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RANDOM WALKS WITH DRIFT INSIDE A PYRAMID: CONVERGENCE RATE
FOR THE SURVIVAL PROBABILITY

RODOLPHE GARBIT AND KILIAN RASCHEL

Abstract. We consider multidimensional randomwalks in pyramids, which by definition are cones
formed by finite intersections of half-spaces. The main object of interest is the survival probability
P(τ > n), τ denoting the first exit time from a fixed pyramid. When the drift belongs to the interior
of the cone, the survival probability sequence converges to the non-exit probability P(τ = ∞),
which is positive. In this note, we quantify the speed of convergence, and prove that the exponential
rate of convergence may be computed by means of a certain min-max of the Laplace transform of
the random walk increments. We illustrate our results with various examples.

1. Introduction and main results

A glimpse of our results. For a d-dimensional random walk (Sn)n>0 with integrable and
independent incrementsXn = Sn−Sn−1 having common distribution µ, we consider the survival
probabilities

(1) Px(τ > n),

where τ denotes the first exit time from a given coneK, i.e.

τ = inf{n > 0|Sn /∈ K},

and Px is a probability distribution under which the random walk starts at S0 = x, with x ∈ K.
When the drift m = EX1 belongs to the interior Ko of the cone K, the non-exit probability

Px(τ = ∞), which is the limit of the sequence (1), is positive (see [5, Lem. 8] for example). In
this note, our main result quantifies the speed of convergence in the following way:

(2) Px(τ > n) = Px(τ =∞) + ρnBn,

where the exponential rate ρ ∈ (0, 1), and Bn satisfies n
√
Bn → 1 and Bn → 0. The precise

statement is given in Theorem 1 below. The rate ρ is given in terms of a certain min-max of the
Laplace transform of µ.

In the special case of small step walks in Zd (i.e. when the support of µ is a subset of the 2d

nearest neighbors of the origin) in an orthant Zd+, this result was previously obtained in [5, Thm 4].
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K

K∗

Figure 1. A coneK (in red) and its dual coneK∗ (in blue)

In the present paper, we consider general probability distributionsµwith all exponentialmoments
and polyhedral convex cones, i.e. finite intersection of half-spaces, which for short we will call
pyramids; see examples on Figures 1 and 2.

One initial motivation to obtain formula (2) is the following consequence on the generating
function

(3) φ(z) =
∞∑
n=0

Px(τ > n)zn.

If the survival probabilities behave as in (2), then the generating function (3) can not be a rational
function, as shown in [5] using singularity analysis. The question of proving rationality (and various
refinements, such as algebraicity) of generating functions as above is inspired by the combinatorial
work [1], where the rational nature of series as in (3) is used to measure the complexity of the
associated combinatorial problem.

Technical assumptions. In order to present the hypotheses under which we shall prove our main
results, we introduce two objects, through which the exponential rate ρ in (2) will be determined:

• the Laplace transform L of the increment distribution µ:

L(t) = E
(
e〈t,X1〉) =

∫
Rd
e〈t,y〉µ(dy),

• the dual coneK∗ associated withK (see Figure 1 for an example):

K∗ = {x ∈ Rd|〈x, y〉 > 0 for all y ∈ K}.

Obviously,K∗ is a closed convex cone.
We will also use extensively the notation Du for the closed half-space with inner normal

u ∈ Sd−1, i.e.
Du = {y ∈ Rd|〈y, u〉 > 0}.



SURVIVAL PROBABILITIES OF RANDOM WALKS WITH DRIFT INSIDE A PYRAMID 3

Figure 2. Examples of (truncated) pyramids in dimension 3

Note thatK ⊂ Du if and only if u ∈ K∗. Disclaimer: when using the notationDu, it is understood
that u belongs to the sphere Sd−1 (in particular u 6= 0).

Throughout this paper, we make the following assumptions on the cone K and the distribution
µ of the random walk increments:
(A1) [Cone] The cone K is a finite intersection of closed half-spaces Du, where u varies in a

finite subset S of Sd−1, henceK = ∩u∈SDu, and it has a non-empty interior. We call this
type of cone a closed pyramid. See Figure 2 for examples.

(A2) [Adaptation to the dimension] The random walk is truly d-dimensional, i.e. there is no
u 6= 0 such that 〈u,X1〉 = 0 almost surely.

(A3) [Adaptation to the cone] The random walk started at zero can reach the interiorKo of the
cone: there exists k > 0 such that P0(τ > k, Sk ∈ Ko) > 0.

(A4) [Exponential moments] The random walk increments have all exponential moments. In
other words, the Laplace transform is finite everywhere on Rd. We call m = EX1 =∫
yµ(dy) the drift.

(A5) [Non-triviality] The random walk is not trapped in the cone: P(X1 ∈ K) < 1. (If
P(X1 ∈ K) = 1, then Px(τ > n) = 1 for all n and there is nothing more to say.)

Precise statements. Our main result is the following:

Theorem 1. Assume hypotheses (A1)–(A5) above, K = ∩u∈SDu, and m ∈ Ko. The subset
S′ ⊂ S of directions u such that the equation L(su) = 1 has a solution s = su < 0 is non-empty,
and

Px(τ > n) = Px(τ =∞) + ρnBn,

with

(4) ρ = max
u∈S′

min
z∈K∗

L(tu + z) ∈ (0, 1),

where tu = suu and Bn satisfies n
√
Bn → 1 together with Bn → 0.

Remark 2. Under the hypotheses of Theorem 1, the set S′ is also characterized as being the subset
of all u in S such that P(X1 ∈ Du) < 1. See Lemma 6 for a proof.

Remark 3. It might not be clear at first sight why the expression (4) for ρ doesn’t depend on the set
S as long as K = ∩u∈SDu. The reason is that one set S0 among such S is minimal with respect
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to inclusion, and any vector in S can be written as a non-negative linear combination of vectors
in S0. This combined with further basic properties of the convex function t 7→ minz∈K∗ L(t+ z)

makes it possible to deduce that the maximum on {tu|u ∈ S′} is reached on {tu|u ∈ S′0}. The set
S0 can be characterized as the set of extremal directions of K∗. This is explained in Appendix A;
its reading is not necessary for the understanding of the proof of Theorem 1.

Using similar singularity analysis technniques as in [5], the estimate obtained in Theorem 1
yields the following:

Corollary 4. Assume hypotheses (A1)–(A5) above, K = ∩u∈SDu, and m ∈ Ko. Then the
generating function (3) is not rational.

Although we are not able to extend Theorem 1 to the case of cones which are not pyramids, we
conjecture that the same conclusion holds, provided the formula (4) for ρ be replaced by

ρ = max
t∈M

min
z∈K∗

L(t+ z),

whereM = (−K∗) ∩ {L = 1} \ {0}.
The case of a driftm /∈ Ko is done in [5], and our proof of Theorem 1 is based on that previous

result, which we now state for convenience:

Theorem 5 (Theorem 3 in [5]). Assume hypotheses (A1)–(A4) above and that L is coercive on
K∗. Ifm /∈ Ko, then

Px(τ > n) = ρnBn,

where
ρ = min

z∈K∗
L(z) ∈ (0, 1],

and Bn satisfies n
√
Bn → 1 and Bn → 0. Moreover ρ < 1 if and only ifm /∈ ∂K.

2. Examples of application of Theorem 1

In this section, we give various illustrations of Theorem 1.

2.1. Small step examples. All examples presented in Table 1 below are small step walks in the
plane, confined to the cone K = R2

+. By definition, two-dimensional small step models have a
support included in the set of the eight nearest neighbors {−1, 0, 1}2 \ {(0, 0)}.

In Table 1, we use the notation of Theorem 1; for example, s(1,0) denotes the unique negative
point such that L(s(1,0), 0) = 1. We further introduce

(5) ρ(1,0) = min
z∈R2

+

L(t(1,0) + z),

with t(1,0) = (s(1,0), 0). The quantities s(0,1) and ρ(0,1) are defined similarly. The rate ρ is as in
(4) and satisfies ρ = max{ρ(1,0), ρ(0,1)}.

In the list of 79 intrinsically different models of walks in the quarter plane established in [1],
exactly four of them have a support included in a half-plane and a drift inside of the quadrant.
These models are considered in the four first rows of Table 1. Notice that the first column of Table 1
represents the steps of the random walk; it is implicitly assumed that the transition probabilities
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are uniform. For example, the first model has jump probabilities 1
3 in the directions (−1, 1), (1, 1)

and (1,−1).
In the same list of 79 quadrant models mentioned above, 8 models have simultaneously a drift

in the cone and a support which is not included in any half-plane. These models are represented
on Table 1 as well.

For each of these 12 models, we compute s(1,0), ρ(1,0), s(0,1), ρ(0,1), and finally the rate ρ
appearing in Theorem 1. For the first model, the rate ρ is already computed in [7, Prop. 9]. The
second, third and fourth rates are obtained in [6, Thm 3.1].

Figure 3. On the left (right), the first example of Table 1 (the nineth example of
Table 1). We represent the level set {t ∈ R2|L(t) = 1} (red color), the drift (red),
the translated cones t(1,0) + R2

+ (yellow) and t(0,1) + R2
+ (blue); the intersection

of the two previous translated quadrants is the positive quarter plane (green). On
the left display, the two points stand for the global minima in t(1,0) + R2

+ and
t(0,1) + R2

+. On the right display, the same minima points are drawn, as well as
the global minimum on R2.

2.2. A weighted small step example. We now look at a two-dimensional example with Laplace
transform

(6) L(x, y) = p−1,1e
−x+y + p0,1e

y + p1,1e
x+y + p1,0e

x + p1,−1e
x−y,

which is just a weighted version of the third step set on Table 1. We assume that the drift is in the
interior of the quadrant, i.e.

(7) p−1,1 < p1,1 + p1,0 + p1,−1 and p1,−1 < p−1,1 + p0,1 + p1,1

and that p0,1 + p1,1 + p1,0 > 0 so that the walk be truly 2-dimensional (hypothesis (A2)). If
p−1,1 = p1,−1 = 0, then the walk is trapped in the cone and τ = ∞ almost surely. If both of
p−1,1, p1,−1 are non-zero, then applying Theorem 1, we shall prove that

(8) ρ = max
{
p0,1 + 2

√
p−1,1(p1,1 + p1,0 + p1,−1), p1,0 + 2

√
p1,−1(p−1,1 + p0,1 + p1,1)

}
.
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Model s(1,0) ρ(1,0) s(0,1) ρ(0,1) ρ

− log 2 2
√
2

3
− log 2

√
8

3

√
8

3
[7]

− log 2 1+2
√
2

4
− log 2 1+2

√
2

4
1+2
√
2

4
[6]

− log 3 1+2
√
3

5
− log 3 1+2

√
3

5
1+2
√
3

5
[6]

− log 2 1+2
√
2

4
− log 3

√
3

2
1+2
√
2

4
[6]

− log 2
√
8

3
− log 2

√
8

3

√
8

3

− log 2 1+2
√
2

4
− log 2 1+2

√
2

4
1+2
√
2

4

− log 2 2+2
√
2

5
− log 3 1+2

√
3

5
2+2
√
2

5

− log 2 2+2
√
2

5
log( 2

3
) 2

√
6

5
2
√
6

5

− log 2 2+2
√
2

5
− log 2 2+2

√
2

5
2+2
√
2

5

log( 2
3
) 1+2

√
6

6
− log 3 1+

√
3

3
1+2
√
6

6

log( 2
3
) 1+2

√
6

6
log( 2

3
) 1+2

√
6

6
1+2
√
6

6

log( 2
3
) 2+2

√
6

7
log( 2

3
) 2+2

√
6

7
2+2
√
6

7

Table 1. Some important quadrant walk models considered in [1, 7, 6]
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Figure 4. This figure contains two examples, which are complementary to those
of Figure 3. On the left, a model with step set included in a half-space. The
Laplace transform does not admit a minimum in the direction (1, 0), so according
to Theorem 1, S′ = {(0, 1)} and ρ is computed as the global minimum on
t(0,1) + R2

+. On the right, the model with Laplace transform L(x, y) =
e−x

6 + e−y

2 + ex+2y

3

The formula (8) is a generalization of [6, Thm 3.1] to weighted, non-symmetric step sets with
Laplace transform (6).

If one of p−1,1, p1,−1 is zero (say p−1,1) and the other one is non-zero, then

(9) ρ = p1,0 + 2
√
p1,−1(p0,1 + p1,1).

Proof of (8). Applying Theorem 1 yields ρ = max
{
ρ(1,0), ρ(0,1)

}
, with ρ(1,0) given by (5),

and ρ(0,1) computed symmetrically. In order to derive (8), it is sufficient to show that
ρ(1,0) = p0,1 + 2

√
p−1,1(p1,1 + p1,0 + p1,−1). We first observe that ρ(1,0) is necessarily reached

at some boundary point of t(1,0) + R2
+. Indeed, if ρ(1,0) were reached at some interior point of

t(1,0) + R2
+, then it would be a global minimum of L on R2, which does not exist due to the fact

that the step set is included in a half-space. Hence it is enough to compute

α = min{L(s(1,0), y)|y > 0} and β = min{L(x, 0)|x ∈ [s(1,0),∞)}.

The equation L(x, 0) = 1 writes

(10) p−1,1e
−x + p0,1 + (p1,1 + p1,0 + p1,−1) e

x = 1,

and is solved by

x = 0 and x = s(1,0) = ln

(
p−1,1

p1,1 + p1,0 + p1,−1

)
< 0.
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Now we compute the partial derivative:

∂L

∂y
(s(1,0), 0) = p−1,1e

−s(1,0) + p0,1 + p1,1e
s(1,0) − p1,−1es(1,0)

= 1− (p0,1 + 2p1,−1)e
s(1,0)

where the last equality is obtained thanks to (10). Because of (7), we have

p0,1 + 2p1,−1 < p0,1 + p1,−1 + p−1,1 + p0,1 + p1,1 = 1,

and es(1,0) < 1. Therefore ∂L
∂y (s(1,0), 0) > 0 and by convexity the partial function y 7→ L(s(1,0), y)

is non-decreasing for y > 0. By consequence α = 1. Accordingly,

ρ(1,0) = β = min{L(x, 0)|x ∈ R}.

A straightforward computation then shows that the global minimum of a function of the form
ae−x + b + cex is reached at ex =

√
a
c and takes the value b + 2

√
ac. The proof of (8) is

completed.
The formula (9) would be proved similarly, using that S′ = {(0, 1)}. �

2.3. Irrelevance of the location of the drift. In this paragraph, we would like to illustrate the
following fact: the position of the drift (in particular its distance to the boundary) does not in
general determine which point in S′ will give the rate ρ.

Let us take three examples in the case of the quarter plane. For the first model in Table 1,
the model is symmetric (in the first diagonal), with drift (13 ,

1
3), and one has ρ = ρ(1,0) = ρ(0,1).

Consider now the fourth model in Table 1. Its drift is (14 ,
1
2), closer to the vertical axis. The rate

is given by ρ(1,0), as shown in Table 1. Finally, look at the model represented on Figure 4, which
has a drift of the form (16 ,

1
6). Easy computations show that ρ(1,0) ≈ 0.97, which turns out to be

the global minimum of L on R2, while ρ(0,1) ≈ 0.99. By continuity w.r.t. the parameters, this last
example could be modified to get an example with a drift slightly directed to the vertical axis, but
for which the rate ρ would be actually equal to ρ(0,1).

2.4. Normal distribution. Here we consider the case where the step distribution µ is a standard
normal distribution on Rd with meanm. The Laplace transform is then given by

(11) L(t) = exp

(
〈t,m〉+

‖t‖2

2

)
= exp

(
‖t+m‖2 − ‖m‖2

2

)
.

Let us first recall an explicit expression for the minimum of L on the closed convex coneK∗. It is
clearly reached when t is the projection of −m onK∗, and then

‖t+m‖ = d(−m,K∗) = d(m,K]),

whereK] = −K∗ is the polar cone ofK. By Moreau’s decomposition theorem

d(m,K])2 + d(m,K)2 = ‖m‖2,

therefore the minimum of L onK∗ is exp
(
−1

2d(m,K)2
)
.
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Figure 5. This figure summarizes the results presented in Subsection 2.4. The
equation L(t) = 1 describes a circle with center at c = −m and radius r = ‖m‖.
The cone K is represented in blue and the polar cone in green. In pink, we have
represented one of the two domains tu +K∗.

Now consider the setΓ = {t ∈ R2|L(t) = 1}. From (11), we see thatΓ is the circle C(−m, ‖m‖)
with center at −m and radius ‖m‖, see Figure 5. For t ∈ Γ, we have

L(t+ z) = exp

(
‖z + t+m‖2 − ‖t+m‖2

2

)
since ‖t+m‖2 = ‖m‖2. The function z 7→ L(t+ z) is thus the Laplace transform of a standard
normal distribution with mean t+m, and it follows that

min
z∈K∗

L(t+ z) = exp

(
−1

2
d(t+m,K)2

)
.

For a closed pyramid K = ∩u∈SDu containing m in its interior, the set S′ is equal to S (see
Remark 2) and the rate ρ is given by

ρ = max
u∈S

exp

(
−1

2
d(tu +m,K)2

)
= exp

(
−1

2
min
u∈S

d(zu,K)2
)
,

where zu = tu +m is characterized as being the unique intersection point of the circle C(0, ‖m‖)
and the half-line {su+m|s < 0}.

For example, consider the cone K = {ρ(cos θ, sin θ)|ρ > 0, θ ∈ [0, α]} in the plane and
m = r(cosβ, sinβ), with 0 < β < α 6 π. Then K = Du ∩ Dv with u = (0, 1)

and v = (sinα,− cosα). Some computations show that zu = r(cosβ,− sinβ) and zv =

r(cos(2α− β), sin(2α− β)). From this, we obtain ρ = e−d
2/2 with

d = rmin
{

sinβ, sin(α− β)
}
.

Note that in this example, d equals the distance betweenm and ∂K.
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3. Proof of Theorem 1

3.1. Sketch of the proof. LetK = ∩u∈SDu be a closed pyramid. We want to estimate

∆n = Px(τ > n)− Px(τ =∞) = Px(n < τ <∞).

By the geometry ofK, we have {τ <∞} = ∪u∈S{σu <∞}, where σu denotes the first exit time
from the half-space Du, therefore

max
u∈S

Px(n < τ, σu <∞) 6 ∆n 6
∑
u∈S

Px(n < τ, σu <∞).

If u is such that P(X1 ∈ Du) = 1, then the random walk can not leave the half-space Du and
Px(n < τ, σu <∞) = 0. So we can rewrite the preceding relation as

max
u∈S′

Px(n < τ, σu <∞) 6 ∆n 6
∑
u∈S′

Px(n < τ, σu <∞),

where S′ is the subset of all u ∈ S satisfying P(X1 ∈ Du) < 1. We shall see that those simple
bounds are sufficient to obtain our estimate on ∆n. Estimates of each term Px(n < τ, σu < ∞)

are obtained in Lemma 9. Theorem 1 then follows immediately. Lemmas 6 and 8 are preparatory
material.

3.2. Turning the drit inside out. The Laplace transform of a vectorX = (X(1), . . . , X(d)) ∈ Rd

with probability distribution µ is the function L defined for t ∈ Rd by

L(t) = E
(
e〈t,X〉

)
=

∫
Rd
e〈t,y〉µ(dy).

It is finite in some neighborhood of the origin if and only if E
(
eα‖X‖

)
is finite for some α > 0. If

L is finite in a neighborhood of the origin, sayB(0, r), then L is infinitely differentiable inB(0, r)

and its partial derivatives are given there by

∂L(t)

∂ti
= E

(
X(i)e〈t,X〉

)
.

Therefore, the expectation EX = (EX(1), . . . ,EX(d)) is the gradient of L at the origin ∇L(0).
Notice thatX is centered (i.e. EX = 0) if and only if 0 is a critical point of L. Since L is a convex
function, this means that 0 is a minimum point of L in B(0, r).

Now suppose that L is finite in some ball B(t0, r) and define a new probability measure µ∗ by

µ∗(dy) =
e〈t0,y〉

L(t0)
µ(dy).

We will say that µ∗ is the t0-changed measure. The Laplace transform L∗ of µ∗ is linked to that
of µ by the relation L∗(t) = L(t0 + t)/L(t0), and therefore L∗ is finite in some neighborhood of
the origin. As a consequence, applying the results above shows that any random vector X∗ with
distribution µ∗ satisfies:

• E
(
eα‖X∗‖

)
<∞ for some α > 0;

• EX∗ = ∇L(t0)/L(t0).
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For specific points t0 satisfying the equation L(t0) = 1, we obtain additional information on the
new drift:

Lemma 6. Assume hypotheses (A1), (A2), (A4), (A5) above, K = ∩u∈SDu, and m ∈ Ko. Then
the subset S′ ⊂ S of directions u such that the equation L(su) = 1 has a solution s = su < 0

is non-empty and equal to the set of all u ∈ S such that P(X1 ∈ Du) < 1. In addition, for any
u ∈ S′, the gradient of L at the point tu = suu satisfies 〈∇L(tu), u〉 < 0.

Remark 7. In other words, under the tu-changed measure, the new drift does not belong to the
half-space Du = {z ∈ Rd|〈z, u〉 > 0}.

Proof. First, we note that 〈m,u〉 > 0 for all non-zero u ∈ K∗. Indeed, if C is a closed cone, the
interior of its dual cone has the following description:

(C∗)o =
{
y ∈ Rd|〈y, u〉 > 0 for all u ∈ C \ {0}

}
,

see Exercise 2.31(d) in [2] for example. Since K is a closed convex cone, it is well known that
(K∗)∗ = K (see Consequence 1 in [8] or Theorem 14.1 in [9]). Applying this to C = K∗, we see
that the interior ofK can be expressed as

Ko =
{
y ∈ Rd|〈y, u〉 > 0 for all u ∈ K∗ \ {0}

}
.

This proves the first assertion.
Let u ∈ S. By definition one hasK ⊂ Du, thus u ∈ K∗. Consider the partial function of a real

variableφ(s) = L(su). This function isC∞ and striclty convex, since the Laplace transform isC∞

thanks to (A2) and strictly convex thanks to (A4). Its derivative is given by φ′(s) = 〈∇L(su), u〉,
hence φ′(0) = 〈m,u〉 > 0. Based on [4, Lem. 6], the following dichotomy holds:

• If P(X1 ∈ Du) < 1, then lims→−∞ φ(s) = ∞. Since φ is strictly convex and satisfies
φ(0) = 1 and φ′(0) > 0, there exists a unique s < 0 such that φ(s) = 1. Moreover, at this
point, the derivative φ′(s) must be negative. Hence L(su) = 1 and 〈∇L(su), u〉 < 0.
• If P(X1 ∈ Du) = 1, then lims→−∞ φ(s) = P(〈X1, u〉 = 0) < 1. In this case, the
equation φ(s) = 1 has no solution s < 0.

Since P(X1 ∈ K) < 1 by (A5) and K = ∩u∈SDu with S finite, there is at least one u ∈ S such
that P(X1 ∈ Du) < 1. Therefore S′ is non-empty. �

3.3. Change of measure. Let t0 be given and consider the t0-changed measure

µ∗(dy) =
e〈t0,y〉

L(t0)
µ(dy).

We shall denote by Px∗ a probability distribution under which (Sn)n>0 is a random walk with
increment distribution µ∗ and started at S0 = x. It is easily checked that

(12) Ex
(
f(S1, S2, . . . , Sk)

)
= L(t0)

ke〈t0,x〉Ex∗
(
f(S1, S2, . . . , Sk)e

−〈t0,Sk〉
)
,

for any non-negative measurable function f : Rk → [0,∞).
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Lemma 8. Assume L(t0) = 1, and let τ and σ be two stopping times w.r.t. the natural filtration
assiociated with (Sn)n>0. Then

(13) Px(n < τ 6 σ <∞) = e〈t0,x〉Ex∗
(
n < τ 6 σ <∞, e−〈t0,Sσ〉

)
.

Proof. For all k > n, applying (12) gives

Px(n < τ 6 σ = k) = e〈t0,x〉Ex∗
(
n < τ 6 σ = k, e−〈t0,Sk〉

)
= e〈t0,x〉Ex∗

(
n < τ 6 σ = k, e−〈t0,Sσ〉

)
.

By summing over k > n, we obtain (13). �

By specializing this relation to the exit time τ of the coneK = ∩u∈SDu and the exit time σu of
one half-space Du, we shall obtain the following:

Lemma 9. Assume hypotheses (A1)–(A5),K = ∩u∈SDu, andm ∈ Ko. For all u ∈ S′,

Px(n < τ, σu <∞) = ρnuBn,

where Bn satisfies n
√
Bn → 1 and Bn → 0, and

ρu = min
z∈K∗

L(tu + z) ∈ (0, 1),

where tu = su is the unique solution to L(su) = 1 with s < 0.

Proof. Fix u ∈ S′ and let tu be as in the statement of Lemma 6. Then the drift m∗ = ∇L(tu) of
the random walk under Px∗ satisfies 〈u,m∗〉 < 0, so that σu is almost surely finite and the relation
(13) of Lemma 8 gives

Px(n < τ, σu <∞) = e〈tu,x〉Ex∗
(
n < τ, e−〈tu,Sσu 〉

)
= e〈tu,x〉Ex∗

(
n < τ,ESn∗

(
e−〈tu,Sσu 〉

))
= e〈tu,x〉Ex∗

(
n < τ, φ(Sn)

)
,

where we have set
φ(y) = Ey∗

(
e−〈tu,Sσu 〉

)
= Ey∗

(
esu〈−u,Sσu 〉

)
.

Let us focus on φ(y) for y ∈ K. Under Py∗, the projected random walk Zn = 〈−u, Sn〉 is started
at ỹ = 〈−u, y〉 6 0 and has a positive drift 〈−u,m∗〉 > 0. The random time σu corresponds to its
first exit time T from the negative half-line (−∞, 0] and therefore φ(y) is the expectation of f(ZT )

when the random walk is started at ỹ 6 0, where f(t) = esut is continuous and non-increasing.
So, it follows from Lemma 10 below that the function φ(y) is bounded from above and below on
the coneK by two positive constants 0 < c < C. Therefore

ce〈tu,x〉 Px∗ (τ > n) 6 Px(n < τ 6 σu <∞) 6 Ce〈tu,x〉 Px∗ (τ > n) .

As a last step, we apply Theorem 5 to estimate Px∗ (τ > n). Let us see why the hypotheses
of this theorem are satisfied under P∗, i.e. by our new random walk with increment distribution
µ∗(dy) = e〈tu,y〉µ(dy) and Laplace transform L∗(t) = L(tu + t):
(A1) The cone hasn’t changed.



SURVIVAL PROBABILITIES OF RANDOM WALKS WITH DRIFT INSIDE A PYRAMID 13

(A2) The random walk is truly d-dimensional, since this condition depends only on the support
of µ∗ (it should not be included in any linear hyperplane) and its support is exactly the
same as that of µ.

(A3) For the same reason, the new random walk inherits from the original random walk the
property that it can reach the interior of the cone. This can be seen via (12).

(A4) The Laplace transformL∗(t) = L(tu+t) is finite everywhere, sinceL is finite everywhere.
• The new driftm∗ is not inK, since 〈m∗, u〉 < 0 andK ⊂ Du.
• Finally, it remains to check that L∗ is coercive on the dual cone K∗. Fix v ∈ K∗ and
recall from [4, Lem. 6] that limt→∞ L∗(tv) = ∞ if and only if the support of µ∗ is not
included in −Dv. But µ and µ∗ have the same support which is not included in −Dv, for
else the original drift m would also be in −Dv. This is impossible since m ∈ Ko and
−Dv ∩Ko = ∅.

It follows from Theorem 5 that
Px∗ (τ > n) = ρnuBn,

where Bn satisfies n
√
Bn → 1 and Bn → 0, and

ρu = min
z∈K∗

L(tu + z) ∈ (0, 1).

(ρu < 1 sincem∗ 6∈ K.) This concludes the proof of the lemma. �

We end this section with a result on overshoots of a random walk that is uniform w.r.t. the
starting point. It is very simple looking, but our proof uses a form of the renewal theorem that is
deep and not easy. It would be nice to have a simpler proof.

Lemma 10 (Overshoot). Let (Zn)n>0 be a one-dimensional random walk with integrable i.i.d.
increments Yk satisfying EYk > 0. Let T denote the first exit time from the half-line (−∞, 0]. For
any continuous, non-increasing function f : [0,∞)→ (0,∞), we have

0 < inf
x60

Exf(ZT ) 6 sup
x60

Exf(ZT ) <∞.

Proof. Since the random walk has positive drift, the exit time T is almost surely finite, furthermore
ExT <∞ for all x 6 0. Since ZT > 0 and f is non-increasing, we have Exf(ZT ) 6 f(0) for all
x 6 0. This proves the rightmost inequality of Lemma 10.

We now turn to the leftmost inequality side, which is the difficult part. Since

Exf(ZT ) > Ex (f(ZT ), ZT 6 a) > f(a)Px(ZT 6 a),

it suffices to find a > 0 such that
inf
x60

Px(ZT 6 a) > 0.

We shall first exhibit a lower bound when x remains in a bounded interval [b, 0], b < 0. To do this,
simply write

Px(ZT > a) =
∑
n>1

Px(Zn > a, T = n)

6
∑
n>1

Px(Yn > a, T > n− 1) = P(Y1 > a)ExT.
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Let b be an arbitrary negative number. Since ExT is non-increasing as x ↑ 0, we have

sup
b6x60

Px(ZT > a) 6 P(Y1 > a)EbT.

Choosing a > 0 such that P(Y1 > a)EbT < 1, we obtain infb6x60 Px(ZT 6 a) > 0.
It remains to lower bound Exf(ZT ) for large negative x. To do this, we use a well-known

consequence of the renewal theorem, which asserts that the overshoot ZT above 0 converges in
distribution as the initial state x goes to −∞. To state this result precisely, let us introduce the
ladder epochs (Tk)k>0 defined by

T0 = 0 and Tk+1 = inf{n > Tk|Zn > ZTk}, k > 0,

and the corresponding ladder heightsHk = ZTk . It is clear that our exit time T must occur at one
of the ladder epochs, hence ZT = Hτ+ , where τ+ = inf{n > 0|Hn > 0}. Now

Hn = Z0 +
n∑
k=1

(ZTk − ZTk−1
),

where the random variables ZTk − ZTk−1
are i.d.d. and positive. It follows from the renewal

theorem (in its alternative form stated in [3, XI.1, p. 363]) that, if the distribution of the ladder
heights increments ZTk − ZTk−1

is non-arithmetic1, then

lim
x→−∞

Exf(Hτ+) =
1

ν

∫ ∞
0

f(t)G(t)dt,

where G is the survival function of ZTk −ZTk−1
and ν is its expectation. See [3, XI.4, Eq. (4.10),

p. 370]. Since the variable ZTk − ZTk−1
is positive, the integral above is positive.

If the distribution of ZTk − ZTk−1
is arithmetic with span λ > 0, then

lim
n→−∞

Enλf(Hτ+) =
λ

ν

∞∑
k=0

f((k + 1)λ)G(kλ).

This follows from the same argument as above (the starting point being the renewal equation (4.8)
in [3, XI.4, p. 369] when specialized to the case of arithmetic distributions, see [3, XI.1, Eq. (1.19),
p. 362]2). Here again the limit is positive, since at least G(0) > 0. So, there exists n0 < 0 such
that infn<n0 Enλf(Hτ+) > 0. Now, for n < 0 and x ∈ ((n− 1)λ, nλ], the exit time τ+ when the
process is started at x is identical to that when started at nλ, hence

Exf(Hτ+) = Enλf(Hτ+ − (nλ− x)) > Enλf(Hτ+).

Therefore infx<n0λ Exf(Hτ+) > 0. �

1A probability distribution is arithmetic if it is concentrated on λZ for some λ > 0. In this case, the largest λ with
this property is called the span.

2Note that there is a misprint in [3, XI.1, Eq. (1.19), p. 362]: for x ∈ [0, λ), the indices j should start at 0.
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Appendix A. Properties of pyramids and proof of Remark 3

The main objective of the appendix is to prove that the value of ρ in Theorem 1 doesn’t depend
on the set S as long as K = ∩u∈SDu, as mentioned in Remark 3. Along the way of showing
this, we shall recall several statements on pyramids. To make the paper self-contained and for the
convenience of the reader, we will briefly prove these technical results.

Recall that a subset K of Rd is a closed pyramid if there is a finite subset S of the sphere Sd−1

such that K = ∩u∈SDu, where Du stands for the closed half-space {y ∈ Rd|〈y, u〉 > 0}, see
Figure 2. In other words, K is a finite intersection of homogeneous closed half-spaces. A closed
pyramid is clearly a closed convex cone.

In this section, we will show (Lemma 12) the following straightforward-looking result: if K is
a closed pyramid with non-empty interior3, there is a finite set S0 such thatK = ∩u∈S0Du and S0
is minimal w.r.t. inclusion, i.e.

K = ∩u∈SDu ⇒ S0 ⊂ S.
From this, we will deduce (Lemma 13) that

(14) max
u∈S′

min
z∈K∗

L(tu + z) = max
u∈S′0

min
z∈K∗

L(tu + z),

thus explaining why the expression for ρ in Theorem 1 doesn’t depend on the particular choice of
the set S, providedK = ∩u∈SDu.

A.1. Some facts about pyramids. To begin, let K be any non-empty closed convex cone. It is
well known thatK is the intersection of the homogeneous closed half-spaces Du which contain it
(see [9, Cor. 11.7.1]). Since the conditionK ⊂ Du is clearly equivalent to u ∈ K∗, it follows that

K =
⋂
u∈K∗

Du.

From now on, we will assumeK has a non-empty interior and focus on the structure of the dual
coneK∗. SinceK contains a ballB(x0, r), any non-zero y ∈ K∗ satisfies 〈y, x0 + ru〉 > 0 for all
u ∈ Sd−1, and this condition is equivalent to 〈y, x0〉 > r‖y‖. This implies that the cone C = K∗

is salient, i.e. there exists v ∈ Sd−1 such that 〈y, v〉 > 0 for all y ∈ C \ {0}.
Salient convex cones have the following property:

Lemma 11. If a closed convex cone C is salient, then there exists an affine hyperplane H , not
containing the origin, such that C ∩ H is compact and generates C, i.e. C = {λy|λ > 0, y ∈
C ∩H}).

Proof. The setC∩Sd−1 is compact and generatesC. Consider the affine hyperplaneH = u+[u]⊥,
where u is as in the definition of a salient cone. The projection φ : C ∩ Sd−1 → C ∩ H given
by φ(y) = y/〈y, u〉 is continuous and onto, therefore C ∩ Sd−1 is compact. Moreover C ∩ H
generates C, since any non-zero y in C can be written as y = λφ(y) with λ = 〈y, u〉. �

3The result is not true in general if the interior of K is empty. Consider for example the cone K = {0} × [0,∞)

in R2. It can be written as ∩u∈SDu, with S = {(1, 0), (−1, 0), (0, 1)}, and this S is minimal w.r.t. cardinality, but
S̃ = {(1, 0), (−1, 0), (1/

√
2, 1/
√
2)} is adapted toK as well.



16 RODOLPHE GARBIT AND KILIAN RASCHEL

Figure 6. A salient cone C and the extreme points (in red) of C ∩H

Take H as in the lemma above and denote by E the set of extreme points of the convex set
C ∩H (see Figure 6). Since C ∩H is compact, it follows from Minkowski-Steinitz Theorem (see
[9, Cor. 18.5.1]) that any of its points a can be written as a convex combination of extreme points:

a =

p∑
i=1

λiai,

with ai ∈ E , λi > 0 and
∑p

i=1 λi = 1. From this we define the set of extremal directions of C as

Ed(C) =
{
a/‖a‖|a ∈ E

}
.

It can be seen that this set does not depend on the particular choice of H , and has the following
intrisic characterisation: u ∈ Sd−1 is an extremal direction of C if and only if it can not be written
as a combination αa+βb with α, β > 0 and a, b ∈ C, a 6= b. Since C ∩H generates C, it follows
that any point u in C may be expressed as

u =

p∑
i=1

µiui,

with ui ∈ Ed(C) and µi > 0. This implies Du ⊃ Du1 ∩Du2 ∩ . . . ∩Dup .
Applying this to the salient coneK∗, we obtain the following representation forK:

(15) K =
⋂
u∈K∗

Du =
⋂

u∈Ed(K∗)

Du.

Lemma 12. A closed convex coneK with non-empty interior is a polyhedral cone (or pyramid) if
and only if the set Ed(K∗) is finite. In this case, for any set S such thatK = ∩u∈SDu, we have

(1) Ed(K∗) ⊂ S,
(2) any vector in S is a non-negative linear combination of vectors of Ed(K∗).

Proof. If Ed(K∗) is finite, then the representation (15) shows thatK is a finite intersection of half-
spaces. Conversely, supposeK = ∩u∈SDu with S finite and let T ⊂ S be such thatK = ∩u∈TDu

and minimal with respect to cardinality. Write T = {u1, u2, . . . , up} and consider the set

A =

{
p∑
i=1

λiui|λ1, λ2, . . . , λp > 0

}
.
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This set is clearly a convex cone, and it can be seen that it is a closed set (see [8, Prop. 1] or [9,
Thm 14.1]). It is straightforward that y belongs to A∗ if and only if 〈y, ui〉 > 0 for all 1 6 i 6 p.
In other words,

A∗ =

p⋂
i=1

Dui = K.

Since A is a closed convex cone, A = (A∗)∗ = K∗, see Consequence 1 in [8] or [9, Thm 14.1].
Now, it is easily seen, using the intrisic characterisation of an extremal direction together with the
minimality of the set T , that any extremal direction ofAmust be one of the ui’s. Therefore Ed(K∗)
is a subset of T , hence finite. (In fact, by minimality T = Ed(K∗).)

Any vector in S is a non-negative linear combination of vectors of Ed(K∗), as S is necessarily
a subset ofK∗. �

A.2. Proof of Remark 3. We first prove a technical result, which exactly captures the situation
encountered in Theorem 1.

Lemma 13. Let K be a closed pyramid with non-empty interior and F,G : K∗ → R two convex
functions such that:

• F (0) = 1 and for all u ∈ K∗ \ {0}, either the equation F (su) = 1 with s > 0 has exactly
one solution or F (su) < 1 for all s > 0;
• G is non-increasing along the rays of the coneK∗.

LetM = K∗ ∩ {F = 1} \ {0}. IfM is non-empty, the maximum of G onM is reached at some
point z inM such that u = z/‖z‖ is an extremal direction ofK∗.

Proof. Let A be the collection of u ∈ Ed(K∗) such that the equation L(su) = 1 with s > 0 has
exactly one solution, and let B = Ed(K∗) \ A. By hypothesis, if u belongs to B, then L(su) < 1

for all s > 0. We first show that A is non-empty, so that there exists at least one point z = su in
M such that z/‖z‖ ∈ Ed(K∗). To see this, let x be any point inM . As an element of K∗, it can
be written as a linear combination

(16) x =
∑

u∈Ed(K∗)

λuu

with λu > 0. Assume A is empty and let n denote the cardinality of B. Then, by convexity of F ,

F (x) = F

(
1

n

∑
u∈B

nλuu

)
6

1

n

∑
u∈B

F (nλuu) < 1.

This contradicts with F (x) = 1, hence A is non-empty.
For each u ∈ A, denote by xu the unique point such that F (xu) = 1 and xu = su with s > 0.

Starting from (16), we can decompose x as follows:

x =
∑
u∈A

µuxu +
∑
u∈B

λuu,

where µu > 0 and λu > 0. Set µ =
∑

u∈A µu, λ =
∑

u∈B λu and cε = µ + ελ, for a parameter
ε > 0. Repeating the argument above shows that at least one of the µu is positive, hence µ > 0
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and cε > 0. By convexity of F , we have

F (x/cε) = F

(∑
u∈A

µu
cε
xu +

∑
u∈B

ελu
cε

(u/ε)

)

6
∑
u∈A

µu
cε
F (xu) +

∑
u∈B

ελu
cε
F (u/ε) 6 1.

But, by hypothesis, the function φ(s) = F (sx) is convex and the equation φ(s) = 1 has only two
non-negative solutions, namely s = 0 and s = 1, thus φ(s) > 1 for all s > 1. Therefore cε must
be larger than one. So, since G is non-increasing along the rays ofK∗, the value G(x) is less than
G(x/cε), and using the convexity exactly as above we obtain

G(x) 6
∑
u∈A

µu
cε
G(xu) +

∑
u∈B

ελu
cε
G(u/ε)

6
µ

cε
max
u∈A

G(xu) +
ελ

cε
max
u∈B

G(u/ε).

As ε goes to 0, cε goes to µ and maxu∈B G(u/ε) remains bounded (by maxu∈B G(u) for ε < 1

for example). Therefore, letting ε→ 0 in the inequality above leads to

G(x) 6 max
u∈A

G(xu).

This proves the lemma. �

As an application, letK = ∩u∈SDu be a closed pyramid with non-empty interior and L be the
Laplace transform of the distribution µ satisfying the hypotheses of Theorem 1. Set

F (x) = L(−x) and G(x) = inf
z∈K∗

L(−x+ z).

The proof of Lemma 6 shows that the function F satisfies the first hypothesis of Lemma 13 and
that M is non-empty. Now G is also a convex function (because L is convex). To see why it
is non-increasing along the rays of K∗, fix v ∈ K∗ and a < b. Since K∗ is a convex cone,
it is also semi-group, therefore (b − a)v + K∗ ⊂ K∗, and adding −bv on each side leads to
−av +K∗ ⊂ −bv +K∗. It follows that G(av) > G(bv).

Now define T as the set of all u inK∗ such that the equation F (su) = 1 with s > 0 has exactly
one solution, which we write −αu with αu < 0. Then tu = αuu denotes the same point as in
Theorem 1 because L(αuu) = F (−αuu) = 1. The setM in Lemma 13 is equal to {−tu|u ∈ T}
and the lemma asserts that

max{G(−tu)|u ∈ T} = max{G(−tu)|u ∈ T ∩ Ed(K∗)}.

More explicitly,
max
u∈T

inf
z∈K∗

L(tu + z) = max
u∈T∩Ed(K∗)

inf
z∈K∗

L(tu + z).

But the set S′ in Theorem 1 satisfies

T ∩ Ed(K∗) ⊂ S′ ⊂ T,
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hence
max
u∈S′

inf
z∈K∗

L(tu + z) = max
u∈T∩Ed(K∗)

inf
z∈K∗

L(tu + z).

This explains (14).

Acknowledgments

We would like to thank Marc Peigné for interesting discussions on overshoots of random walks.

References

[1] M. Bousquet-Mélou and M. Mishna (2010). Walks with small steps in the quarter plane. Contemp. Math. 520 1–39
[2] S. Boyd and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press
[3] W. Feller (1971). An Introduction to Probability Theory and Its Applications, Volume 2. Second edition. Wyley,

New York
[4] R. Garbit and K. Raschel (2016). On the exit time from a cone for random walks with drift. Rev. Mat. Iberoam. 32

511–532
[5] R. Garbit and K. Raschel (2022). The generating function of the survival probabilities in a cone is not rational.

Sém. Lothar. Combin. 87B
[6] S. Melczer and M. Mishna (2014). Singularity analysis via the iterated kernel method. Combin. Probab. Comput.

23 861–888
[7] M. Mishna and A. Rechnitzer (2009). Two non-holonomic lattice walks in the quarter plane. Theoret. Comput. Sci.

410 3616–3630
[8] M. Studený (1993). Convex cones in finite-dimensional real vector spaces. Kybernetika 29, no. 2, 180–200
[9] R. T. Rockafellar (1970). Convex Analysis. Princeton University Press

Université d’Angers, CNRS, Laboratoire Angevin de Recherche en Mathématiques, SFR MATHSTIC,
49000 Angers, France

Email address: rodolphe.garbit@univ-angers.fr
Email address: raschel@math.cnrs.fr


	1. Introduction and main results
	A glimpse of our results
	Technical assumptions
	Precise statements

	2. Examples of application of Theorem 1
	2.1. Small step examples
	2.2. A weighted small step example
	2.3. Irrelevance of the location of the drift
	2.4. Normal distribution

	3. Proof of Theorem 1
	3.1. Sketch of the proof
	3.2. Turning the drit inside out
	3.3. Change of measure

	Appendix A. Properties of pyramids and proof of Remark 3
	A.1. Some facts about pyramids
	A.2. Proof of Remark 3

	Acknowledgments
	References

