles has been developed in the case
of stochastic blockmodels [15].

However, the definition of the likelihood of a model based on the entropy of its microcanonical
ensemble implies that by itself this likelihood cannot be interpreted, it can only be compared with the
likelihood of another model for the same graph: It is fundamentally a relative measure. More generally,
this definition of the likelihood makes it possible to identify the model that generates the observed graph
with the highest probability, but it is not always the best possible measure of how relevant a model is
with respect to an observed graph. Indeed, graphs are also geometrical objects, in the sense that one
can define distances between them. Such a distance induces a structure on a model’s ensemble. Much
work has been devoted to quantifying how similar two graphs are [19], especially from a topological
point of view [11], [10]. These distances between two graphs can be generalized to evaluate the quality
of a model by computing a distance between an observed graph and the graph ensemble associated
to a model. For example, the widely used measure for community detection known as modularity
[13] evaluates the quality of a partition by comparing the edge weight in the observed graph with the
expected edge weight of the graph in the configuration model, as developed in section 2.2. In this case,
the problem is to evaluate the statistical significance of the results, in order not to mistake noise for
structure [9].

In this paper, after reviewing in section 2.1 and 2.2 existing techniques to measure the relevance of
a model with respect to a graph, we introduce in section 3 the edit distance expected value, a measure
which takes into account both the geometric and the probabilistic structure of the graph ensemble.
Finally, we show how this measure can be used to evaluate a model relevance with respect to a given
graph in section 4.

2. Microcanonical ensemble

The main point of statistical modeling is to describe the structure of a graph G based on a set of global
properties of that graph PM [4]. Some examples of common models and their associated properties are
given in table 1. Apart from those properties, the graph is considered to be random. In practice, this
means that G is considered to have been chosen from the set:

ΩM = {H | PM(H) = PM(G)}

This set is called the microcanonical ensemble, in reference to statistical physics in which it was first
introduced to represent all the possible states of a system corresponding to a global property. It can be
defined with directed or undirected graphs, weighted or not, with or without self-loops. In the rest of the
article, we will consider labelled directed multigraphs with self-loops. Although they are not the most
widely used in practice, it makes probability derivations easier, especially for the configuration model.
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Table 1. Common statistical graph models and their associated properties.
Model M Properties PM
Erdös-Renyi number of nodes and number of edges
Configuration model degree distribution
Stochastic block model block to block density
Gravity model node position, strength, and deterrence function
Radiation model node position and strength

2.1 Entropy

Information theory shows that, in order to ensure that no additional information bias the results, the
probability distribution PM on ΩM has to be the one that maximises Shannon’s entropy

S =− ∑
H∈ΩM

P(H)log(P(H))

With no additional constraint, this optimal distribution is simply the uniform one:

∀H ∈ΩM,PM[H] =
1
|ΩM|

(2.1)

whose entropy is log(|ΩM|). Thus, computing the probability to choose G among all possible graphs in
ΩM boils down to counting the number of graphs it contains. This has been done for different models
in [14].

The microcanonical ensemble and its entropy provide a common formulation for various statistical
models. This is useful to perform model selection. Indeed, entropy is directly related to the likelihood
of a given model. If we observe a graph G and consider a set of models M = {M1, . . . ,Mp}, we can
find which model G has most likely been sampled from by maximising its likelihood

M∗ = argmax
Mi∈M

P[Mi|G]

This maximisation can be done using Bayes theorem

P[Mi|G] =
P[G|Mi]×P[Mi]

P[G]
(2.2)

As P[G] does not depend on Mi, maximising the likelihood is equivalent to maximising the numer-
ator of equation (2.2). The first term of the product P[G|Mi] corresponds to the probability to generate
G with the model Mi, and according to equation (2.1), maximising it is equivalent to minimising the
entropy of the associated microcanonical ensemble log(|ΩMi |). The second term P[Mi] is a prior dis-
tribution defined on the set of candidate models M . Its role is to account for the fact that a model
with enough parameters can be made arbitrarily close to any given graph G, up to the point where
ΩM = {G}. Such a model would generate G with probability PM[G] = 1, but it would be overfitting.
The prior distribution prevents this from happening by assigning lower probabilities to models which
have more parameters. Typical methods to counterweight models with too many parameters are the
Akaike Information Criterion and Bayesian Information Criterion [17]. This idea was also developed
and applied to the case of stochastic blockmodels in [15].
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All these methods rely on a definition of the likelihood of a model according to the uniform distribu-
tion over the microcanonical ensemble, and thus on the hypothesis that the most relevant model M for a
graph G is the one which generates G with the highest possible probability. It considers the microcanon-
ical ensemble as a geometrically unstructured set, with no notion of distance between graphs, and thus it
does not discriminate between two models M1 and M2 such that |ΩM1|= |ΩM2 | but where ΩM1 contains
graph similar to G while M2 does not. This definition of the goodness of fit of a model is not always the
best one. In particular, one can be interested in selecting the model that most probably generates graph
similar to G, and not necessarily G itself.

For example, if we consider the three graphs on figure 1 with G1 as a reference, both G2 and G3 are
different from G1, but the topology of G1 and G2 is almost the same. Therefore, one could be interested
in selecting a model which produces mostly G2-like graphs rather than one which produces G3-like
ones. This cannot be done using the mere minimization of entropy since replacing G2 by G3 in the
microcanonical ensemble does not change its entropy.

FIG. 1. Three graphs with 8 nodes and 10 edges. While G2 is clearly more similar to G1 than G3, both G2 and G3 are different
from G1. Therefore, from the point of view of entropy maximisation, replacing G2 by G3 in the microcanonical ensemble does
not affect the likelihood of a model.

2.2 Distance to the barycenter

On the other hand, one may measure how typical G is with respect to ΩM by comparing it with an
appropriate representative of this ensemble, for example its barycenter:

GM = ∑
H∈ΩM

P(H)H

If we denote WG the weight matrix of graph G, it can easily be derived that

∀(i, j) ∈V 2,WGM (i, j) = E[WH(i, j)] (2.3)

REMARK 2.1 GM does not necessarily belong to ΩM . In particular, even if all graphs in ΩM have whole
weight, it does not imply that GM’s edge weights are integers. Examples of barycenter weights for
common models are given in table 2

The famous modularity function to evaluate the quality of a node partition B = (b1, . . . ,bp) on a
graph G = (V,E) with weight matrix WG is defined as the difference between the number of edges
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Table 2. Statistical graph models’ barycenter weight.

Model M Parameters GM(i, j) mGM

Erdös-Renyi n,m m
n2 m

Configuration model (kin
i ,k

out
i )i∈V

kout
i kin

j
m m

Stochastic block model (mr,s)r,s
mci ,c j
|ci||c j | m

Gravity model (ki)i∈V , f kik j f (d(i, j)) m

Radiation model (kin
i ,k

out
i )i∈V

kout
i kin

i kin
j

(kin
i +si j)(kin

i +kin
j +si j)

m

inside each cluster and the expected number for a random graph with the same degree distribution (i.e.
following the configuration model). It can be understood as a comparison with the barycenter GM of the
corresponding configuration model.

Q(G,B) =
1

2m

p

∑
i=1

∑
u,v∈bi

(
WG(u,v)−

kout
u kin

v

m

)
=

1
2m

p

∑
i=1

∑
u,v∈bi

(WG(u,v)−WGM (i, j))

= d(G,GM)

A problem is that G is compared with a single graph GM which is supposed to account for the whole
graph ensemble ΩM . In particular, all information about the dispersion around the barycenter is lost,
which undermines any attempt to interpret statistically the results.

3. Graph space and the edit distance expected value

As we have seen, existing techniques to compare a graph G and a model M exploit in different ways
the ensemble ΩM . Entropy based techniques described in section 2.1 focus on its cardinality, but they
neglect the topological similarities of graphs inside the ensemble. On the other hand, as described in
section 2.2, an objective function such as the modularity accounts for these similarities, but it does so
with a single graph which is supposed to represent the whole set. Reality is more complex: ΩM is a set
of graphs with a probability distribution, and it can be further structured with a metric, making it a graph
space. Both aspects, probabilistic and geometric, should be taken into account in order to understand
the structure of ΩM , and the plausibility that a graph G was generated by the associated model M.

Many different measures exist to compute a similarity score between two graphs G and H [19]. One
of the simplest is the edit distance. For two graphs on the same vertex sets G1 =(V,E1) and G2 =(V,E2),
it counts the number of differences between their respective sets of edges.

ed(G1,G2) = ∑
(i, j)∈V 2

|WG1(i, j)−WG2(i, j)|
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As expected from its name, edit distance is a distance between graphs. Indeed, if we consider the weight
matrix WG of a graph G as a point in Rn2

, the edit distance corresponds to the L1 distance and for any
model M, ΩM is a subset of Rn2

. The dimension prevents any direct drawing of it for graphs with more
than 2 nodes, but it is possible to obtain some intuition about its shape.

In the following, we will use a normalized version of the edit distance which can be interpreted as
the fraction of different edges between G1 and G2.

ned(G1,G2) =
1

2m ∑
(i, j)∈V 2

|WG1(i, j)−WG2(i, j)|

This normalized edit distance is no longer a distance on Rn2
. Yet, for all models M considered here,

the number of edges m is constant over the set ΩM . Thus, the normalized edit distance is equivalent to
edit distance inside ΩM and it allows to compare more easily results between various models, because
whatever the model M, the distance between any two graphs G1 and G2 in ΩM is at most 1.

3.1 Edit distance to the barycenter

ΩM barycenter has already been introduced in section 2.2, where it was used as a proxy for the whole
space. Using normalized edit distance, it is possible to check how much graphs in ΩM are similar to the
barycenter GM . We consider six different models:

1. EM: Erdös-Renyi with 50 nodes and 1000 edges

2. CFM cst: configuration model with 50 nodes and a constant degree distribution (kin
i = kout

i = 20)

3. CFM arith: configuration model with 50 nodes and an arithmetic degree distribution (kin
i = kout

i =
i+1)

4. SBM hom: stochastic block model with 50 nodes and 5 communities, each having internal density
1.2, and external density 0.2.

5. SBM het: stochastic block model with 50 nodes and 5 communities, with internal density 0.4,
0.8, 1.2, 1.6, 2, and external density 0.2.

For each model M, we pick a random sample SM of 100 graphs in ΩM and for all G ∈SM we compute
the normalized edit distance to the barycenter ned(G,GM). Results are shown in figure 2.

The first thing to underline is that whatever the model, ned(G,GM) is greater than 0.5, which means
that most graphs in ΩM have at most half of their edges in common with GM . This observation shows
that for those models, the graph space is not concentrated around its barycenter. On the contrary, most
graphs in ΩM seem to be at a specific distance from its barycenter, as would happen for a sphere with a
radius depending on the model: 0.67 for ER and CFM cst, 0.55 for CFM arith, 0.69 for SBM hom and
0.71 for SBM het.

All models were chosen to have similar entropy, as shown in table 3, yet their characteristic dis-
tance to the barycenter vary greatly. Furthermore, we observe that these quantities are not positively
correlated: CFM arith, which is the model with the larger entropy is also the one which is the most
concentrated around its barycenter. This means that even if this model can generate a higher number of
different graphs, the graphs it produces tend to be more similar one to the other than for other models.
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FIG. 2. Edit distance to the barycenter for 6 different models. For each model M in ordinate, we draw 100 graphs G at random
from ΩM and compute for each of them ned(G,GM). The distribution of results is then plotted as a boxplot.

Model Characteristic distance Entropy
ER 0.67 2050

CFM cst 0.67 2500
CFM arith 0.55 3300
SBM hom 0.69 1840
SBM het 0.71 1840

Table 3. Edit distance to the barycenter and entropy.

This is logical as this model preserves a degree distribution, which enforces more constraints on edges’
distribution than an Erdös-Renyi or a stochastic block model.

This concentration of graphs at a specific distance from the barycenter is a consequence of the
dimensionality of the vector space. Let’s denote B(G,r) the ball of center G and radius r in (Rn2

,ed).
We consider the set

ΩM(r) = {G ∈ΩM|ned(G,GM)6 r}
= {G ∈ΩM|ed(G,GM)6 2mr}
= ΩM ∩B(GM,2mr)

The volume Vn(r) of B(GM,2mr) is proportional to rn2
, therefore

∀r < 1,
Vn(r)
Vn(1)

−→
n→∞

0 (3.1)

The volume of the ball concentrates quickly at its periphery as the dimension increases, and so does the
volume of ΩM . The additional constraints on ΩM modify its shape in such a way that graphs too far
away from the barycenter are rare, which explains why the concentration does not happen at distance
1 from the barycenter. Still, this phenomenon is strong enough to imply that even graphs generated
according to a model M will share only a relatively small fraction of their edges with the barycenter of
the model.
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3.2 Edit distance expected value

The previous observations on the structure of graph spaces show that in order to compare a graph G
with a model M, one should consider more than the mere cardinal of ΩM . One possibility to evaluate
how similar to G are the graphs in ΩM is to compute the expected value of the normalized edit distance:

EDEV(G,M) = E
H∈ΩM

 1
2m ∑

(i, j)∈V 2

|WG(i, j)−WH(i, j)|


To illustrate how EDEV provides further information on the place of G within the graph space, we

compare it with entropy for different synthetic graphs. A low value indicates that G is close to other
graphs in ΩM , and thus that it is typical of the model, while a high value shows that it is an outlier.
As a case study, we consider the Erdös-Renyi model. Let’s recall that we consider multigraphs, which
implies that we allow for densities rising above 1. The extension of Erdös-Renyi model to multigraphs
is straightforward, ΩER(n,m) contains all multigraphs with n nodes and m edges and each multigraph is
generated with the same probability 1

|ΩER(n,m)|
. In practice, we consider models with n = 100 nodes and

a number of edges m ranging from 100 to 500000. For each, we consider three graphs:

• G1(m), picked uniformly at random inside ΩER(n,m)

• G2(m), a graph made of two equal communities, each with n
2 nodes and m

2 edges, perfectly sepa-
rated.

• G3(m), the graph where all edges are between nodes 0 and 1.

Results are shown on figure 3.

For each value of m, all three graphs belong to the graph ensemble ΩER(n,m). We observe that as
density increases |ΩER(n,m)| grows exponentially, which implies that the probability to pick at random
G1(m), G2(m) or G3(m) becomes even less probable. Yet, in the case of the random graph G1(m) this is
counter-intuitive: as density grows and becomes higher than 1, most graph in ΩER(n,m) become complete
graphs with each edge having weight about m

n2 . This is the case of G1 too with a high probability, so
ER(n,m) is very likely to produce graphs similar to G1(m), even if it is very unlikely to produce G1(m)
itself.

On the other hand, edit distance expected value is able to capture this phenomenon. While it is close
to 1 for all three types of graphs when density is low because in this situation a random model can
hardly predict correctly which edge is present in any graph, it decreases quickly towards 0 when density
rises above 0.1 for G1(m). For G2(m) we have an intermediate situation: edit distance decreases too,
but it reaches its minimum around 0.5, indicating that even when it is densely populated, the model is
only able to reproduce correctly half of its edges. This is normal as G2(m) concentrates them inside
the communities, which means on half of all possible node pairs. These observations are actually a
particular case of a more general result, which can be stated as:

LEMMA 3.1 Let B be a partition of J1,nK with p blocks. Let M ∈Mp(N) be a block adjacency matrix.
For all k ∈ N, we define the stochastic blockmodel S(k) = (B,k ·M), and its barycenter GS(k). We
consider a sequence of random graphs (Gk)k∈N, each drawn from S(k). We have that

ed(Gk,GS(k))
P−→

k→∞
0
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FIG. 3. Entropy and edit distance expected value against density. For each density, three graphs are generated. G1(m) is
random, G2(m) is made of two random communities and G3(m) has its edges concentrated on a single pair of nodes of weight m.
On the top plot, the entropy log(|ΩER(n,m)|) is plotted against the density m

n2 . As all graphs belong to the same graph ensemble
ΩER(n,m), the three curves are the same. On the bottom plot the edit distance expected value EDEV (G(m),ΩER(n,m)) is plotted
against density.

and as a consequence:

THEOREM 3.1 Let B1 and B2 be two partition on J1,nK, with p1 and p2 blocks respectively. Let
M1 ∈Mp1(N) and M2 ∈Mp2(N) be two block adjacency matrices such that

∑
i, j∈[1,p1]2

M1[i, j] = ∑
k,l∈[1,p2]2

M2[k, l] = m

Let’s consider two series of stochastic blockmodels defined as S1(k) = (B1,k ·M1) and S2(k) = (B2,k ·
M2), whose barycenters are denoted G1(k) and G2(k). We have that

1. There exists d ∈ R,∀k ∈ N,ed(G1(k),G2(k)) = d

2. Let (Gk)k∈N be a series of random graphs, each drawn following model S1(k).

EDEV(Gk,S2(k))
P−→

k→∞
d (3.2)

(proof in Appendix)
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FIG. 4. 5 graphs Gi were generated with a generative model CFMD(n,kout
i ,kin

i ). Their normalized edit distance expected value
with respect to a candidate model SBMi is plotted as diamond. As a comparison point, the distribution of the normalized edit
distance expected value for 100 test graphs generated with SBMi is plotted as dots and boxplot.

REMARK 3.1 In particular, if M1 = M2, lemma 3.1 means that the normalized edit distance expected
value between a graph picked at random and the barycenter of the stochastic blockmodel converges
toward 0: ΩS(k) shrinks around GS(k). This is what we observe with G1(m). Yet, we also observe on
figure 3 that the normalized edit distance converges toward 0 only as density rises above 1. Thus, in
practice, the vast majority of graphs are too sparse for this assumption to hold true and most graphs in
ΩS(k) are far from GS(k), as developed in section 3.1

4. Statistical test

As the distance to the barycenter, the expected value of the normalized edit distance is characteristic of
a model. For a model M, the values of EDEV(H,M) for graphs H in ΩM are concentrated around a
specific value dM . We can use this fact to rule out models which fit badly on an observed graph G.

For example, let’s consider the configuration model CFMD(n,kout
i ,kin

i )

n = 50

∀i ∈ J0,n−1K,kout
i = kin

i = i

We use this model to generate a graph Gi. CFMD(n,kout
i ,kin

i ) will thus be called the generative model,
and Gi the observed graph. On this observed graph, we test the stochastic blockmodel SBMi obtained by
partitioning its nodes in two blocks: B0 contains even nodes and B1 odd nodes (this way we avoid to put
all high-degree nodes in the same block) and learning the block adjacency matrix on Gi. We call SBMi
the candidate model. We generate a sample Si of 100 test graphs with the candidate model SBMi and
compare the normalized edit distance EDEV(Gi,ΩSBMi) of the observed graph to the candidate model
with EDEV(H,ΩSBMi) for all test graphs H ∈Si. This experiment is performed 5 times, and results are
shown on figure 4.
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FIG. 5. 5 graphs Gi were generated with a generative model SBM(n,B,M). Their normalized edit distance expected value with
respect to a test model CFMDi is plotted as diamond. As a comparison point, the distribution of the normalized edit distance
expected value for 100 test graphs generated with CFMDi is plotted as dots and boxplot.

FIG. 6. 5 graphs Gi were generated with a generative model SBM(n,B,M) which is also used as the test model. Their normalized
edit distance expected value with respect to the test model is plotted as diamond. As a comparison point, the distribution of the
normalized edit distance expected value for 200 other graphs generated with SBM(n,B,M) is plotted as dots and boxplot.
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We observe that for all five experiments, the normalized edit distance expected value to the candidate
model SBMi for the observed graph Gi is around 0.74, while for the test graphs generated by SBMi it
is between 0.53 and 0.56. This shows that the normalized edit distance expected value to SBMi is
significantly different for the observed graphs, which are generated by CFMD(n,kout

i ,kin
i ), and for the

test graphs generated by SBMi. It is thus very unlikely that the observed graph Gi was generated by the
candidate model SBMi.

We then perform the same experiment the other way round, by considering as generative model a
stochastic blockmodel SBM0(n,B,M) defined by

n = 50
B = J0,24K,J25,49K

M =

[
500 0
0 500

]
5 graphs Gi are generated using this stochastic blockmodel. As candidate model, we consider a con-
figuration model CFMDi obtained by learning the degree sequence of Gi. A sample S ′ of 100 test
graphs is randomly picked in ΩCMFDi and we compare EDEV(Gi,ΩCFMDi) with EDEV(H,ΩCFMDi)
for all H ∈S ′. Results are shown on figure 5. Once again, we observe that the normalized edit distance
expected value to the candidate model CFMDi is significantly different for the observed graphs, which
were generated by SBM(n,B,M), and for the test graphs generated by CFMDi. This allows us to reject
the hypothesis that the observed graph Gi was generated by the candidate model CFMDi.

Finally, as a null case, we consider the situation in which the generative model and the test model
are the same. We generate 5 graphs (Gi)i∈J1,5K with the same stochastic blockmodel SBM0(n,B,M) as
before, and consider this same model SBM0 as the candidate model. A sample S ′′ of 200 test graphs is
randomly picked in ΩSBM0 and we compare EDEV(Gi,ΩSBM0) with EDEV(H,ΩSBM0) for all H ∈S ′′.
Results are shown on figure 6. In this case, we observe that the normalized edit distance expected value
for the first 5 graphs is not significantly different from the one of the sampled graphs. We cannot reject
the hypothesis that the observed graph Gi was generated by SBM0.

4.1 Statistical hypothesis testing

The methodology can be formalized using statistical hypothesis testing. Let’s say we have a graph G
and a model M (possibly obtained by fitting some parameters on G). We want to test the null hypothesis
H0: “The observed graph G has been generated by the candidate model M”. If we knew the distribution
of the edit distance expected value to the model M for graphs generated by M, we could simply compute
EDEV(G,M) and evaluate the probability to obtain a value at least as large under the hypothesis that
G was generated by M. However, characterizing the distribution PEDEV (M) for various models and
deriving the parameters of the distribution from the parametrization of the model would require to
further investigate the structure of their associated microcanonical ensembles.

As we do not know this distribution, we use bootstrapping to conduct our test. This approach consists
in replacing the unknown distribution by a sample generated using this distribution. We therefore use
M to generate a sample of q graphs G1, . . .Gq. We can then consider G as a sample of size 1 from an
unknown distribution M′ and HO can be reformulated as: ”(Gi)i∈J1,qK and G were generated by the same
probability distribution”. Such an hypothesis can be tested using Fisher’s permutation test, as described
in [21]. We consider for each graph its edit distance expected value to the model M: xi = EDEV(Gi,M)



13 of 23

and y = EDEV(G,M), and compute the difference between the means of the two samples

θ = x̄− ȳ =
1
q

q

∑
i=1

xi− y

We test H0 by evaluating, under this hypothesis, the probability p=PH0 [θ
∗ > θ ] to obtain a value of θ ∗

at least as large for two samples of size 1 and q generated by M. The exact probability cannot be com-
puted, as we do not know the probability distribution PEDEV (M), but it can be approximated by consider-
ing all the pairs of samples of size 1 and q that can be constructed by picking at random one graph within
the q+1 graphs G,G1, . . . ,Gq. We denote P j the pair of samples {(G j),(G1, . . . ,G j−1,G,G j+1, . . . ,Gq)}.
For this pair of samples, the difference between the means is denoted

θ
∗
j =

1
q

(
∑
i 6= j

xi + y

)
− x j

If H is true, the q+1 pairs of samples Pi are a subset of the possible pairs of samples generated by M,
and we can make the approximation

PH0 [θ
∗ > θ ]≈

#{ j | θ ∗j > θ}
q+1

If PH0 [θ
∗ > θ ] is lower than a preset threshold δ (in the following we will use δ = 0.01), one can

conclude that there is enough evidence to reject the hypothesis that G was generated by M (and thus
affirm that G was not generated by M). On the other hand, if it is greater than this threshold, there is
not enough evidence to reject it. It should be stressed that this last sentence does not mean that one can
affirm that G was generated by M, but only that this hypothesis cannot be discarded.

Let’s consider a situation in which one wishes to evaluate the relevance of the block structure com-
puted on a graph G, with a weight matrix WG. Whatever the graph, and the partition B = (b1, . . . ,bp) of
its n nodes, it is always possible to define M ∈Mp(N) as

∀i, j ∈ J1, pK,M[i, j] = ∑
u∈bi,v∈b j

WG[u,v]

such that G ∈ΩSBM(n,B,M). The objective is to evaluate whether this stochastic blockmodel is a relevant
model of G. An even trickier question is to evaluate whether any stochastic blockmodel can be a relevant
model. In particular, spatial models can generate graphs with groups of nodes densely connected due
to their position rather than to block membership. An example of such a graph is shown in figure 7. It
may then be hard to tell whether the blocks found are indeed a legitimate model of the observed graph
or should be considered as artefacts, consequences of the underlying spatial structure.

To illustrate how statistical hypothesis testing allows to address this issue, we consider eight models:
four stochastic blockmodels and four Waxman models for random geometric graphs1 with different sets
of parameters. The Waxman model for spatial graphs allows to easily control the strength of the spatial
structure, by tuning the speed at which edge probability decays as the distance between nodes rises.

1https://networkx.org/documentation/stable/reference/generated/networkx.generators.
geometric.waxman\_graph.html
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FIG. 7. Spatial graph generated using the Waxman random geometric model. 100 nodes are randomly distributed in a [0,1]× [0,1]
square. They are then connected with a probability depending on the distance d between nodes: p(d) = 10exp

( d
0.05L

)
, with L

the maximum distance between two nodes. Communities are computed using graph-tool (https://graph-tool.skewed.
de/).

The number of nodes is fixed to n = 100 and the parameters are fixed such as to ensure a density d
around 0.036. All stochastic blockmodels use a node partition in four blocks of 25 nodes, with a block
adjacency matrix of the form: 

mint mext mext mext
mext mint mext mext
mext mext mint mext
mext mext mext mint


The four stochastic blockmodels are then defined by:

1. M0: mint = 90, mext = 0

2. M1: mint = 75, mext = 5

3. M2: mint = 60, mext = 10

4. M3: mint = 45, mext = 15

This way, the graphs generated using SBM0 are made of perfectly separated blocks of nodes, while those
generated by SBM3 have blocks with as many internal and external edges.

For the Waxman models, we also consider four parameter sets:

1. M4: α = 0.1, β = 1
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FIG. 8. For each model Mi in ordinate, and each graph number i in abscissa, we compute the probability pi, j that a graph
generated using SBMi, j has a normalized edit distance expected value to SBMi, j further away from the mean value di, j than Gi, j .
The probability is plotted in heatmap.

2. M5: α = 0.08, β = 1.6

3. M6: α = 0.06, β = 2.7

4. M7: α = 0.04, β = 8.5

The lower the value of α , the stronger the spatial structure.
With each model Mi, we generate 8 graphs (Gi, j) j∈J0,7K. On each of those observed graph, we find

the minimum entropy node partition Bi, j using graph tools, and fit a candidate stochastic blockmodel
SBMi, j on Gi, j based on this node partition. We then evaluate the relevance of this stochastic blockmodel
using the previously described methodology. We use a confidence level δ of 0.01 and a sample size
q = 200. The probabilities pi, j = PH0 [θ

∗
i, j > θi, j] obtained are plotted in figure 8.

We observe that for all graphs generated by stochastic blockmodels but three, pi, j > 10−2 = δ . On
the other hand, for all spatial graphs pi, j 6 δ . This means that the hypothesis ”Gi, j has been generated
by the candidate stochastic block model SBMi, j” is rejected for all 32 spatial graphs, and for three of the
stochastic blockmodels generated graphs. Let’s stress again that a probability pi, j superior to δ does not
mean that SBMi, j is the right model for Gi, j. It only means that there is not enough statistical evidence
to reject it.

These results show that, on 32 spatial graphs generated with various sets of parameters, the statis-
tical hypothesis testing methodology is able to correctly identify that the block structure found is not a
relevant model, despite being the solution maximizing the likelihood among the candidate blockmodels.
This result is not trivial. Indeed, the fact that this partition is the most likely according to the entropy



16 of 23

definition of likelihood means that the block identified are characterized by a specific connection density
which cannot be explained by random fluctuations. However, as the likelihood is maximized on a set of
models which does not contain the Waxman model used to generate the graph, this estimator is not able
to recognize that its structure would be even better explained using a spatial model. What is more, this
methodology manages to reject the block structure for all spatial graphs while spuriously rejecting it for
only three out of 32 graphs originally generated with a stochastic blockmodel. In other words, there is
no false positive, and only three false negatives.

Strictly speaking, these results only allow to rule out one node partition. As the block structure
tested were fitted on the observed graphs using minimum entropy, one could argue that ruling out this
partition implies that no other node partition can lead to a relevant model. Yet, for most real graphs,
there is more than one plausible node partition and minimizing the entropy of a partition is a stochastic
process. Therefore, the experiment should be performed more than once to conclude that the observed
graph has no block structure.

5. Conclusion

As a conclusion, we have seen that widely used quality measures for graph models rely either on the
number of different graphs they can produce, which neglects the geometric structure of the graph space,
or on a direct comparison with the barycenter of those graphs, which discards information about the
distribution around this barycenter. Because of these restrictions, they are unable to distinguish between
graphs which have a typical structure of a model and graphs which may be generated by this model but
as outliers.

In this paper, we show how edit distance can provide additional information on the structure of the
graph space which is captured neither by the entropy nor the barycenter. By computing the expected
value of the normalized edit distance for a given graph, we obtain a criterion which can be used to
evaluate the model quality with respect to this graph. Finally, we incorporate this criterion to a statistical
hypothesis testing methodology to perform model selection.

Graph space is a theoretical framework which can be used for any statistical model, and particu-
larly spatial models. It allows to compare them with SBM or configuration model, and perform model
selection between models of different nature. What is more, statistical hypothesis testing provides a
statistically rigorous methodology to evaluate the relevance of a candidate model to an observed graph.

Apart from its simplicity to compute and interpret, an interesting result about the normalized edit
distance expected value is that the same quantity can be used to test many different models. Statisti-
cal tests could be performed on any graph property, such as the average path length or the clustering
coefficient, to rule out a candidate model. Yet, such tests require to choose for each model and each
tested graph a property that could be used as a statistical test. In turn, all these properties can be used
to define new models which better reproduce the values measured on the observed graph (as done for
example when defining degree-corrected stochastic blockmodels, which incorporate the degree distri-
bution constraint to the block structure). The risk being that by taking more and more properties into
account, one eventually overfits the graph. Note, however, that the expected value of the normalized
edit distance is somewhat different from the previously mentioned properties. Indeed, as it depends on
both the graph and the whole microcanonical ensemble, it is impossible to compute its value on a graph
observed beforehand and then to define a model adapted to this specific value.

Indeed, the fact that, for most models, the normalized edit distance expected value distribution
quickly clusters around the mean, is a property of the graph space rather than the graph itself. It is a
consequence of a geometrical result (the volume of a ball in n dimensions), which highlights the benefits
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of considering the geometric structure of graph ensembles. However, the edit distance is not the only
distance that can be used. Considering other metrics which are more sensitive to the global topology
of the network, like the perturbation-resistance distance or spectral distances, could provide additional
insight on the structure of the graph space.
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6. Appendix

6.1 Barycenter graph weight of various statistical models

We have defined the barycenter of a graph model as

GM = ∑
H∈ΩM

P(H) ·H

Which means that

∀(i, j) ∈V 2,WGM (i, j) = ∑
H∈ΩM

P(H)×WH(i, j)

= E[WH(i, j)]

Let’s illustrate how this can be computed for some classical models.

ERDÖS-RÉNYI MODEL The simplest graph model is the Erdös-Rényi model for random graphs. It’s
associated microcanonical ensemble can be defined as:

ΩER(n,m) = {H = (V,E) | |V |= n∧|E|= m}

Let’s recall that for the sake of simplicity, we chose to consider multigraphs with self loops. Thus, the
computation of E[WH(i, j)] is particularly simple. Indeed, if for each pair of node (i, j) ∈ V 2 and each
k ∈ [1,m] we define the random variable Xi, j,k which is equal to 1 if the kth edge is i→ j and to 0 else,
then we have that WH(i, j) = ∑

m
k=1 Xi, j,k. It is a sum of independent Bernouillis’ random variable so it

follows a binomial law of parameters m and 1
n2 , and thus

WGER(n,m)
(i, j) = E

ΩER
[WH(i, j)] =

m
n2 (6.1)

CONFIGURATION MODEL For the configuration model, all graphs in the microcanonical ensemble
must have the same degree distribution. Let’s consider the directed version.

ΩCFMD = {G | ∀i ∈V,degout
G (i) = kout

i ∧degin
G(i) = kin

i }

To compute the weight of the barycenter graph’s edges, we consider that each node i has kout
i outgoing

stubs and kin
i ingoing stubs. Any graph in ΩCFMD is characterized by a configuration of connections of

outgoing stubs with ingoing stubs. For every pair of nodes i, j ∈ V 2 and any pair of stub k ∈ [1,kout
i ],

l ∈ [1,kin
j ], we define the random variable Xi, j,k,l which is equal to 1 if the kth outgoing stub of i is

connected to the lth ingoing stub of j, and to 0 otherwise. Then

WH(i, j) =
kout

i

∑
k=1

kin
j

∑
l=1

Xi, j,k,l

As each outgoing stub of i has the same probability to be connected to any of the m ingoing stubs

∀i, j,k, l,P[Xi, j,k,l = 1] =
1
m

Thus, WH(i, j) follows a binomial law of parameters 1
m and kout

i × kin
j . Finally

WGCFMD(i, j) = E
ΩCFMD

[WH(i, j)] =
kout

i × kin
j

m
(6.2)
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STOCHASTIC BLOCKMODEL The case of the stochastic blockmodel can be treated in the same way
as erdös-rényi. It is defined, considering a partition of the nodes B = (b1, . . . ,bq) and a block adjacency
matrix M ∈Mq(N) by

ΩSBM =

{
H | ∀bk,bl , ∑

i∈bk

∑
j∈bl

WH(i, j) = M(k, l)

}

So, for any pair of nodes i ∈ bk, j ∈ bl , WH(i, j) follows a binomial law of parameters (M(k, l), |bk||bl |).
Thus

WGSBM (i, j) = E
ΩSBM

[WH(i, j)] =
M(k, l)
|bk||bl |

(6.3)

SPATIAL MODELS References for the gravitational model and the radiation model can be found in [2]
and [16]. In both cases, they are constructed in such a way that edges weight have a given expected
value. In the case of the gravitational model, it is

WGgrav(i, j) = f(d(i, j))× kout
i × kin

j (6.4)

where d(i, j) is the distance from node i to node j, and f is a deterence function.
Finally, in the case of the radiation model, it is

WGrad(i, j) =
kout

i × kin
i × kin

j

(kin
i + si j)× (kin

i + kin
j + si j)

(6.5)

with si j = ∑u∈C (i, j) kin
u and C (i, j) = {u ∈V | 0 < d(i,u)< d(i, j)}.
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6.2 Convergence proof

First of all, let’s prove the following lemma

LEMMA 6.1 Let B be a partition of J1,nK with p blocks. Let M ∈Mp(N) be a block adjacency matrix.
For all k ∈ N, we define the stochastic blockmodel S(k) = (B,k ·M), and its barycenter GS(k). We
consider a sequence of random graphs (Gk)k∈N, each drawn from S(k). We have that

ed(Gk,GS(k))
P−→

k→∞
0

Given the notation above, we want to prove that:

∀α > 0,P[ed(Gk,GS(k))> α]−→
k→∞

0

Let α > 0. Let’s denote m = ∑i, j Mi, j the number of edges of graphs in ΩS(1). By definition,

ed(Gk,GS(k)) =
1

2km ∑
u,v
|WGk(u,v)−WGS(k)(u,v)|

Thus,

ed(Gk,GS(k))> α ⇒∃(u,v),

∣∣∣∣∣WGk(u,v)−WGS(k)(u,v)

2km

∣∣∣∣∣> α

n2

and

P[ed(Gk,GS(k))> α]6 ∑
u,v

P

[∣∣∣∣∣WGk(u,v)−WGS(k)(u,v)

2km

∣∣∣∣∣> α

n2

]

Let’s consider two blocks bi and b j in B. We know that ∀u ∈ bi,v ∈ b j,WGS(k)(u,v) = k · Mi, j
|bi||b j |

and WGk(u,v) ∼B(k ·Mi, j, pi, j) with pi, j =
1

|bi||b j | . Therefore, according to the Bienaymé-Tchebychev
inequality:

P

[∣∣∣∣∣WGk(u,v)−WGS(k)

2km

∣∣∣∣∣> α

n2

]
6

k×Mi, j× pi, j× (1− pi, j)×n2

4× k2×m2×α

6
Mi, j× pi, j× (1− pi, j)×n2

4× k×m2×α

−→
k→∞

0

Thus,

P[ed(Gk,GS(k))> α]−→
k→∞

0 (6.6)

Which proves the lemma.
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We can now prove the theorem

THEOREM 6.1 Let B1 and B2 be two partition on J1,nK, with p1 and p2 blocks respectively. Let
M1 ∈Mp1(N) and M2 ∈Mp2(N) be two block adjacency matrices such that

∑
i, j∈[1,p1]2

M1[i, j] = ∑
k,l∈[1,p2]2

M2[k, l] = m

Let’s consider two series of stochastic blockmodels defined as S1(k) = (B1,k ·M1) and S2(k) = (B2,k ·
M2), whose barycenters are denoted G1(k) and G2(k). We have that

1. There exists d ∈ R,∀k ∈ N,ed(G1(k),G2(k)) = d

2. Let (Gk)k∈N be series of random graph each drawn following model S1(k).

EDEV(Gk,S2(k))
P−→

k→∞
d

For any pair of nodes i, j, belonging to blocks b(i) and b( j) in B1 (resp. B2), the weight of the edge
i→ j in G1(k) (resp. G2(k)) is given by:

WG1(k)[i, j] = k · M[b(i),b( j)]
|b(i)||b( j)|

Therefore, the edit distance between G1(k) and G2(k) is

ed(G1(k),G2(k)) =
1

2km ∑
i, j∈[1,n]2

∣∣WG1(k)[i, j]−WG2(k)[i, j]
∣∣

=
1

2km ∑
i, j∈[1,n]2

∣∣∣∣k · M1[b1(i),b1( j)]
|b1(i)||b1( j)|

− k · M2[b2(i),b2( j)]
|b2(i)||b2( j)|

∣∣∣∣
=

1
2m ∑

i, j∈[1,n]2

∣∣∣∣M1[b1(i),b1( j)]
|b1(i)||b1( j)|

− M2[b2(i),b2( j)]
|b2(i)||b2( j)|

∣∣∣∣
which is constant with respect to k. In the following we will denote this distance d for the sake of
conciseness. We want to show that

EDEV(Gk,S2(k))
P−→

k→∞
d

We start by noticing that

EDEV(Gk,S2(k))−d = E
H∈S2(k)

[ed(Gk,H)]−d

6 E
H∈S2(k)

[ed(Gk,G1(k))+ ed(G1(k),G2(k))+ ed(G2(k),H)]−d

6 ed(Gk,G1(k))+ E
H∈S2(k)

[ed(G2(k),H)]
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On the other hand,

d−EDEV(Gk,S2(k)) = E
H∈S2(k)

[ed(G1(k),G2(k))− ed(Gk,H)]

6 E
H∈S2(k)

[ed(G1(k),Gk)+ ed(Gk,H)+ ed(H,G2(k))− ed(Gk,H)]

6 ed(Gk,G1(k))+ E
H∈S2(k)

[ed(G2(k),H)]

Thus
|EDEV(Gk,S2(k))−d|6 ed(Gk,G1(k))+ E

H∈ΩS2(k)
[ed(G2(k),H)] (6.7)

Because Gk is generated following S1(k), a direct application of lemma 6.1 is that

ed(Gk,G1(k))
P−→

k→∞
0

What is more, if H is generated following S2(k), we also have that

ed(H,G2(k))
P−→

k→∞
0

which implies that ed(H,G2(k))
L−→

k→∞
0 and in particular

E
H∈ΩS2(k)

[H,G2(k)]−→
k→∞

0

Finally, we obtain that

ed(Gk,G1(k))+ E
H∈ΩS2(k)

[H,G2(k)]
P−→

k→∞
0

And thanks to equation 6.7:
EDEV(Gk,S2(k))

P−→
k→∞

d (6.8)
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