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Abstract

We extend the work of [21] on elastodynamics to the treatment of contact. To
that end, we propose adequate handling of boundary conditions, either through
the resolution of local problems on each of the face displacement unknowns or
through interpolation from nearest neighbours. Adapting the time-integration
strategy adopted in [20], it is possible to conserve both momentum and a pseudo-
energy exactly. Numerical results are presented to illustrate the accuracy of contact
treatment and the energy conservation of the system.

1 Introduction
The development of numerical methods for dynamic contact problems is a central
issue for applications ranging from tire dynamics [12, 13], fracture dynamics [7]
and fluid-structure interaction with explosions. An overview of contact problems
and applications can be found in [26]. A key issue in this context is to be able to ac-
curately and efficiently capture non-penetration while conserving energy, without
spurious oscillations. We focus here on fast dynamics with high-velocity contact
for applications in crash-tests and safety assessment.

A large number of works have been devoted to the resolution and numerical
analysis of contact variational formulations [22, 16]. A review of contact problems
can be found in [19] and [3]. Contact problems involve difficulties on the theo-
retical and numerical sides and implicate non-linear contact conditions on a part
of the boundary. The numerical methods can be classified along three axes: the
space discretization method employed, the treatment of the contact boundary con-
dition, and the time-integration scheme used. For the space discretization method,
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Finite Element methods have widely been used [5, 9, 26]. The contact boundary
condition can be either enforced exactly [6, 14, 18, 23, 24], enforced with penalty
[1, 13, 4, 5, 3] or enforced with contact conditions in velocity [1, 17]. Exact en-
forcement generally hinges on the use of a Lagrange multiplier for non-penetration
which can be identified as the contact pressure. Penalty enforcement used to be
restricted by the use of a penalization parameter, which had to be chosen carefully
since a small value would mean a lax enforcement of non-penetration and a large
value would add numerical stiffness to the problem. However, recent works using
Nitsche’s penalization [4, 5, 3] have demonstrated a robust and efficient choice
for the penalization parameter. Finally, the enforcement of contact conditions in
velocity translates non-penetration on the relative velocities of contact surfaces,
which separates the penetration condition on displacement from its enforcement
on velocity. This allows for innovative time-integration strategies.

On the time-discretization side, three main strategies have been applied: im-
plicit schemes, explicit schemes and semi-explicit schemes. We refer to [9] for a
review and comparison of these strategies for contact. Implicit schemes, while be-
ing generally more stable than explicit schemes, can exhibit spurious oscillations in
the case of exact contact conditions enforcement. Explicit schemes generally have
difficulties enforcing exactly non-penetration while limiting energy variations, ex-
cept in the case of modified mass strategies [15, 9]. Semi-explicit schemes try to
circumvent this by expliciting the general dynamics, except the non-penetration
condition. A useful tool to compare schemes is energy conservation [13, 9]: while
dissipative schemes remove spurious oscillations, they are unable to correctly ac-
count for multiple bounces, as displacement amplitude is reduced at each contact
even without physical dissipation in the model, as the numerical dissipation of
energy becomes dominant.

In the present work, we restrict ourselves to frictionless contact in plane linear
eleasticity. We choose to use a Discrete Element method (DEM) in the form
of a Cell-centered Galerkin variational form [21]. Exact contact non-penetration
is enforced on the boundary degrees of freedom, which have no mass. For the
time discretization, we use an explicit pseudo-energy and momentum conserving
scheme for the time integration of Hamiltonian systems [20]. This scheme is a
two-step method of order two which ensures a discrete pseudo-energy conservation,
relying on an exact quadrature of force time integrals for nonlinear behavior laws.
It is also accompanied by an a posteriori stability criterion which allows easier
management of the stability of the scheme. When contact occurs, discontinuities
occur in the forces which render high-order quadratures inefficient. We propose
a modification of the time quadrature to account for contact. It should be noted
that the proposed scheme is, to the best of our knowledge, the first explicit scheme
to exactly conserve an energy with exact enforcement of contact conditions. Note
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that most energy-conserving schemes are implicit to a certain degree for non-linear
problems [13, 25, 11], with the exception of a very recent result by Bilbao et al.
[2].

This paper is organized as follows. Section 2 briefly recalls the equations of
linear elastodynamic in small deformations with frictionless contact. Section 3
presents the space discretization of the governing equations with DEM. In this
section, we present two different treatments of boundary conditions, schemes A
and B, and their extention to multiple solid contacts. We derive the forces used
in DEM. Section 4 addresses the time discretization of the elastodynamic problem
with contact, extending the results developed in [20]. Numerical results in one and
two space dimensions are presented and discussed in Section 5, demonstrating the
accuracy, efficiency and robustness of the proposed method.

2 Governing equations for elastodynamics
We consider an isotropic linearly elastic material occupying the domain Ω ∈ Rd,
d = {2, 3} during a finite time interval (0, T ) undergoing small deformations under
external volumetric forces f . The linearized strain tensor is given by ε(u) =
1
2
(∇u+∇uT ), where u is the displacement field. Hooke’s law connects the stress

tensor σ to the strain tensor ε by σ = λ tr εI + 2µε where λ and µ are the Lamé
coefficients which verify µ > 0 et 2µ+ dλ > 0.

The boundary ∂Ω of Ω is polygonal (d = 2) or polyhedral (d = 3). Let
∂Ω = ΓD ∪ ΓN(t) ∪ ΓC(t) be a partition of the boundary of Ω where ΓD,ΓN(t)
and ΓC(t) are the Dirichlet, Neumann and unilateral contact boundary conditions
on displacement at time t respectively (see Figure 1). Displacement is imposed on
ΓD, while the normal stress is imposed on ΓN(t):

u = uD on (0, T )× ΓD, σ · n = 0 on (0, T )× ΓN(t), (1)

where uD is a vector-valued function. For simplicity, we suppose that the contact
boundary in 2D is a straight line while in 3D, it is supposed to be a polygon. The
normal unit outward vector on ∂Ω is denoted n. The elastodynamic equations in
strong form consist in finding for the displacement field u : (0, T )× Ω→ Rd such
that:

ρü− div σ(u) = f in (0, T )× Ω, (2)

where ρ > 0 is the density of the elastic material and ü is the acceleration. We
impose additionally the initial conditions u(0, ·) = u0, u̇(0, ·) = v0 in Ω. In
the case of quasi-static computations, the acceleration term is removed from the
equations.
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2.1 Contact condition

ΩΓC
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Figure 1: Elastic body Ω in contact with a rigid foundation (left) or in self-contact
(right).

Assume that the contact boundary condition ΓC(t) is partitioned in ΓC1 (t) ∪
ΓC2 (t) such that the solid boundary points on ΓC1 (t) are in contact with points on
ΓC2 (t) (see Figure 1). Let x0

1 ∈ ΓC1 (t) and x0
2 ∈ ΓC2 (t), and set n1 and n2 the out-

ward normals to Ω at x0
1 and x0

2 respectively. We use the simplifying assumption
that the boundary elements in contact have opposite normals: n2(x0

2) = −n1(x0
1).

Set the normal penetration un(x0
1,x

0
2) of the material points at x0

1 and x0
2:

un(x0
1,x

0
2) = (x0

2 + u(t,x0
2)− x0

1 − u(t,x0
1)) · n1. (3)

Newton’s third law gives that σ(t,x0
1) ·n1 = −σ(t,x0

2) ·n2. In the case of friction-
less contact, setting the normal contact force σnn(x0

1) and the tangential contact
force σt(x0

1) as

σnn(x0
1) = n1 · σ(t,x0

1) · n1, σt(x
0
1) = σ(t,x0

1) · n1 − σnnn1,

it is sufficient to check that contact does not result in traction nor friction, i.e.
σnn(x0

1) ≤ 0 and σt(x0
1) = 0.

The unilateral complementarity contact conditions without friction on ΓC(t)
at points (x0

1,x
0
2) write

un(x0
1,x

0
2) ≥ 0, σnn(x0

1) ≤ 0, un(x0
1,x

0
2)σnn(x0

1) = 0, σt(x
0
1) = 0. (4)
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2.2 Mechanical energy

The total energy of the solid E(t) at time t is defined as the sum of the kinetic
energy Ekin(t) and the elastic deformation energy Eelas(t)

E(t) =
1

2

∫
Ω

ρ

∣∣∣∣∂u∂t
∣∣∣∣2︸ ︷︷ ︸

Ekin(t)

+
1

2

∫
Ω

ε(u) : σ(u)︸ ︷︷ ︸
Eelas(t)

(5)

In the case of homogeneous Dirichlet boundary conditions and homogeneous Neu-
mann boundary conditions, the total mechanical energy is conserved.

3 Discrete element method space discretization

3.1 Degrees of freedom and reconstruction operator on facets

Let T h be a family of triangulations of the domain Ω. We assume that Ω is a
polygon and we also assume that the mesh is compatible with the partition of the
boundary ∂Ω into the Dirichlet and Neumann parts.

•

×
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••

•
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• (uc)c∈C

× (uf )f∈Fi

× (uf )f∈Fb

Figure 2: Vector-valued degrees of freedom for the displacement in Ω.

Let us introduce C the set of mesh cells and F = F i ∪F b the set of mesh faces
where F i denotes the set of interior faces of the solid shared by two mesh cells
and F b the set of boundary faces, which belong only to one mesh cell, sitting on
the boundary of ∂Ω. The vector-valued volumetric degrees of freedom (dofs) for a
generic displacement field uC := (uc)c∈C ∈ Rd#(C) are placed at the barycenter of
every mesh cell c ∈ C, where #(S) denotes the cadinality of a set S. In addition,
we denote by uF := (uf )f∈F ∈ Rd#(F ) the reconstructed displacement on the
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mesh faces (see Figure 2). For all faces f ∈ F , we denote by R the reconstruction
operator and we set

uf := R(uh)|f =
∑
c∈Cf

Tcf · uc (6)

where Cf denotes the subset of cells used to reconstruct f and Tcf is a second-
order tensor. For interior faces f ∈ F i, the set Cf is chosen as d + 1 cells
(c1, . . . , cd+1) whose respective centers (x1, . . . ,xd+1) form a simplex containing
the facet barycenter xf (see Figure 3). The reconstruction tensor reduces to a
scalar value Tcf = αcfI and the coefficients αcf are chosen as the barycentric
coordinates of xf in (x1, . . . ,xd+1):

xf =
d+1∑
i=1

αcifxi,

d+1∑
i=1

αcif = 1. (7)

The reconstruction operator is then a linear interpolation on the interior points
and the coefficients αcf lie in (0, 1). The definition of reconstruction tensors Tcf
for boundary faces f ∈ F b is left for Section 3.4.
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•

• •

• (uc)c∈C

• (uf )f∈Fb

• (uf )f∈Fb

x1 x2

x3

f

Figure 3: Dofs associated with the interior facet f used for the reconstruction.

3.2 Discrete mechanical energy

It is possible to reconstruct a discrete piecewise-constant gradient GC(uF) :=
(Gc(uF))c∈C in each cell from the reconstructed facet displacements. Using a dis-
crete Stokes formula, for all c ∈ C, we have

Gc(R(uh)F) = Gc(uF) =
∑
f∈∂c

|f |
|c|
uf ⊗ nf,c (8)
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where |f | is the surface of face f , |c| is the volume of cell c and nf,c is the outward
normal to c on f . The piecewise-constant linearized strain tensor εc and the stress
tensor σc in each cell c ∈ C are defined such that

εc(uF) =
1

2

(
Gc(uF) + Gc(uF)T

)
, σc = C : εc = λ tr εcI + 2µεc (9)

Finally, we define a cellwise nonconforming P 1 reconstruction R defined for all
c ∈ C by

R(uh)c(x) := uc + Gc(R(uh)) · (x− xc) (10)

where x ∈ c is an arbitrary point in the cell and xc is the position of the barycentre
of the cell c.

The discrete elastic deformation energy Ep is written as an analogue to the
continuous Eelas (5):

Ep(uh) =
∑
c∈C

1

2
|c|σc(uh) : εc(uh) (11)

The kernel of the discrete gradient operator Gc ◦R contains the vectors uh
which have identical components on each cell, i.e. the evaluation of a constant
function on the mesh. This is due to the geometric property on closed cells c:∑

f∈∂c

|f |nf,c = 0.

However, the kernel is not restricted to constant functions in general, which may
lead to hourglass instabilities. The aim of stabilization is to eliminate the spurious
modes from the kernel Gc ◦R. It consists in penalizing the jumps between P1

reconstructions of local adjacent faces. We denote by [·]F the jump of a quantity
through an interior face F : for the reconstruction R, denoting by c1 and c2 the
two mesh cells sharing the interior face f such that f = ∂c1 ∩ ∂c2 (see Figure 4),
we define

[R(uh)]f = R(uh)c1(xf )−R(uh)c2(xf ). (12)

We define the weakly consistent stabilization energy ES as follows:

ES(uh) =
∑
f∈F

η

2hf
|f |[R(uh)]

2
f , (13)

where hF is the diameter of the facet f ∈ F . The dimension of η is the same as
that of the Lamé coefficients λ and µ and the Young’s modulus E. The scheme
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•f xf

c1

c2

Figure 4: Two mesh cells c1 and c2 sharing an interior face f .

converges to the exact solution for any positive η. A reasonable choice in practice
is to take η = E [21].

Setting vc = u̇c the cell velocity, the full discrete energy Eh is defined as

Eh(uh) =
∑
c∈C

ρ|c|v2
c + EP (uh) + ES(uh). (14)

3.3 Derivation of forces

The energy Eh of the system allows to define the force Fc exerted on a particle c
deriving from the potential energy in (14):

Fc = −∇uc(EP + ES) = F P
c + F S

c , (15)

where F P
c and F S

c denote respectively the force contribution of the elastic defor-
mation and of the stabilization. A simple calculation gives that

F P
c = −

∑
f∈F

Tcf ·
∑
c3f

σc · nf,c + FG
c . (16)

Note that for a given cell c, Tcf is null for almost all facets f , except those in
which cell c contributes to the reconstruction operator Rf . The right-hand side is
in fact a weighted sum of stress jumps on faces. The additional force FG

c occurs
in the case of sliding contact interfaces and originates from the fact that certain
reconstruction tensors Tcf depend on the uh. This term is explained in Section
3.4.3 and detailed in equation (34).

Similarly, the stabilization force can be computed with long but straightforward
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calculations:

F S
c = −

∑
f∈Fi,f∈c

η

hf
|f |δcf [R(uh)]f

−
∑
f̃∈F

η|f̃ |Tcf̃ ·

∑
c̃3f̃

∑
f∈Fi, f∈c̃

δc̃f
|f |
hf |c̃|

(
nc̃f̃ · (xf − xc̃)

)
[R(uh)]f

 . (17)

3.4 Treatment of boundary conditions

We detail here the expression of reconstruction tensors Tcf for boundary facets
f ∈ F b. We first propose two different reconstructions for the contact condition
between two particles: first, scheme A implements the complementary constraints
(4) at the discrete level as a Neumann/Dirichlet dichotomy ; second, scheme B is
a simplified (but less accurate) approach to this dichotomy. We then explain how
to extend the contact condition to multiple particles in contact.

3.4.1 Scheme A

The homogeneous Neumann boundary condition for the boundary cells without
contact writes σ · n = 0, which, for a boundary face f ∈ F b on a cell c ∈ C,
translates using equations (8) and (9):

σcnf,c = λ tr εcnf,c + 2µεc · nf,c (18)

=
∑
f̃∈∂c

|f̃ |
|c|
(
λ(uf̃ · nf̃ ,c)nf,c + µ(uf̃ · nf,c)nf̃ ,c + µ(nf,c · nf̃ ,c)uf̃

)
= 0.

(19)

Equation (19) is a linear system on the unknown reconstruction uf using the
interior face reconstructions uf̃ defined in Section (3.1) which has a unique solution
when cells c ∈ C have at most one boundary facet f ∈ F b:

uf =−

∑
f̃∈∂c
f̃ 6=f

|f̃ |
|f |

(
λ

λ+ 2µ
(uf̃ · nf̃ ,c) +

2µ

λ+ 2µ
(nf,c · nf̃ ,c)uf̃ · nf,c

)nf,c
−
∑
f̃∈∂c
f̃ 6=f

|f̃ |
|f |
(
(uf̃ · nf,c)(nf̃ ,c − nf̃ ,c · nf,cnf,c) + (nf,c · nf̃ ,c)(uf̃ − uf̃ · nf,cnf,c)

)
.

(20)
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This gives the expression of the reconstruction tensor Tc̃f in terms of the interpo-
lation coefficients αc̃f̃ on the other faces f̃ ∈ ∂c for c 3 f :

Tc̃f = −
∑
f̃∈∂c
f̃ 6=f

|f̃ |
|f |

(
λ

λ+ 2µ
(nf,c ⊗ nf̃ ,c) + nf̃ ,c ⊗ nf,c + (nf,c · nf̃ ,c)I

−2(λ+ µ)

λ+ 2µ
(nf,c · nf̃ ,c)nf,c ⊗ nf,c

)
αc̃f̃ . (21)

In the case of contact between two faces f1 and f2 ∈ F b such that f1 ∈ ∂c1

and f2 ∈ ∂c2, it is necessary to define a common normal for the two faces. Denote
nf1f2 the average normal taken as the contact normal:

nf1f2 =
|f1|nf1,c1 − |f2|nf2,c2

|f1|+ |f2|
.

Similarly to (3), define the normal penetration uf1f2 as

uf1f2 = (xf2 + uf2 − xf1 − uf1) · nf1f2 . (22)

As long as uf1f2 ≥ 0, the faces f1 and f2 are not in contact, and reconstruction
(20)–(21) holds. However, when uf1f2 < 0, we change the reconstruction operator
so that

uf1f2 = 0, σnn,c1 = σnn,c2 , (23)
σt,c1 = 0, σt,c2 = 0, (24)

where
σnn,c1 = nf1f2 · σc1 · nf1f2 , σt,c1 = σc1 · nf1f2 − σnn,c1nf1f2 ,

σnn,c2 = nf1f2 · σc2 · nf1f2 , σt,c2 = σc2 · nf1f2 − σnn,c2nf1f2 .

Again, equations (23)–(24) constitute a local linear system which has a unique so-
lution (uf1 ,uf2). The full expression of the solution is straightforward but lengthy
and will not be expressed here.

In effect, the boundary condition changes only the reconstruction tensor Tcf .
Remark that Tcf does not depend on the cell displacements without contact in (21),
but that contact makes it depend on uh. In addition, note that the two expressions
coincide when uf1f2 = 0: this translates the continuity of the reconstructed face
displacements uf1 and uf2 with regards to the cell displacements uh.
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3.4.2 Scheme B

The resolution of system (23)–(24) can be complex to implement, since it involves
a larger stencil for which Tcf is non trivial, with the cells c distributed on both
sides of the contact zone. In addition, the solution of the homogeneous Neumann
condition (21) is valid only when there is only one Neumann facet per boundary
cell. In case the mesh does not satisfy this condition, it cannot be guaranteed that
there exists a solution to the problem. This leads us to use a simpler albeit less
accurate scheme, noted scheme B.

On Neumann facets f ∈ F b without contact, we set the value of the recon-
structed displacement uf to the value of the adjacent cell c 3 f : uf = uc. This
allows a very simple expression for the reconstruction tensor: Tcf = I, and for all
c̃ 6= c, Tc̃f = 0. This corresponds to a rigid body movement for the boundary cells.
Obviously, it cannot be expected that the stress tensor is correct in boundary cells,
since the stress boundary condition σ · n = 0 is incorrectly captured.

In the case of contact between two faces f1 and f2 ∈ F b such that f1 ∈ ∂c1

and f2 ∈ ∂c2, we define the common normal nf1f2 similarly to scheme A. Contact
is detected when uf1f2 < 0, and the reconstruction operator is modified. The slip
boundary condition is written as:

uf1f2 = 0, (I−nf1f2⊗nf1f2)·(uf1−uc1) = 0, (I−nf1f2⊗nf1f2)·(uf2−uc2) = 0.
(25)

The first equation translates the non-penetration condition, while the last two
equations translate the fact that each cell follows an independent tangential rigid
body movement. In fact, system (25) is not well-posed: there exist infinitely many
solutions of the form, for any θ ∈ R,

uf1 = uc1 + θ(uc2 + xf2 − uc1 − xf1) · nf1f2nf1f2 (26)
uf2 = uc2 − (1− θ)(uc2 + xf2 − uc1 − xf1) · nf1f2nf1f2 . (27)

Note that these solution verify (uf2 + xf2 − uf1 − xf1) · nf1f2 = 0 and (25). A
symmetric choice for parameter θ, which gives the same role to faces f1 and f2, is
θ = 1

2
. We opt for this particular choice in the sequel. The reconstruction tensor

then has the following nontrivial expressions:

Tc1f1 = I − 1

2
nf1f2 ⊗ nf1f2 , Tc2f1 =

1

2
nf1f2 ⊗ nf1f2 , (28)

Tc2f2 = I − 1

2
nf1f2 ⊗ nf1f2 , Tc1f2 =

1

2
nf1f2 ⊗ nf1f2 . (29)

3.4.3 Multiple particle contact

In general, contact does not occur only between pairs of facets: most facets are in
contact with two or more facets, which in turn are in contact with other facets.
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Writing the conditions of non-penetration and continuity of normal stress (23) of
scheme A leads to a fully coupled problem on all the facets in a contiguous contact
zone, which usually has no solution. This is why we will describe multiple particle
contact only in the case of scheme B.

For a boundary facet f ∈ F b, f ∈ ∂c, denote C(f) the set of facets f̃ ∈ ∂c̃ in
contact with f , that is, facets which verify

uff̃ = (uc̃ + xf̃ − uc − xf̃ ) · nff̃ < 0 and |f ∩ f̃ | = 0, (30)

where |f ∩ f̃ | is the area of the intersection of the orthogonal projections of f and
f̃ (respectively displaced by uc and uc̃) along their common normal nff̃ . In order
to extend (26) to multiple particles, we propose the following expression for the
face displacement reconstruction:

uf = uc +
1

2

∑
f̃∈C(f)

|f ∩ f̃ |
|f |

(uc̃ + xf̃ − uc − xf ) · nff̃nff̃ . (31)

The rationale behind the expression is threefold. First, note that we get the same
expression as (26) when the cardinal of C(f) is 1, as well as in the case when all
faces f̃ ∈ C(f) have the same value for uff̃ : the expression is not influenced by
the number of facets but only by the average of penetration weighted by facet
overlap. Second, when facets have negligible overlap f ∩ f̃ , the contribution of
their mutual contact is also negligible. This leads us to the third point, which is
crucial for energy conservation: the reconstruction uf is continuous with regards
to the (uc)c∈C. This can be seen by the fact that the only potential discontinuity
can occur when the face displacement reconstruction switches from “non-contact”
to “contact” status, which is only possible when the normal penetration uff̃ is null
or when the face overlap |f ∩ f̃ | is null. In both cases, the switch from “non-
contact” reconstruction uf = uc to “contact” reconstruction (31) is seamless since
the additional term is 0.

Remark that reconstruction (31) introduces an additional geometrical nonlin-
earity in the expression of the energy (14), since the reconstruction tensors Tcf now
depend implicitly on the displacement of cells c and c̃ through the term |f ∩ f̃ |:

Tcf = I − 1

2

∑
f̃∈C(f)

|f ∩ f̃ |
|f |

nff̃ ⊗ nff̃ (32)

∀f̃ ∈ C(f), f̃ ∈ c̃, Tc̃f =
|f ∩ f̃ |

2|f |
nff̃ ⊗ nff̃ . (33)

This gives an additional force FG
c in the case of sliding faces in contact, when
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f ∈ ∂c is a boundary facet of c:

FG
c = −1

2

∑
f̃∈C(f)

|f |uff̃ (nf,c · σcnff̃ )
∂|f ∩ f̃ |
∂uc

· nff̃

− 1

2

∑
f̃ , f∈C(f̃)

c̃3f̃

|f |uff̃ (nf̃ ,c̃ · σc̃nff̃ )
∂|f ∩ f̃ |
∂uc

· nff̃ . (34)

The expression of the derivative ∂|f∩f̃ |
∂uc

is lengthy and will not be given here, but
can be computed easily, as the position of each face f and f̃ is a linear function
of uc and uc̃ respectively, so that the derivative is constant by parts.

4 Time discretization
We use the explicit second-order accurate pseudo-energy conservative MEMM
scheme developed in [20] for Hamiltonian systems. The main advantages of the
scheme is that there is a pseudo-energy (with calculable expression) which is ex-
actly conserved, even for non-linear systems. The scheme writes, for c ∈ C:

un+1
c = unc + ∆tvn+1/2

c , (35a)

vn+3/2
c = vn−1/2

c +
2

ρ|c|

∫ ∆t

0

Fc(u
n
h + τv

n+1/2
h ) dτ, (35b)

where vc denotes the velocity of cell c, and we give explicitly the dependency of
force Fc in terms of the current displacements of cells at time tn + τ .

The exact pseudo-energy conservation is achieved only when the force inte-
gral in (35b) is exactly evaluated. A high-order quadrature in time manages to
recover exact pseudo-energy conservation when the forces are polynomial, since
the movement of particles unh + τv

n+1/2
h is affine in time. Smooth nonlinear forces

can also be accurately captured up to machine-error accuracy with relatively low-
order quadratures (Gauss-Legendre 2 or 3) [20]. However, in the case of contact,
the forces are not smooth since they can be discontinuous (we have managed to
keep a continuous energy though, see Section 3.4.3). As a consequence, even high-
order quadratures fail to converge fast to machine-error accuracy in pseudo-energy
conservation.

We resort to a modification of the MEMM scheme [20] to carry out the exact
evaluation of the integral of forces in (35b). Remark that the forces are smooth
except when contact events occur, where there are force discontinuities. These
contact events can be of two different natures: either pairs of facets switch from
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non-penetration to normal penetration (uff̃ = 0), or the facet overlap |f ∩ f̃ | is not
differentiable, which occurs when a vertex of f crosses an edge of f̃ . These events
are in finite number Nc, and given the displacement unh and velocity vn+1/2

h , it is
possible to compute the set of times (τk)k∈{1,...,Nc} such that unh + τkv

n+1/2
h verifies

one of the two contact events condition. The penetration condition uff̃ and the
facet positions in f ∩ f̃ being affine in terms of the cell displacements uh, these
are linear problems in τ for each pair of faces (f, f̃) which change contact status
during the time-step.

Given the set of contact event times (τk)k∈{1,...,Nc , and setting τ0 = 0 and
τNc+1 = ∆t, it is easy to carry out an exact or quasi-exact quadrature on each
interval (τk, τk+1), for k ∈ {0, . . . , Nc}, since the forces are smooth on each interval.
In the present work, we consider linear elasticity, so that the forces are affine
on each sub-interval, and a mid-point quadrature is sufficient to obtain exact
conservation.

Note that the proposed modification is different from doing a sub-time-stepping
matching contact events: cell displacement uc and velocity vc is not updated on
each sub-interval (τk, τk+1) and remains constant through the whole time-step. To
the best of our knowledge, sub-time stepping is difficult in practical and has not
been carried out. Remark also that it is not necessary to do a global sub-integration
for all cells c ∈ C: each integral is evaluated independently in (35b) and the only
cells c which require sub-integration are those for which Tcf 6= 0, with f a facet
involved in a contact event. A further refinement of the implementation consists
in detecting contact events for facets and updating the set of contact events τc,k
for each cell c involved in the displacement reconstruction on the facet.

Additionally, note that the present scheme has the advantage that the exter-
nal boundary facet degrees of freedom have no mass. Only cell degrees of free-
dom have mass, so that contact boundary conditions can implement the Signorini
complementary condition on reconstructions without modifying mass-endowed cell
degrees of freedom. The altered reconstructions only impact the computation of
forces. In [15], the authors use the Finite Element method and test the penetration
with edge nodes which have a mass. For this reason, the modification of the mass
matrix is necessary for the treatment of contact which conserves the energy. It
should be noted that the authors of [15] propose to remove mass from the degrees
of freedom in contact. This is a key ingredient for the convergence of contact
methods with Finite Element methods [8].
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5 Numerical results

5.1 One-dimensional benchmarks: elastic bar rebound

We first compare the results obtained with the present scheme with well-established
discretizations of the dynamic Signorini problem, reviewed in [9]. The article con-
siders two benchmarks: benchmark 1 consists in the impact of an elastic bar on
a rigid surface and targets the absence of spurious oscillations in the displace-
ment and contact pressure on the contact zone; benchmark 2 consists in multiple
rebounds of an elastic bar on a rigid surfaces and aims at evaluating energy con-
servation.

For benchmark 1, we consider an elastic bar with initial velocity v0 = −10,
length L = 10, density ρ = 1, Young’s modulus E = 900 and initial position
of the beam tip at h0 = 5. The rigid obstacle sits at x = 0. The bar has a
rigid body motion until it collides with the obstacle, stays in contact while waves
travel through it, and bounces back as the waves reach the contact zone. An exact
solution for displacement and contact pressure is given in [9]. We follow the same
discretization size as [9] with ∆x = 0.1 and use the same CFL condition number
νc = c0

∆t
∆x

= 0.75, where c0 =
√

E
ρ
is the wave velocity. Unless stated otherwise,

the time-step is ∆t = 0.0025.
Figure 5 shows the displacement and contact pressure at the tip of the beam

for schemes A and B, with a comparison with the exact solution. We observe
that the behavior of schemes A and B is extremely similar both on displacement
and contact pressure, except the fact that after bouncing off, scheme A accurately
gives a zero contact pressure while small pressure oscillations remain for scheme B.
Both schemes present mild pressure oscillations and no displacement oscillations
after contact. These can be explained by the Gibbs phenomenon near pressure
discontinuity. These are much milder than the implicit schemes presented in [9],
with the exception of modified mass methods [15]. They compare with explicit or
semi-explicit results, with more marked oscillations probably due to the particular
space discretization used here instead of classical linear Finite Element methods.

In Figure 6, the proposed contact event detecting scheme is compared with
higher-order quadratures of the force integral in (35b). We plot the absolute value
of the pseudo-energy variation in logscale against time for the present scheme (with
midpoint quadrature on each subinterval), and Gauss-Legendre (GL) quadratures
of increasing order: 1 point (midpoint, order 2), 2 points (order 4), 3 points (order
6) and 5 points (order 10). It can be observed that while the present scheme
preserves the pseudo-energy to 10−14 through the simulation, all other quadratures
exhibit a jump when the beam lifts off at t = 0.3s. In addition, an increase of the
order of quadrature does not result in a crucial improvement of energy variation,
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Figure 5: Impact of an elastic bar, benchmark 1: Displacement (left) and contact
pressure (right) at the beam tip.

which stays of the order of 10−9. It is important to note that the number of
force evaluations in the present scheme is roughly equal to that of the midpoint
quadrature (except two additional evaluations when the beam comes into contact
and lifts off), whereas the Gauss-Legendre quadratures’ cost is proportional to the
number of quadrature points used. The proposed scheme is therefore as fast a
midpoint quadrature while achieving almost exact conservation.

Using now the proposed scheme, we compare the convergence of the numerical
solution to the exact solution for schemes A and B, which differ on the reconstruc-
tion of boundary facet dofs, in Figure 7. It can be observed that, while scheme A
is supposed to have a higher order than scheme B, the convergence curves are com-
parable. It should be noted that in the present case, the order 0.7 of convergence
is suboptimal, due to the nonregularity of the solution. Since we are interested in
contact problems for which the solution is in general nonsmooth, the reduction of
order introduced by scheme B cannot be considered as redhibitory.

For benchmark 2, we consider the same elastic beam, but change the initial
velocity to v = 0 and add a gravity acceleration g0 = 10, and simulate the system
over time T = 20. The beam has multiple bounces with the same amplitude as the
mechanical energy is conserved. With the adequate choice of parameters, again,
an exact solution for displacement can be found in [9].

Figure 8 shows the numerical results for schemes A and B with a discretization
step ∆x = 0.1 and ∆t = 0.0025. We observe that both treatments of the boundary
condition give similar results, with a good capture of the first four bounces and
a progressively degrading solution as the simulation advances. The amplitude of
the bounces diminishes, in the same way as most methods presented in [9], with
the exception of the semi-explicit scheme dealing with the impact (scheme 4.7),
the implicit Newmark scheme with penalty contact condition (scheme 5.1) and the
schemes with modified mass (schemes 7.1 and 7.2). It should however be noted
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Figure 8: Bounces of an elastic bar, benchmark 2: Displacement for schemes A
and B, ∆x = 0.1 and ∆t = 0.0025.

that while an energy error analysis explains the evolution of bounce amplitude in
[9], we have exact conservation of the pseudo-energy to 10−13. We assume that
the discrepancy comes from the space discretization accuracy rather than the time
discretization scheme.

To test this hypothesis, we simulate benchmark 2 with 5 successive space dis-
cretization sizes ∆x = L

N
, with N = 100, N = 200, N = 400, N = 800 and

N = 1600, and fix a common time-step ∆t = 0.0003125 given by the stability con-
dition on the finer mesh. The time-step is small enough for the time discretization
error to be dominated by the space discretization error for coarse meshes. Figure
9 shows the results obtained for schemes A and B. We observe that both schemes
give very similar results. Even with a very small time-step, the results on the
coarser grid N = 100 are not significantly improved compared to Figure 8. As
the mesh is refined, the numerical results converge to the exact solution, without
any time-step refinement. This shows that energy is in fact not dissipated, but
stored in local oscillations which decrease the amplitude of the tip bounce. These
oscillations are diminished when refining the mesh.

5.2 Static Hertz’s contact

A disc of radius 20 cm is considered with a contact boundary Γc restricted to
the lower part of the boundary (y < 20 cm). On Γc, we apply a homogeneous
Neumann condition and a vertical density of volume forces of 2 MN/m3 with no
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Figure 9: Bounces of an elastic bar, benchmark 2: Displacement for scheme A
(left) and scheme B (right) at the beam tip for different space discretization sizes.

Dirichlet condition (ΓD = ∅). Homogeneous isotropic linear elasticity in plane
strain approximation is considered with a Young modulus fixed at E = 25MPa
and P = 0.25. Hertz’ test-case consists in finding the static solution to this
problem. We refer to [3] and [4] for reference Finite Element calculations.

To compute the static solution, we use a standard BFGS method to minimize
potential energy [10]. We carry out simulations with mesh sizes h = 1.5 × 10−2,
h = 7.5× 10−3, h = 3.75× 10−3 and h = 1.875× 10−3. The results are presented
in Figure 10, and can be compared with the reference solution in Figure 11. Note
that the present results have the same contact area and vertical displacement as
the reference solution, which are the observable characteristics for this problem.
The convergence of Von Mises stress is obviously less accurate, since stresses are
approximated with piecewise constant values on each cell in the present scheme,
as opposed to second-order polynomials in the Finite Element method [3, 4] . The
accuracy of the method is nonetheless satisfactory.

5.3 Contact between two disks

We consider two identical disks of radius 0.1m centered at (0.14, 2.27) m (for the
left disk) (resp. at (0.36, 2.27) m (for the right disk)). The contact boundary is
restricted to the right part of the boundary of the disk placed on left hand (resp.
the left part of the boundary of the disk placed on the right hand). We assume that
the two disks are initially moving with a constant velocity ~V = 0.3~exm.s−1 at left
when x < 0.25 m (resp. ~V = −0.3~exm.s−1 at right when x > 0.25 m) and without
rotation. The contact axis is considered at x = 0.25 m. The different parameters
used for the model are a Poisson ratio ν = 0.2 and a Young’s modulus fixed at
E = 100Pa. The solid density is given by ρs = 100 kg.m−1. The CFL condition is
taken as 0.2. The deformations are larger for the linear elasticity model to remain
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Figure 10: 2D deformed configurations with mesh size h = 1.5 × 10−2 (top left),
h = 7.5×10−3 (top right), h = 3.75×10−3 (bottom left), h = 1.875×10−3 (bottom
right).
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Figure 11: Reference solution with FEM, h = 1.5 × 10−3 [3, 4], color plot of Von
Mises stress.

valid.
In Figure 12, structural deformation including contact and the normal stress

distribution are illustrated at different times. The simulation time is t = 1 s. The
first contact occurs at time t = 0.04 s. The deformation of the solid becomes too
large with increasing time. At time t = 0.19 s, we notice a remarkable deformation
of the solid and a concentration of normal stress close to the contact axis. We
observe a wave which propagates in the solids. At time t = 0.25 s and t = 0.26 s, the
contact (resp. normal stress and deformation) reaches the maximum. Beyond time
t = 0.27 s, the solids bounce and go in the opposite direction. Figure 12 at time t =
0.45 s and t = 0.58 s shows the detachment of solids and their displacement in the
opposite direction of their initial velocity. We still observe the propagation of waves
in the material with a deformation linked to the compression waves generated by
the contact phenomenon and which gradually decreases over time.

in Figure 13, we present the relative energy conservation error, computed as the
difference between the initial energy and the energy at the different time-steps for
the solid. The conservation originates from the modified time-integration scheme
of the solid presented in Section 4 which ensures the exact conservation of energy.
The relative conservation error on energy observed is extremely low (as 10−15 of
the energy exchange in the system).
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Figure 12: Normal stress distribution in the disks with periodic boundary condi-
tions at times 0.07s, 0.13 s, 0.19 s, 0.22 s, 0.45 s and 0.58 s.
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Figure 13: Relative conservation error on energy.

5.4 Billiard test-case

This test-case intends to demonstrate the efficiency and capability of the present
method to manage contact between several deformable structures with multiple
rebounds. The position of the billiard table is fixed and corresponds to the domain
(x, y) ∈ [2, 10] × [2, 10] m with a thickness of 1m. The balls are 7 disks of radius
0.5m, with initial center positions (4, 5), (5, 4), (8, 4), (7, 6), (5, 7), (4, 8) and (7, 8).
We assume that the disks are moving with an initial velocity ~V such that ~V =
0.1~eym.s

−1 for the disks with initial center position (x, y) with x > y, and ~V =
0.1~exm.s−1 otherwise. The solids density and Young’s modulus are, respectively,
ρs = 100 kg.m−3 and E = 100Pa. The Poisson ratio is taken ν = 0.2. The total
simulation time is T = 50 s.

At time t = 11s, we observe in Figure 14 the first contact between two couples
of billiard balls. We observe, for the particules in contact, an increase in normal
stress. At time t = 16s, the first contact with the billiard table occurs, we observe
the propagation of shock waves which generates the deformation of the right part
of the table. This deformation increases with time and spreads over a wider area.
Note that, beyond that point, multiple contact events occur almost simultaneously
between balls, and some balls are even in contact with two other balls, for instance
at t = 30.5s. The present scheme is still capable of dealing with multi-contact
between structures while ensuring exact conservation of energy as shown in Figure
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15.

6 Conclusion
In this work, we treated the contact between deformable solids by using a Dis-
crete Elements method coupled with an explicit time integration method which
preserves the pseudo-energy at contact time. A particular importance in these
problems returns to the conservation of mass, momentum and especially the con-
servation of energy of the system. Taking into account the contact between two
deformable bodies generates complexities in numerical modeling and simulation
in solid mechanics. This is mainly related to the non-linearity of the boundary
conditions on part of the boundary and to the non-regularity of the simulated
physical principles. The challenge was to prove the conservation of energy when
contact takes place between two deformable solids. We proposed a modification
of the time integration scheme proposed in [20] and adapted the scheme to obtain
the conservation of the pseudo-energy at the moment of contact between the two
solids. The first complementary development would be the transition to three-
dimensional contact, which presents many challenges. To follow up on this work,
another perspectives is to add plasticity and friction to our scheme and to couple
them with the Discrete Element methods.

Acknowledgements

The authors would like to thank A. Ern (ENPC, EPC SERENA) for fruitful dis-
cussions.
The authors aknowledge the support of the French Agence Nationale de la Recherche
(ANR), under grant ANR-17-CE39-0013 (project PRECIS).

References
[1] Ted Belytschko and Mark O Neal. Contact-impact by the pinball algorithm

with penalty and Lagrangian methods. International Journal for Numerical
Methods in Engineering, 31(3):547–572, 1991.

[2] Stefan Bilbao, Michele Ducceschi, and Fabiana Zama. Explicit exactly energy-
conserving methods for Hamiltonian systems. arXiv preprint, 2022.

[3] Franz Chouly, Mathieu Fabre, Patrick Hild, Rabii Mlika, Jérôme Pousin, and
Yves Renard. An overview of recent results on Nitsche’s method for contact

24



Figure 14: Deformation and multi-contact between solids with color plot of Von
Mises stresses at 11 s, 16 s, 20 s, 24 s, 30.5 s and 33 s.

25



−1.5× 10−14

−1× 10−14

−5× 10−15

0

5× 10−15

1× 10−14

1.5× 10−14

2× 10−14

2.5× 10−14

3× 10−14

3.5× 10−14

0 5 10 15 20 25 30 35 40

R
el
at
iv
e
er
ro
r

t (s)

Energy relative error

Figure 15: Relative conservation error on energy.

problems. In Geometrically unfitted finite element methods and applications,
pages 93–141. Springer, 2017.

[4] Franz Chouly, Patrick Hild, and Yves Renard. Symmetric and non-symmetric
variants of Nitsche’s method for contact problems in elasticity: theory and nu-
merical experiments. Mathematics of Computation, 84(293):1089–1112, 2015.

[5] Franz Chouly, Rabii Mlika, and Yves Renard. An unbiased Nitsche’s approx-
imation of the frictional contact between two elastic structures. Numerische
Mathematik, 139(3):593–631, 2018.

[6] Peter Deuflhard, Rolf Krause, and Susanne Ertel. A contact-stabilized New-
mark method for dynamical contact problems. International Journal for Nu-
merical Methods in Engineering, 73(9):1274–1290, 2008.

[7] David Doyen. Méthodes numériques pour des problèmes dynamiques de con-
tact et de fissuration. PhD thesis, Université Paris-Est, Université Paris-Est,
2010.

[8] David Doyen, Alexandre Ern, et al. Convergence of a space semi-discrete
modified mass method for the dynamic Signorini problem. Communications
in Mathematical Sciences, 7(4):1063–1072, 2009.

26



[9] David Doyen, Alexandre Ern, and Serge Piperno. Time-integration schemes
for the Finite Element dynamic Signorini problem. SIAM J. Sci. Comput.,
33(1):223–249, 2011.

[10] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[11] O. Gonzalez. Exact energy and momentum conserving algorithms for general
models in nonlinear elasticity. Comput. Methods Appl. Mech. Eng., 190:1763–
1783, 2000.

[12] Patrice Hauret. Méthodes numériques pour la dynamique des structures non-
linéaires incompressibles à deux échelles. PhD thesis, Ecole Polytechnique,
Ecole Polytechnique, 2004.

[13] Patrice Hauret and Patrick Le Tallec. Energy-controlling time integration
methods for nonlinear elastodynamics and low-velocity impact. Computer
methods in applied mechanics and engineering, 195(37-40):4890–4916, 2006.

[14] Couro Kane, Eduardo A Repetto, Michael Ortiz, and Jerrold E Marsden.
Finite element analysis of nonsmooth contact. Computer methods in applied
mechanics and engineering, 180(1-2):1–26, 1999.

[15] Houari Boumediene Khenous, Patrick Laborde, and Yves Renard. Mass re-
distribution method for finite element contact problems in elastodynamics.
European Journal of Mechanics-A/Solids, 27(5):918–932, 2008.

[16] Noboru Kikuchi and John Tinsley Oden. Contact problems in elasticity: a
study of variational inequalities and finite element methods. SIAM, 1988.

[17] TA Laursen and Vikas Chawla. Design of energy conserving algorithms for
frictionless dynamic contact problems. International Journal for Numerical
Methods in Engineering, 40(5):863–886, 1997.

[18] TA Laursen and GR Love. Improved implicit integrators for transient impact
problems—geometric admissibility within the conserving framework. Inter-
national Journal for Numerical Methods in Engineering, 53(2):245–274, 2002.

[19] Tod Alan Laursen. Formulation and treatment of frictional contact problems
using finite elements. PhD thesis, Stanford University, Stanford University,
1992.

[20] Frédéric Marazzato, Alexandre Ern, Christian Mariotti, and Laurent
Monasse. An explicit pseudo-energy conserving time-integration scheme for
Hamiltonian dynamics. Computer Methods in Applied Mechanics and Engi-
neering, 347:906–927, 2019.

27



[21] Frédéric Marazzato, Alexandre Ern, and Laurent Monasse. A variational
discrete element method for quasistatic and dynamic elastoplasticity. Inter-
national Journal for Numerical Methods in Engineering, 121(23):5295–5319,
2020.

[22] Jean Jacques Moreau. Application of convex analysis to some problems of dry
friction. In Trends in Applications of Pure Mathematics to Mechanics, pages
263–280. Pitman, 1977.

[23] Laetitia Paoli and Michelle Schatzman. A numerical scheme for impact prob-
lems i: The one-dimensional case. SIAM Journal on Numerical Analysis,
40(2):702–733, 2002.

[24] Laetitia Paoli and Michelle Schatzman. A numerical scheme for impact prob-
lems ii: The multidimensional case. SIAM journal on numerical analysis,
40(2):734–768, 2002.

[25] J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving
algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods
Appl. Mech. Eng., 100:63–116, 1992.

[26] Peter Wriggers and Giorgio Zavarise. Computational contact mechanics. En-
cyclopedia of computational mechanics, 2004.

28


	Introduction
	Governing equations for elastodynamics
	Contact condition
	Mechanical energy

	Discrete element method space discretization
	Degrees of freedom and reconstruction operator on facets
	Discrete mechanical energy
	Derivation of forces
	Treatment of boundary conditions
	Scheme A
	Scheme B
	Multiple particle contact


	Time discretization
	Numerical results
	One-dimensional benchmarks: elastic bar rebound
	Static Hertz's contact
	Contact between two disks
	Billiard test-case

	Conclusion

