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A B S T R A C T 

The dynamics of the innermost Galilean satellites (Io, Europa, and Ganymede) is characterized by a chain of mean motion 

resonances, called Laplace resonance, and by a strong tidal dissipation that causes wide variations of their semimajor axes over 
large time-scales. The precise history of energy dissipation in the Jovian system is not known, but several theories have been 

proposed. Tidal resonance locking states that big outer moons can also migrate fast. If this is the case for Callisto, then it should 

have crossed the 2:1 mean motion resonance with Ganymede in the past, affecting the motion of all four Galilean satellites. 
Therefore, we aim to determine whether a fast migration for Callisto is compatible with the current orbital configuration of the 
system. Due to the chaotic nature of the resonant crossing, different outcomes are possible. A small portion of our simulations 
shows that Callisto can cross the 2:1 resonance with Ganymede without being captured and preserving the Laplace resonance. 
Ho we ver, in most cases, we found that Callisto is captured into resonance, despite its divergent migration. As Callisto continues 
to migrate fast outwards, the moons depart substantially from the exact 8:4:2:1 commensurability, while still maintaining the 
resonant chain. Callisto can eventually escape it by crossing a high-order mean motion resonance with Ganymede. Afterwards, 
the moons’ system is able to relax to its current configuration for suitable dissipation parameters of the satellites. Therefore, it is 
possible, although challenging, to build a self-consistent picture of the past history of the Galilean satellites for a fast migration 

of Callisto. 

Key words: celestial mechanics – planets and satellites: dynamical evolution and stability. 
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 I N T RO D U C T I O N  

he Galilean satellites are by far the largest moons of Jupiter: in
rder from the planet, they are Io (1), Europa (2), Ganymede (3),
nd Callisto (4). While Io is characterized by strong volcanism all 
 v er its surface and does not sho w e vidence of water, the other
hree moons are co v ered by ice and probably conceal vast oceans
f liquid water under their surfaces (e.g. Schubert et al. 2004 ).
ecause of their peculiar characteristics, the Galilean satellites have 
een e xtensiv ely studied in the last decades and two large missions,
uropa Clipper by NASA (Phillips & Pappalardo 2014 ) and JUICE
y ESA (Grasset et al. 2013 ), are going to visit them and collect a
reat variety of observations. Moreo v er, apart from their interior 
nd surface features, the Galilean satellites are noteworthy also 
or their orbital configuration. Indeed, the three inner moons are 
ocked in a chain of mean motion resonances (MMRs) composed 
y a 2:1 commensurability between Io and Europa, and a 2:1 
ommensurability between Europa and Ganymede. More precisely, 
riting λi the mean longitude of the i th satellite and � i its longitude
f pericentre, we currently have 

1 − 2 λ2 + � 1 ∼ 0 , 

1 − 2 λ2 + � 2 ∼ π, 

2 − 2 λ3 + � 2 ∼ 0 , (1) 
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here symbol ∼ stands for ‘closely oscillates around’. From the last 
wo relations, we obtain: 

1 − 3 λ2 + 2 λ3 ∼ π, (2) 

hich involves the mean longitudes of all three satellites. This 
elation is commonly known as ‘Laplace resonance’. 

The origin of this configuration has been investigated since the 
econd half of the twentieth century. There are two main theories that
ry to explain it. The first one proposes that the resonance was formed
hrough successive resonant captures driven by the tidal dissipation 
ithin Jupiter (Yoder 1979 ; Yoder & Peale 1981 ): as Io is closer to the
lanet, it migrated faster than the other satellites and reached the 2:1
esonance with Europa; then the two inner moons mo v ed outwards
nd captured also Ganymede. The second theory, instead, proposes 
hat the resonance was triggered at the time of the formation of the
atellites (Greenberg 1982 ; Peale & Lee 2002 ): the moons underwent
 Type-I migration inside the circumplanetary disc of Jupiter, and as
anymede is more massive, it moved inwards faster than the other
oons and captured rapidly first Europa and then Io. A primordial

rigin of the Laplace resonance is also supported by recent formation
odels of the Galilean satellites (Shibaike et al. 2019 ; Batygin &
orbidelli 2020 ). 
Other works have also investigated the role of past MMRs between

he satellites in sculpting the system (Tittemore 1990 ; Malhotra 
991 ). In general, exploring the past evolution of the Galilean
atellites is quite a difficult task, because their current configuration 
mposes tight constraints (see equation 1 and Table 1 ). We also have
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Table 1. Mean orbital elements of the Galilean satellites at J2000 
epoch obtained from moons’ ephemerides Jup310 released by JPL. 
url: https:// naif.jpl.nasa.gov/ pub/ naif/JUNO/ kernels/ spk/ jup310.bsp 
.lbl , preparer: R.A. JacobsonSemimajor axes are given in Jupiter’s 
radii, where we set R J = 71398 km. 

element Io Europa Ganymede Callisto 

a 5.9191 9.4147 15 .0157 26 .4117 
e 0.0041 0.0095 0 .0015 0 .0074 

Figure 1. Future evolution of the Galilean satellites as described by Lari et al. 
( 2020 ), assuming that tidal effects at the distance of Callisto are negligible. 
After about 1.5 Gyr from J2000 epoch, Callisto is captured into a four-body 
resonant chain with Io, Europa, and Ganymede. 
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n estimate of their migration rate: from astrometric observations,
ainey et al. ( 2009 ) found that Io is currently moving inwards at
bout 0.4 cm yr −1 , while Europa and Gan ymede mo v e outwards at
 and 11 cm yr −1 , respectively. The measured inward migration of
o, that seems to suggest a future breaking of the Laplace resonance,
s actually temporary and in the long run all three satellites are
 xpected to mo v e outwards, preserving the Laplace resonance (Lari,
aillenfest & Fenucci 2020 ; Celletti et al. 2022 ). 
Lari et al. ( 2020 ) hav e inv estigated the future evolution of the

alilean satellites considering the outward migration of the three
nner moons due to the strong tidal dissipation between Jupiter and
o. In their scenario, Callisto’s semimajor axis was assumed steady,
ince, in the classic theory, tidal effects of Jupiter are extremely small
t the distance of Callisto. They found that, after about 1.5 billions
f years from now, Ganymede will reach the 2:1 resonance with
allisto. As in this case a 3 / a 4 increases, the encounter is convergent
nd the two satellites can be captured into a 2:1 MMR (e.g. Murray &
ermott 2000 ). Indeed, starting from the current configuration of the

ystem and performing hundreds of simulations, Lari et al. ( 2020 )
ound a 100 per cent probability of capture for Callisto, forming a
:4:2:1 resonant chain with the other three moons (see Fig. 1 ). This
hain can be composed of successive 2:1 MMRs between adjacent
NRAS 518, 3023–3035 (2023) 
atellites, or it can involve a pure three-body MMR, which can cause
 large increase of the eccentricities of the outer satellites (see also
alhotra 1991 ; Showman & Malhotra 1997 ). 
Recently, Fuller, Luan & Quataert ( 2016 ) presented a new tidal

heory called resonance locking, which greatly changes the classic
aradigm of tidal effects. According to their theory, dissipation within
he planet can increase by several orders of magnitude because of
 resonant coupling between a wave in the planet’s interior and a
atellite moving at the same frequency. In this context, the tidal
uality factor Q of gas giants can be far smaller than previously
hought (Goldreich & Soter 1966 ). Large dissipation in the planet
estricted at certain frequencies opens the possibility of a fast tidal
igration even for distant satellites. Indeed, this theory provides a

atural explanation for the unexpected rate at which Titan is moving
way from Saturn, which has been recently measured through the
nalysis of Cassini radio-science data and astrometric observations
Lainey et al. 2020 ). In light of the resonance locking theory and
ts successful application to Titan and other satellites of Saturn,
allisto could migrate faster than the other Galilean moons (Fuller
t al. 2016 ). In this case, the encounter of the 2:1 MMR between
anymede and Callisto studied by Lari et al. ( 2020 ) may actually
ave already happened in the past. This scenario matches the
ormation model presented by Shibaike et al. ( 2019 ), who find that
ither all four Galilean satellites formed in a 2:1 MMRs chain, or
allisto formed inside the 2:1 MMR with Ganymede. Ho we ver, no
omplete dynamical investigation has been carried out yet, so it is
ot clear whether a fast migration of Callisto is compatible or not
ith the current orbital configuration of the system. 
Past crossings of MMRs between the moons are possible if their

idal migration time-scales t tide 
i = a i / ̇a i have dif ferent v alues, so that

he ratios of their semimajor axes change with time. Ho we ver, tidal
esonance locking can force different moons to migrate at a similar
ime-scale, fixed by the evolution of the interior of the hosting planet;
his would prevent the crossing of resonances. Indeed, this is what has
een observed for many moons of Saturn, including Titan (Lainey
t al. 2020 ; Crida 2020 ). For Jupiter’s system, we have t tide 

i ≈ 20 Gyr
or i = 1, 2, 3 (Lainey et al. 2009 ; Fuller et al. 2016 ), while t tide 

4 is
nknown. Fuller et al. ( 2016 ) proposed a current value of t tide 

4 close
o 2 Gyr, which would imply that Callisto migrates much faster than
he three inner Galilean satellites. 

Some recent studies have explored this new dynamical scenario.
n particular, Downey, Nimmo & Matsuyama ( 2020 ) assumed a
ery large dissipation within Jupiter at the frequency of Callisto,
s proposed by Fuller et al. ( 2016 ), and considered the orbital
ariations of Callisto and Ganymede due to the crossing of past
MRs between the two satellites. They computed the optimal values

f the moons’ dissipative parameters in order to retrieve the current
alues of their eccentricities and inclinations. However, in their
tudy, Downey et al. ( 2020 ) did not propagate the N -body dynamics
f the Galilean satellites. Instead, they used simplified analytical
xpressions for computing the jumps of the orbital elements at each
esonance crossing and their damping due to the tidal friction within
he moons. By doing so, the authors assumed that Callisto has never
een captured into resonance with Ganymede and that the Laplace
esonance has never been affected by these resonant encounters. This
ssumption comes from the fact that two isolated satellites cannot
e captured into a two-body MMR if the resonance encounter is
ivergent (e.g. Murray & Dermott 2000 ). Howev er, Gan ymede and
allisto are not isolated satellites: Ganymede is already trapped in

he Laplace resonance with Io and Europa, and a jungle of three-
ody resonances surrounds the 2:1 resonance between Ganymede
nd Callisto, influencing greatly their dynamics (see Lari et al. 2020 ).

https://naif.jpl.nasa.gov/pub/naif/JUNO/kernels/spk/jup310.bsp.lbl
art/stac3299_f1.eps
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herefore, the outcome of the resonant encounter in this case is much
ore complicated than what one can predict from isolated two-body 

esonances. Because of the chaotic nature of the dynamics, the exact 
utcome of the encounter must be investigated numerically. 
Similarly to Shibaike et al. ( 2019 ), Madeira, Izidoro & Giuliatti
inter ( 2021 ) have recently proposed that the four Galilean satellites

ould have triggered a four-body resonance chain just after their 
ormation through their inward migration within Jupiter’s circum- 
lanetary disc; then, after a few millions of years, Callisto would have
scaped it. In their scenario, Callisto is supposed to be in resonance
ocking, so that its fast migration allows it to mo v e a way from the 2:1
esonance with Ganymede. Ho we ver, in order to retrieve the current
alues of the moons’ semimajor axes at the end of their simulations,
adeira et al. ( 2021 ) had to assume a migration rate for Callisto
uch smaller than the one predicted by Fuller et al. ( 2016 ) and used

y Downey et al. ( 2020 ). 
Starting from the dynamical models described by Lari ( 2018 ) and

ari et al. ( 2020 ), we aim to explore the dynamical evolution of the
alilean satellites in the case Callisto is in resonance locking and 
igrates quickly outwards. In such a scenario, Callisto must have 

rossed the 2:1 MMR with Ganymede in the past. As this crossing
ust have happened quite recently (less than 1 Gyr, see Downey et al.

020 ), we assume that the Laplace resonance between the three inner
atellites was already established at the time, which is the case if it
as a primordial origin. 

The paper is structured as follows: in Section 2 , we present
he dynamical models and the set-up we use for investigating the 
ast evolution of the moons. In Section 3 , we show the possible
utcomes of the resonant encounter and, in Section 4 , we study
articular dynamical pathways that involve the formation of a four- 
ody resonant chain and eventually lead to the current configuration 
f the moons. Finally, in Section 5 , we summarize our results and
e comment on possible future advances in our knowledge of tidal 
issipation in the Jovian system. 

 DY NA M I C A L  M O D E L S  

he crossing of the 2:1 resonance between Callisto and Ganymede 
s chaotic and it can lead to many different outcomes (see e.g.
ari et al. 2020 for examples with convergent migration). Hence, 

t is not enough to predict the effect of resonances using classic
nalytical formulas; instead, we must draw a statistical picture of the 
ossible evolution pathways of the moons by running hundreds of 
imulations o v er a billion-year timespan. For this exploration to be
omputationally feasible, we need an efficient averaged model that 
ccurately captures the essence of the dynamics of all four moons 
n the vicinity of the 2:1 resonance between Callisto and Ganymede. 
uch a model has been introduced by Lari et al. ( 2020 ). In addition

o be light from a computational point of view, this model highlights
he limited number of terms that matter most in the dynamics, which
llows for an immediate interpretation of the moons’ motion. 

Ho we ver, the migration of Callisto predicted by Fuller et al. ( 2016 )
s so fast that the moons can cross many other resonances after
aving encountered the main 2:1 period ratio. For this reason, this
rst statistical study must be completed with a limited number of

ntegrations using an un-averaged N -body model (that includes all 
esonances). This way, we can determine which other resonances may 
lso have played a role in the subsequent evolution of the moons,
nd how they could possibly have led them to their current orbital
onfiguration. 

More precisely, we consider that an evolution matches qualita- 
ively the current orbital configuration of the Galilean satellites if at 
 certain time: (i) it reaches the same orbital proportions a i / a i + 1 ( i
 1, 2, 3) as in Table 1 ; (ii) the only active resonances are the ones

escribed in equation ( 1 ); (iii) the eccentricity of the inner moons
re equal to the values forced by the resonances; (iv) Callisto has a
oderate free eccentricity ( � 0.01). 

.1 Averaged model 

ur averaged dynamical model of the Galilean moons is based on an
xpansion of the Hamiltonian function into series of eccentricities 
see Yoder & Peale 1981 ; Malhotra 1991 ; Lari 2018 ; Paita, Celletti
 Pucacco 2018 ). The details for the construction of the model have

een discussed in depth by Lari ( 2018 ) and here, we just present
he final version of the Hamiltonian. As inclinations and nodes have
een pro v ed to play a marginal role in the current Laplace resonance
ynamics and in the 2:1 resonant encounter between Ganymede and 
allisto (Lari et al. 2020 ), we limit our study in Jupiter’s equatorial
lane. Therefore, minor effects taken into account in Lari et al.
 2020 ), such as the Sun’s perturbation and inertial forces related
o the motion of the equatorial plane of Jupiter, are neglected in this
tudy. This is a reasonable approximation, as the obliquity of Jupiter
s small, so the equilibrium plane of the satellites (Laplace plane) is
ery close to the equator of Jupiter (see e.g. Noyelles 2009 ). 

The choice of considering a coplanar motion for the satellites 
s also functional to have a model as simple as possible (Yoder
979 ; Henrard 1983 ; Tittemore 1990 ; Malhotra 1991 ). Ho we ver, it
s important to note that we are neglecting the constraints on the
 volution gi ven by the small (but not zero) current inclinations of the
oons. 
Following the notation of Lari et al. ( 2020 ), we denote with

, m 0 , R J , and J 2 the gravitational constant, the mass, equatorial
adius, and quadrupole moment of Jupiter, respectively; while m i , R i ,
nd βi = m 0 m i / ( m 0 + m i ) ( i = 1 , 2 , 3 , 4) are the Galilean satellites’
asses, radii, and reduced masses. Moreo v er, we use the Keplerian

lements of the moons ( a i , e i , � i , λi ), which are the semimajor
xis of moon i , its eccentricity, its longitude of the pericentre,
nd its mean longitude, respectively. We introduce also the mean 

otion n i = 

√ 

G( m 0 + m i ) /a 3 i . We note that in order to keep the
amiltonian formalism, the actual variables we use for the orbit 
ropagation are not the Keplerian elements, but some combinations 
f them which define canonical coordinates (for details, see Lari et al.
020 ). 
The Hamiltonian can be expressed as 

 = H 0 + εH 1 , (3) 

here the unperturbed part is a sum of two-body Hamiltonian 
unctions: 

 0 = −
4 ∑ 

i= 1 

Gm 0 m i 

2 a i 
, (4) 

nd the perturbation can be decomposed into 

H 1 = H J + H M 

. (5) 

In this expression, H J is the Hamiltonian function associated with 
he oblateness of Jupiter. We truncate its expansion to the second
rder in eccentricities and to the second order in R J / a i , and we remo v e
he short period terms, obtaining 

 J = 

4 ∑ 

i= 1 

Gm 0 m i 

a i 

[
J 2 

(
R J 

a i 

)2 (
−1 

2 
− 3 

4 
e 2 i 

)]
. (6) 
MNRAS 518, 3023–3035 (2023) 
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he main effect of Jupiter’s J 2 on the orbits of the satellites is to
nduce a precession of their longitudes of the pericentre. As the rate
f the precession depends on the distance of the moons from the
lanet, J 2 separates the MMRs into multiplets of resonances with the
ame combination of mean longitudes. 

The second term in equation ( 5 ) is the Hamiltonian function
ssociated with the mutual gravitational perturbation between the
atellites. It can be divided into secular and resonant parts: 

 M 

= H 

( sec ) 
M 

+ H 

( res ) 
M 

. (7) 

At second order in eccentricities, the secular part is 

 

( sec ) 
M 

= −
∑ 

1 � i<j� 4 

Gm i m j 

a j 

(
f 1 + f 2 

(
e 2 i + e 2 j 

)

+ f 10 e i e j cos ( � j − � i ) 

)
, (8) 

nd the resonant part is 

 

( res ) 
M 

= 

∑ 

ij= (12 , 23 , 34) 

[
βi n i a i βj n j a j 

m 0 
e j cos (2 λj − λi − � j ) 

− Gm i m j 

a j 

(
f 27 e i cos (2 λj − λi − � i ) 

+ f 31 e j cos (2 λj − λi − � j ) 

+ f 45 e 2 i cos (4 λj − 2 λi − 2 � i ) 

+ f 53 e 2 j cos (4 λj − 2 λi − 2 � j ) 

+ f 49 e i e j cos (4 λj − 2 λi − � i − � j ) 

)]
, (9) 

here the coefficients f k are combinations of Laplace coefficients
nd depend on the ratio of the semimajor axes a i / a j . Their expression
s given, for example, in Murray & Dermott ( 2000 ). The resonant
art in equation ( 9 ) includes the 2:1 resonant terms for all three pairs
f adjacent moons. All these terms must be kept in order to study
he 2:1 resonance crossing of Ganymede and Callisto while the three
nner moons are locked in the Laplace resonance. 

From the Hamiltonian in equation ( 3 ), we can then compute the
ifferential equations, which we integrate numerically to explore
he long-term planar motion of the satellites. For all simulations in
he paper, we use the numerical integrator of Everhart ( 1985 ) refined
sing the tips given by Rein & Spiegel ( 2015 ), which has been shown
o be fast and accurate o v er v ery large timespans. 

.2 Tidal effects 

ogether with the conserv ati ve terms of the dynamics presented in
ection 2.1 , we need to include dissipative effects coming from

he tidal interaction between Jupiter and the moons. Since these
ffects cannot be obtained from a Hamiltonian function, we must
dd them directly to the differential equations. This method is valid
s long as the time-scale of the dissipative effects is many orders
f magnitude greater than the one of the conserv ati ve system. Here,
ndeed, the resonant and secular dynamics of the Galilean satellites
ave characteristic times from a few years to thousands of years
see e.g. Lainey, Duriez & Vienne 2006 ), while dissipation acts o v er
illions of years. 
The force applied on a given body due to the tidal dissipation is

Mignard 1979 , see also Efroimsky & Lainey 2007 ; Lari 2018 ): 

 = −3 
k 2 Gm 

2 R 

5 

r 7 
�t 

(
2 

r 
r 

r · v 
r 2 

+ 

r × w + v 
r 

)
, (10) 
NRAS 518, 3023–3035 (2023) 
here m , r , and v are the mass, position, and velocity of the body
hat raises the tides, while k 2 , R , and w are the Lo v e number, radius,
nd spin vector of the deformed body. The parameter � t is called
idal time lag: for tidal dissipation within the planet, � t = (2( | w |

n ) Q ) −1 ; instead, for tidal dissipation within the (synchronous)
atellite, � t = ( nQ ) −1 . The final tidal force applied to the satellite is
he sum of both contributions. 

In order to implement this force in our averaged model, we need to
ompute the mean effect of this force on the moons’ orbital elements.
t lowest order in eccentricities, the dissipati ve ef fects on the moons’
rbital elements are given by (see Kaula 1964 ; Yoder & Peale 1981 ;
alhotra 1991 ) 

˙ i = 

2 

3 
c i 

(
1 −

(
7 D i − 51 

4 

)
e 2 i 

)
a i , (11) 

˙ i = −1 

3 
c i 

(
7 D i − 19 

4 

)
e i ; (12) 

here 

 i = 

9 

2 

(
k 2 

Q 

)
0 ,i 

m i 

m 0 

(
R J 

a i 

)5 

n i , (13) 

 i = 

(
k 2 

Q 

)
i 

(
Q 

k 2 

)
0 ,i 

(
R i 

R J 

)5 (
m 0 

m i 

)2 

. (14) 

In equation ( 13 ) and ( 14 ), ( k 2 / Q ) 0, i is the dissipative parameter
f Jupiter at the orbital frequency of the i th satellite, while ( k 2 / Q ) i 
s the dissipative parameter of the i th satellite. These parameters
re defined as the ratio between the tidal Lo v e number k 2 and the
uality factor Q . Therefore, in equations ( 11 ) and ( 12 ), the terms
roportional to c i are due to the tidal dissipation within Jupiter, while
he ones proportional to c i D i are due to the tidal dissipation within the
 th moon. The former pushes the satellite outwards and increases its
ccentricity, while the latter pushes the satellite inwards and tends to
ircularize its orbit. In the case of the Galilean moons, Lainey et al.
 2009 ) measured the current dissipative parameters related to the
ouple Io-Jupiter: ( k 2 / Q ) (0, 1) = 1.1 × 10 −5 and ( k 2 / Q ) 1 = 0.015. As
e consider a planar motion and inclinations are expected to remain

mall during the actual evolution, we do not include obliquity tides. 
Since Io is the Galilean satellite closest to Jupiter, it experiences the

argest dissipation among all four moons, so that tidal effects between
o and Jupiter have been thought to drive the orbital evolution of the
hole moon system (Yoder & Peale 1981 ; Malhotra 1991 ; Lainey

t al. 2009 ; Lari et al. 2020 ). Through this mechanism, the momentum
ransferred from the spin of Jupiter to the orbit of Io and the energy
oss due to the tidal friction within Io are redistributed to Europa
nd Ganymede via the Laplace resonance. Ho we ver, the resonance
ocking theory presented by Fuller et al. ( 2016 ) proposes instead that
he dissipation of Jupiter at the frequency of Callisto is very high
with today’s ef fecti ve quality factor Q close to 1), so that Callisto
ould be actually the satellite with the highest migration rate of the

ystem. In the tidal theory of Fuller et al. ( 2016 ), the orbital motion of
he satellite is resonantly locked with an interior oscillation mode of
he planet, and its migration time-scale follows the planet’s internal
tructure evolution. 

Assuming that Callisto is resonantly locked with Jupiter, its
emimajor axis o v er time t follows a power law of the type (see
ainey et al. 2020 ) 

 i ( t) = a 0 

(
t 

t 0 

)B 

, (15) 

here a 0 is the current value of the moon’s semimajor axis, t 0 
4.57 Gyr is the age of Jupiter and B = t 0 /t 

tide 
i . If the moon is
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Figure 2. Value of Jupiter’s ef fecti ve dissipati ve parameter at the frequency 
of Callisto ( k 2 / Q ) 0, 4 as a function of Callisto’s semimajor axis a 4 , assuming 
that it is resonantly locked. The current value of a 4 is about 26 . 4 R J . Coloured 
curves are obtained using equation ( 16 ) with different values of the parameter 
B . The black–dashed curve shows the change in value of ( k 2 / Q ) 0, 4 considered 
in Downey et al. ( 2020 ) for their simulations. 
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Table 2. Possible past initial conditions of the Galilean satellites that 
verify the Laplace resonance (semimajor axes are given in R J units and 
angles are in radians). The eccentricities of the resonant satellites are 
set to their forced value, and Callisto is placed close the 2:1 resonance 
with Ganymede (see the text). The symbol ∗ indicates that the variable 
is independent and can be chosen randomly. 

elements I II III IV 

a 1 4 .0000 4 .5000 5 .0000 5 .5000 
a 2 6 .3596 7 .1576 7 .9554 8 .7528 
a 3 10 .1447 11 .4232 12 .7008 13 .9775 
a 4 15 .6073 17 .5742 19 .5396 21 .5039 
e 1 0 .0034 0 .0034 0 .0034 0 .0034 
e 2 0 .0085 0 .0081 0 .0078 0 .0075 
e 3 0 .0015 0 .0015 0 .0015 0 .0015 
e 4 0 .0050 0 .0050 0 .0050 0 .0050 
� 1 0 .7980 5 .5297 5 .2698 2 .6530 
� 2 3 .9416 2 .3913 2 .1251 5 .7986 
� 3 0 .7128 5 .1816 5 .6236 2 .4659 
� 4 ∗ ∗ ∗ ∗
λ1 − 2 λ2 5 .4844 0 .7526 1 .0139 3 .6293 
λ2 − 2 λ3 2 .3420 3 .8934 4 .1555 0 .4873 
λ3 − 2 λ4 ∗ ∗ ∗ ∗
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esonantly locked, then its tidal time-scale t tide 
i is expected to evolve 

 v er time as the planet grows older, such that B remains constant 
While in classic theories dissipative parameters are considered 

onstant (MacDonald 1964 ) or linear functions of the orbital fre-
uency (Mignard 1979 ), for the resonance locking theory, we have 
n ef fecti ve v alue that depends strongly on the moon’s semimajor
xis (Fuller et al. 2016 ; Lainey et al. 2020 ): (
k 2 

Q 

)
0 ,i 

= 

B 

3 

√ 

Gm 0 

Gm i 

1 

R 

5 
J 

1 

t 0 

(
a i 

a 0 

)1 /B 

a 
13 / 2 
i . (16) 

herefore, as shown in Fig. 2 , the dissipative parameter ( k 2 / Q ) 0, i 

hanges by many orders of magnitude during the moon’s outward 
igration, growing from small values, when the moon is close to the

lanet, to large values, when the moon is farther away. Equation ( 16 )
ives the instantaneous value of ( k 2 / Q ) 0, i that results in the migration
aw in equation ( 15 ) for the i th satellite. These formulas hold for a
atellite that is not involved in any MMR, otherwise the ef fecti ve
alue of ( k 2 / Q ) 0, i must be enhanced in order to compensate for the
omentum transferred to the other resonant moons: (
k 2 

Q 

)MMR 

0 ,i 

= 

(
k 2 

Q 

)
0 ,i 

(1 + f ) . (17) 

he enhancing factor f depends on the satellites involved in the 
esonance and on the kind of resonant link. For simplicity, and since
he tidal history of Callisto is not known yet, we define empirically
 so that a i in our simulations still follows the evolution described in
quation ( 15 ). 

In order to compute the value of the parameter B , the tidal time-
cale of Callisto would be needed. Unfortunately, the migration rate 
f Callisto has not been measured yet, but only hypothesized by Fuller
t al. ( 2016 ). Moreo v er, there is also the possibility that Callisto is not
urrently resonantly locked with Jupiter, but that it was locked in the
ast. For these reasons, we explore different values of B consistent 
ith the tidal-locking scenario of Fuller et al. ( 2016 ). We consider
alues of B between 0.5 and 3.5, which would correspond to current
alues of ( k 2 / Q ) 0, 4 between 0.06 and 0.42 (see Fig. 2 ). Since from
uno mission data, the tidal Lo v e number of Jupiter is well known
Durante et al. 2020 ; Wahl et al. 2020 ), such an interval corresponds to
 0, 4 between about 10 and 1. These values are clearly out of the range 
iven by the classic tidal theory (Goldreich & Soter 1966 ), while they
re in line with the resonance locking expectations. Indeed, Fuller 
t al. ( 2016 ) predicted a current value of the effective quality factor
f Jupiter at the frequency of Callisto of the order of unity. Building
n this prediction, Downey et al. ( 2020 ) used a value around 3 (i.e.
 2 / Q = 0.2) for their computations. These values imply that Callisto
hould currently be migrating outwards (or should have migrated in 
he past) at a rate of several tens of centimetres per year, that is even
aster than Titan (Lainey et al. 2020 ). If Callisto is still resonantly
ocked today, then it should have crossed the 2:1 resonant region
ith Ganymede less than 1 Gyr ago (Downey et al. 2020 ). As it is

elatively a short time with respect to the lifetime of the satellites, it
s reasonable to assume that the Laplace resonance between the three
nner moons was already established during this event. 

.3 Set-up 

n order to explore the past dynamical evolution of the moons in
he context of a fast migration of Callisto, we need to consider the
ossible past configurations of the four moons. As Io, Europa, and
anymede also migrate over time (though much slower than what 
e assume for Callisto), we take initial conditions in such a way

hat their orbits are closer to Jupiter than they are today, and that
hey are trapped in the Laplace resonance, i.e. the three relations
n equation ( 1 ) are fulfilled. In Table 2 , we report some examples
aking a 1 from 4.0 to 5 . 5 R J (numbered I, II, III, and IV). These
nitial conditions represent possible states of the moons about 1 to
 few Gyr in the past. Moreo v er, we place Callisto just below the
:1 resonant region with Ganymede, at a 3 / a 4 = 0.65. Given the fast
igration of Callisto, a 3 / a 4 decreases, pushing Callisto toward the

:1 resonance (nominally at a 3 / a 4 ≈ 0.63). While the orbital elements
f the three inner moons are forced by the Laplace resonance, we
ave a certain freedom for the elements of Callisto. We set Callisto’s
nitial eccentricity to 0.005, which is slightly smaller than today’s 
 alue; large v alues are not likely, because of the damping due to
idal friction. Finally, as the resonant encounter introduces chaos 
n the motion of the satellites (Lari et al. 2020 ), we sample the
ean longitude of Callisto in the whole interval [0: 2 π ). Indeed,

he slightest change in one of the model parameters would result in
MNRAS 518, 3023–3035 (2023) 
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Table 3. Statistics of the outcomes of the resonant en- 
counter with Callisto moving on a divergent orbit; for 
this analysis, we set B = 1.5 and we considered different 
values for the dissipative parameters ( k 2 /Q ) i ( i = 2 , 3 , 4). 
Different cases are defined as follows: case A, Callisto is 
captured into resonance and the Laplace angle continues to 
librate; case B, Callisto is captured into resonance and the 
Laplace angle stops librating; case C, Callisto in not captured 
into resonance (we refer to the main text for the definition of 
the subcases). Boldface characters show the outcomes that 
match the current orbital configuration of the moons. 

( k 2 / Q ) 2, 3, 4 0.001 0.005 0.010 average 

A.1 29% 48% 70% 49% 

A.2 55% 31% 3% 29% 

B.1 5% 10% 11% 9% 

B.2 0% 5% 12% 6% 

C.1 5 % 1 % 0 % 2 % 

C.2 6% 5% 4% 5% 
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xtreme variations of λ4 after a few millions of years. The initial
rbital phase of Callisto with respect to the three inner moons is
herefore a completely free parameter. By sampling λ4 in [0, 2 π ), we
im to build a complete picture of the diversity of outcomes that can
e produced by the resonant crossing. 
For what concerns the dissipative parameters, we set ( k 2 /Q ) 0 ,i ( i =

 , 2 , 3) and ( k 2 / Q ) 1 to the values measured by Lainey et al. ( 2009 ),
hile for ( k 2 /Q ) i ( i = 2 , 3 , 4), we consider cases with small (0.001),
edium (0.005), and large (0.010) tidal friction within the moons.
inally, as described in Section 2.2 , we make ( k 2 / Q ) 0, 4 evolve
ollowing equation ( 16 ), considering values of B between 0.5 and
.5. All other dissipative parameters are assumed to remain constant
uring the timespan of our simulations (constant- Q model). 
Because of the large timespans involved (from hundreds of
illions to billions of years) and the large separation of time-scales

etween conserv ati ve dynamics and tidal dissipation effects, for
uch studies a tidal acceleration factor α is commonly employed
Tittemore & Wisdom 1988 ; Malhotra 1991 ; Lari et al. 2020 ; Celletti
t al. 2022 ). This factor multiplies c i , defined in equation ( 13 ),
nd allows to speed up the propagation. In the case of the future
volution of the Galilean satellites, with Ganymede migrating around
0 cm yr −1 and Callisto steady, Lari et al. ( 2020 ) showed that using a
actor α = 10 2 or α = 10 3 does not change significantly the statistics
f the resonant encounter. With about the same migration rates,
alhotra ( 1991 ) and Showman & Malhotra ( 1997 ) used a factor α =

0 3 to explore the past evolution of the Galilean satellites. As in our
ominal scenario Callisto migrates faster (several tens of centimetres
er year), we use a conserv ati ve v alue and set α = 10 2 , both in the
veraged model and the N -body numerical integrations. In this way,
e are inside the range of the absolute migration rate that Lari et al.

 2020 ) explored in their computations and we are assured that the
ynamics is not artificially altered by the acceleration factor. For
he sake of clarity, we will present the results of the simulations in
erms of the real physical time t , which is related to the integration
ime-variable ˜ t through t ≈ α ˜ t . 

 O U T C O M E S  O F  T H E  R E S O NA N T  

N C O U N T E R  

n this section, we show the evolution of the satellites as Callisto
rosses the 2:1 MMR with Ganymede. All simulations and results
resented in the section are obtained running the averaged model.
s described by Lari et al. ( 2020 ), because of the already existing

esonances between the inner satellites, the 2:1 resonant region is
urrounded by pure three-body MMRs which make the dynamics
haotic and non-trivial. Indeed, many outcomes are possible. As
allisto’s orbit is diverging, the classic theory of two-body MMRs
ould predict that a capture is not possible (see e.g. Murray &
ermott 2000 ); ho we ver, the Galilean satellites dynamics is much
ore complicated than a mere succession of isolated two-body
MRs, and we see below that the actual dynamics defies this naive

xpectation. 
Table 3 shows the statistics of outcomes for three different

alues of the moons’ dissipative parameters. For each of these three
xperiments, B is set to 1.5 and λ4 is sampled to 100 equidistant values
n [0: 2 π ). We classify the outcomes of the simulations in three main
ases. In case A, Callisto is captured into resonance (two-body or
ure three-body MMR) and the Laplace angle continues to librate.
n case B, Callisto is captured into a pure three-body resonance and
he Laplace angle stops librating and starts to circulate. In case C,
allisto crosses the resonance without being captured. It is worth
oting that the classification used in the paper is similar to the one
NRAS 518, 3023–3035 (2023) 
resented by Lari et al. ( 2020 ), apart from case C, which did not
ppear in their study. 

For each case (A, B, C) we will define below two subcases. The
otal percentage of a case X in Table 3 is therefore the sum of the
ercentages of X.1 and X.2. From these numbers, we can appreciate
o w the le vel of energy dissipation within the satellites affects the
tatistics of the resonant encounter: in particular, the non-capture
f Callisto (case C) shows a greater probability when the energy
issipation within the moons is small, and the capture of Callisto
ogether with the circulation of the Laplace angle (case B) shows a
reater probability when the energy dissipation is large. Below, we
ill refer to the average percentages. 
In Figs 3 , 4 , and 5 , we report the typical evolution of the semimajor

xes ratios, eccentricities, and resonant angles for cases A, B, and C,
especti vely. As sho wn in Figs 6 and 7 , different values of B mainly
f fect the v ariation rate of the semimajor axes (which sets the global
ime-scale of the system evolution), while parameters ( k 2 / Q ) i mainly
ffect the eccentricities. This is an expected result: the equilibrium
alues of the moons’ eccentricities result from a balance between
he effects of the MMRs (that force the eccentricity not to be zero)
nd the level of eccentricity damping (that tends to decrease the
ccentricity to zero). 

From Table 3 , we see that, in most simulations (93 per cent , case
 plus case B), Callisto is captured into resonance with the other

atellites, forming an 8:4:2:1 resonant chain. From Figs 3 and 4 ,
e can note how a new resonant angle involving Callisto’s mean

ongitude starts to librate. The slope of a 3 / a 4 changes once it reaches
bout 0.63: the reason is that, once Callisto enters into resonance,
he huge amount of angular momentum that it gains from Jupiter is
edistributed also to the other three moons. As a result, the migration
f Callisto slows down, while the migration rate of the three inner
oons increases. Moreo v er, the evolution of the semimajor ax es

reatly differs from what was found by Lari et al. ( 2020 ) in the case
f convergent orbits (see Fig. 1 ): in their analysis, a 3 / a 4 converged
o the resonant value ( ≈0.63) and remained fixed after the capture
f Callisto. Here, instead, a 3 / a 4 decreases as Callisto continues its
 ast outw ard migration and it mo v es a way from the nominal value of
he two-body 2:1 MMR. As shown in Figs 3 and 4 , the other ratios
 1 / a 2 and a 2 / a 3 also decrease o v er time. This is typical of three-body
MRs, which allow for variations of semimajor axis ratios even

hough all bodies still remain locked in resonance. 
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Figure 3. Examples of orbital evolutions for case A: Callisto is captured into 
resonance and the Laplace angle continues to librate. The left column shows 
a simulation where Callisto triggers a 2:1 MMR with Ganymede (subcase 
A.1). The right column shows a simulation where Callisto triggers a pure 
three-body MMR (equation 18 ) with Europa and Ganymede (subcase A.2). 
In both simulations, we set B = 1.5 and ( k 2 /Q ) i = 0 . 005 ( i = 2 , 3 , 4). 
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l

λ

Figure 4. Examples of orbital evolutions for case B: Callisto is captured 
into resonance and the Laplace angle starts to circulate. The left column 
shows a simulation where the main increase in eccentricity is for Ganymede 
(subcase B.1). The right column shows a simulation where the main increase 
in eccentricity is for Callisto (subcase B.2). In both simulations, we set B = 

1.5 and ( k 2 /Q ) i = 0 . 005 ( i = 2 , 3 , 4). 
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Cases A and B differ by the behaviour of the Laplace angle λ1 −
 λ2 + 2 λ3 . As shown in Fig. 3 , case A also features a new Laplace-
ike resonance between Europa, Ganymede and Callisto: 

2 − 3 λ3 + 2 λ4 ∼ π, (18) 
hich is the same relation as the current Laplace resonance between
o, Europa, and Ganymede. Equation ( 18 ) can be either the result of
he sum of two-body resonances triggered by the couples Europa–
anymede and Ganymede–Callisto (subcase A.1), or it can indicate 
 pure three-body resonance between the three outer moons (subcase 
MNRAS 518, 3023–3035 (2023) 
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M

Figure 5. Orbital evolutions for case C: Callisto is not captured into 
resonance. The left column shows a simulation where the Laplace resonance 
is preserved (subcase C.1). The right column shows a simulation where the 
Laplace resonance is disrupted (subcase C.2). In both simulations, we set B 

= 1.5 and ( k 2 /Q ) i = 0 . 001 ( i = 2 , 3 , 4). 
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Figure 6. Evolution of the semimajor axes ratio a 3 / a 4 in function of a 4 for 
outcome A, starting from initial conditions III of Table 2 and using different 
values of the tidal parameter B . The system evolution is faster when B is 
larger: the evolution shown takes about 0.3 Gyr for B = 3.5 and 2.0 Gyr for 
B = 0.5. 

Figure 7. Evolution of Ganymede’s eccentricity for simulations of subcase 
B.1, using dif ferent v alues of the dissipati ve parameter ( k 2 / Q ) 3 . Low dissipa- 
tion within the moon allows a larger increase of its eccentricity. 
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.2). After the resonant encounter, the eccentricity of Callisto can
ump to different values: for simulations of kind A.1, the eccentricity
s forced to nearly 0 because of the two-body resonant link; while
or simulations of kind A.2, it is excited to higher values, and then
t slowly increases or decreases, depending on which term between
 k 2 / Q ) (0, 4) and ( k 2 / Q ) 4 is dominant (see equation 12 ). In both cases,
he eccentricities of the inner moons decrease to values lower than
NRAS 518, 3023–3035 (2023) 
heir current values forced by the Laplace resonance. This is due to
he decrease in the ratios a 1 / a 2 and a 2 / a 3 , which makes the regression
ates of the moons’ pericentres increase to preserve the resonances,
nd they are inversely proportional to the forced eccentricities (see
.g. Sinclair 1975 ). Finally, from Fig. 3 , we can see that the initial
wo-body resonant angles λ1 − 2 λ2 + � 1 , λ1 − 2 λ2 + � 2 and λ2 −
 λ3 + � 2 continue to librate, even though the libration amplitudes
ncrease o v er time. 

In simulations of case B, apart from the circulation of the Laplace
ngle, Callisto is captured into a pure three-body MMR with Europa
nd Ganymede which is different from the relation in equation ( 18 )
see Fig. 4 ). The most common pure three-body MMR obtained in
ur simulations is 

 λ2 − 5 λ3 + 2 λ4 + � 3 ∼ π, (19) 

hich was also the most likely pure three-body resonance found
y Lari et al. ( 2020 ) in their study of the future evolution of the
alilean satellites. For this resonance, the eccentricities of the outer
oons can increase greatly. The actual eccentricity value reached
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Figure 8. Examples of Callisto’s capture into and escape from the four- 
body resonant chain. Each curve has been obtained from an un-averaged 
N -body integration with parameter B = 1.5. The colours correspond to six 
dif ferent v alues of ( k 2 /Q ) i ( i = 1 , 2 , 3). High-order MMRs between Callisto 
and Ganymede are labelled. 
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epends on the values of the moons’ dissipative parameters ( k 2 / Q ) i .
or some simulations (subcase B.1, see Fig. 4 ), the main effect is on

he eccentricity of Ganymede. As shown in Fig. 7 , the eccentricity
f Ganymede reaches values between 0.02 and 0.08, depending on 
he magnitude of the dissipative parameters. For case B.2, on the 
ontrary, the main effect is on the eccentricity of Callisto, which can
apidly grow o v er 0.1 and then it pumps the eccentricity of Ganymede 
p to around 0.02. As already described by Lari et al. ( 2020 ), the
ifferent behaviour of the eccentricities for the two subcases is 
elated to the combinations � 2 − � 3 and � 3 − � 4 , which can
ibrate around 0 or π . Depending on the libration of one or both
hese combinations, several three-body resonances can be acti v ated 
nd add up to the one in equation ( 19 ). Finally, only the two-body
esonance between Io and Europa holds on ( λ1 − 2 λ2 + � 1 ∼ 0),
hile the resonant angles λ1 − 2 λ2 + � 2 and λ2 − 2 λ3 + � 2 start

o circulate, leading to the disruption of the Laplace resonance as we
now it today (see Fig. 4 ). 
Surprisingly, in both cases A and B, the resonances involving 

allisto survive for a very long time, even though a 3 / a 4 moves
uite far from the nominal value of the nominal two-body 2:1 
MR. Only for very lo w v alues ( a 3 / a 4 < 0.5, not shown), the

esonance completely disappears and the four-body resonant chain 
reaks down. This means that Callisto can spend from hundreds of
illions to billions of years in resonance with the other three Galilean
oons, even if it is moving on a divergent orbit. 
In the rest of the simulations (only 7 per cent , case C), Callisto

s not captured into resonance. From Fig. 5 , we can appreciate how
 3 / a 4 reco v ers its initial slope after the crossing, which implies that
he satellite does not remain locked in any resonant link with the other

oons. In this situation, Callisto does not redistribute the angular 
omentum that it gains from Jupiter, and so a 3 / a 4 reaches today’s

alue much faster than in cases A or B. Also for these simulations, we
bserve two subcases: in the first one (subcase C.1), Callisto crosses
he 2:1 resonant region and the Laplace resonance is preserved; in 
he second one (subcase C.2), it crosses the 2:1 resonant region and
he Laplace resonance is disrupted. In the first subcase, apart from
he libration of the angles involved in the Laplace resonance, we can
ote how after a relatively brief period of time where the moons’
ccentricities can be excited (even to quite high values), they settle 
gain to the values forced by the resonances. 

Therefore, we actually found a class of simulations that matches 
ualitatively the current configuration of the Galilean satellites. 
ndeed, subcase C.1 is the scenario expected by Downey et al. ( 2020 ),
ut, although it is the most straightforward one, we obtained just a
otal of 2 per cent simulations of this kind. All the other simulations
o not reproduce directly today’s configuration of the moons. In cases 
 and B, Callisto remains locked into resonance, which evidently 

s in contrast with the current situation; while, in case C.2, Callisto
s not captured, but the Laplace resonance is in part disrupted. As
he capture of Callisto is the most likely pathway, in Section 4 ,
e investigate whether some additional dynamical mechanisms, 

hat begin to play a role as the system departs from the exact 2:1
ommensurabilities, could help us to restore the configuration of the 
ystem after the capture of Callisto. 

 E VO L U T I O N  T H RO U G H  A  4 - B O DY  

E S O NA N T  C H A I N  

n Section 3 , we found that if Callisto migrates faster than the other
oons and crossed the 2:1 MMR with Ganymede in the past, the most 

ikely outcome is the capture into a four-body resonant chain with 
he other satellites (cases A and B). Differently from the convergent 
volution presented by Lari et al. ( 2020 ) and shown in Fig. 1 , after
he capture, the ratio a 3 / a 4 decreases, passing from 0.63 to 0.56 in
everal hundreds of millions of years (or up to a few billions of years,
epending on the exact value of B ; see Fig. 6 ). Since all semimajor
xes ratios move away from the nominal 2:1 MMRs, we expect that
ur averaged model gradually becomes less accurate after the capture 
f Callisto, as it is designed to be valid in the vicinity of the 2:1 MMR
hain and lacks other potential resonant terms. 

For this reason, we explore the subsequent evolution of the 
alilean satellites after the capture of Callisto by running un- 

veraged N -body numerical integrations, assuming a planar motion 
s before. These simulations require a much larger computation 
ime than the ones obtained with the averaged model, therefore their
umber is quite limited. 
For comparison purpose and to a v oid the delicate task of converting

ack averaged orbital elements to un-averaged coordinates, we begin 
ur N -body numerical integrations before the capture of Callisto. Our
 -body simulations closely match the results obtained in Section 3
uring the stage of Callisto’s capture; this means that our averaged
odel did capture the essence of the dynamics in a neighbourhood

f the nominal 2:1 two-body MMRs. Ho we ver, as a 3 / a 4 continues to
ecrease substantially, new dynamical features show up. Indeed, as 
hown in Fig. 8 by the abrupt change of the slope of a 3 / a 4 , at certain
oints of the evolution the resonant link of Callisto can break down.
These points correspond to the crossing of high-order ( > 3) MMRs

etween Ganymede and Callisto, which can destabilize the system 

nd release Callisto from the resonance. From that point on, the
igration of Callisto does not push outwards the other moons 

nymore, as the angular momentum that it gains from Jupiter is
o longer exchanged with the other moons. In Fig. 8 , we show the
ominal position of the main high-order MMRs that Callisto crosses. 
As shown in Fig. 9 , the exact resonance that produces the escape

f Callisto depends on the values of the moons’ eccentricities, as they
et the strength of these high-order MMRs. As explained in Section 3 ,
he eccentricities reached by the satellites depend on their internal 
idal dissipation. For high values of the eccentricities (mainly case 
), we find that resonances 13:6 and 11:5 have a good probability to
reak the resonant chain. For smaller values of eccentricities (mainly 
ase A), only stronger resonances, like 7:3 and 5:2, manage to release
MNRAS 518, 3023–3035 (2023) 
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Figure 9. Evolution of Ganymede’s eccentricity for simulations of subcase 
B.1, obtained with un-averaged N -body numerical inte grations. F or each 
curve, the abrupt change corresponds to the escape of Callisto from the four- 
body resonance chain. 
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allisto. As the current configuration of the system is close to the
:3 resonance between Ganymede and Callisto, we can envision two
istinct pathways. 
In the first pathway, Callisto escapes the resonant chain early,

hrough an MMR of order higher than 7:3 (for instance 9:4, 11:5, or
3:6). In this case, the migration rate of Callisto must remain high
fter its escape, because we still need a 3 / a 4 to decrease down to its
urrent v alue. Ho we ver, Callisto’s escape from the resonant chain
oes not guarantee that the current configuration of the system will
e reproduced. Although Callisto is not in resonance anymore, we
lso need the eccentricities of the outer satellites to be damped to
heir current low values, and the Laplace resonance must be restored
n case it was disrupted (case B). Moreo v er, the ratios a 1 / a 2 and
 2 / a 3 must retrieve their equilibrium values close to the nominal 2:1
wo-body MMRs. This last point arises naturally as a result of the

oons’ eccentricity damping; ho we v er, this reco v ery of the Laplace
esonance must happen before a 3 / a 4 reaches it current value. In the
xample shown in Fig. 10 , the convergence of a 1 / a 2 and a 2 / a 3 towards
he nominal 2:1 level does happen, but it is too slow compared to
he decrease in a 3 / a 4 . In order to counteract this effect, we need
allisto to escape the resonant chain earlier, for instance through

he resonance 11:5 or 13:6. In order to allow for such high-order
MRs, ho we ver, the eccentricity damping of Ganymede must be

ower (see Fig. 9 ), which in turn slows down the reco v ery of the
aplace resonance. Hence, reproducing all features of the current
onfiguration of the moons is possible through this first pathway,
ut it requires some fine tuning, such as a timely variation in the
issipative parameters. 
In the second pathway, Callisto escapes the resonant chain later

n, through the 7:3 MMR or a lower-order resonance (for instance,
:2 or 3:1). In this case, the migration rate of Callisto must strongly
ecrease after its escape, so that the three other moons can catch up
s they migrate outwards; this would increase a 3 / a 4 again up to its
urrent value. 

An abrupt change in the dissipative parameters is clearly an ad
oc assumption, but it is unavoidable here to reproduce the current
onfiguration of the moons. From a physical point of view, a change
n the energy dissipation is possible, and it has already been invoked
n previous studies of the Galilean system (see Showman & Malhotra
NRAS 518, 3023–3035 (2023) 
997 ). Hussmann & Spohn ( 2004 ) showed that the coupling between
hermal and orbital evolution of the moons can produce wide periodic
scillations in their dissipation rate. Moreo v er, large variations in the
issipative parameters are expected with the acti v ation of dynamical
rocesses within the celestial bodies. In the case of satellites, it
an be due for instance to resonances in moon–moon tides (Hay,
rinh & Matsuyama 2020 ). Moreo v er, an abrupt change in the tidal
issipation within the planet may also happen at some point, because
f a release of Callisto from the tidal resonance locking mechanism
f Fuller et al. ( 2016 ). 
For comparison, Fig. 11 shows one successful simulation for each

f the two possible dynamical pathways: on the left, Callisto escapes
arly from the resonant chain; on the right Callisto escapes later on,
nd its tidal migration is switched off after some time. 

The first one is obtained starting from initial conditions III of
able 2 , initially setting B = 1.5 and ( k 2 / Q ) 3 = 0.001, and it
orresponds to an evolution of the kind B.1: Callisto is captured
nto the three-body resonance given by 2 λ2 − 5 λ3 + 2 λ4 + � 3 ∼ π

nd the eccentricity of Ganymede increases up to large values (about
.06). The first part of the evolution is very similar to the one already
resented in Fig. 4 , but because of the crossing of high-order MMRs,
he resonant angle involving Callisto is excited. A zoom-in view
f this phenomenon is presented in Fig. 12 . As a 3 / a 4 decreases,
he crossing of different two-body MMRs between Callisto and
anymede has a direct noticeable effect on the amplitude of the three-
ody resonance angle. Each resonance produces a kick, which is then
amped through tidal dissipation. The magnitude of the successive
icks increases as the order of the MMR encountered decreases, until
 strong enough resonance (here, 11:5) ejects Callisto from the three-
ody MMR. Once Callisto exits from the resonance, the ratio a 3 / a 4 
ecreases faster, while a 1 / a 2 and a 2 / a 3 mo v e back to the 2:1 nominal
esonant value, so that also the forced eccentricities of Io and Europa
ncrease up to their current values. The eccentricity of Ganymede,
hich reached high values when Callisto was still in resonance, is

lso damped because of the tidal dissipation within the moon: in
rder to reach a value e 3 ≈ 0.001 in about 100 Myr, which is the time
or a 3 / a 4 to go from 0.591 to 0.568 (considering B = 1.5), ( k 2 / Q ) 3 
ust be at least 0.007. Under this condition, when a 3 / a 4 reaches

oday’s value, we arrive very close to the current configuration of the
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Figure 11. Orbital evolutions of the Galilean satellites, obtained with N -body 
numerical integrations, that match qualitatively the current configuration of 
the system. The left column shows a simulation where the moons follow an 
evolution of kind B.1 and then Callisto exits from the resonant chain through 
the crossing of the 11:5 MMR. The right column shows a simulation where the 
moons follow an evolution of kind A.2, then Callisto exits from the resonant 
chain through the crossing of the 7:3 MMR and we stop its fast outward 
migration. For the first simulation, we set B = 1.5 and ( k 2 / Q ) 3 = 0.001 (then 
increased to 0.007); for the second one, B = 3.1 and ( k 2 / Q ) 4 = 0.008. 

Figure 12. Evolution of the resonant angle 2 λ2 − 5 λ3 + 2 λ4 + � 3 from 

the capture to the exit of Callisto, obtained with an un-averaged N -body 
numerical integration. The crossing of two-body MMRs between Gaymede 
and Callisto are labelled. 

Table 4. Mean orbital elements of the Galilean satellites at the time 
a 3 / a 4 = 0.5685 for the two simulations described in Section 4 and 
represented in Fig. 11 . 

element Io Europa Ganymede Callisto 

1) a 5.8565 9.3215 14.8925 26.1945 
e 0.0033 0.0072 0.0012 0.0048 

2) a 5.9037 9.3987 15.0083 26.4044 
e 0.0033 0.0074 0.0012 0.0120 
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ystem, with similar eccentricities and semimajor axes (see Table 4 ),
he Laplace angle and all other angles in equation ( 1 ) librate, and
allisto is not involved in any resonance anymore, as observed. If the
alilean system did follow this dynamical pathway, then it means that 
allisto escaped recently from the resonant chain, and that all four
oons reached their equilibrium configuration even more recently 

hrough tidal damping. This relatively recent increase and following 
amping of the eccentricities of the outer moons can also provide
n explanation for the residual free eccentricities of Ganymede and 
allisto (Sinclair 1975 ; Downey et al. 2020 ). 
A variant of this scenario can involve a large increase of Callisto’s

ccentricity (subcase B.2). In this case, the escape of Callisto from the
esonant chain may happen earlier, as e 4 reaches values much larger
han e 3 , which strengthens high-order two-body MMRs. Simulations 
how that the 13:6 MMR can be strong enough for this. Ho we ver,
lso in this case we would need to tune the dissipative parameters,
nd abruptly increase the eccentricity damping of Callisto in order 
or it to reach its current value in time. Moreo v er, a large increase in
allisto’s eccentricity would result in a quite recent large tidal friction 
ithin the moon, which seems to contradict the almost complete 

ack of geological activity, as testified by its heavily cratered surface
Greeley, Klemaszewski & Wagner 2000 ). For these reasons, we do
ot explore further evolutions involving a large increase in Callisto’s 
ccentricity. 

The second simulation in Fig. 11 gives an example of the second
ossible dynamical pathway. We obtained it starting from initial 
onditions II of Table 2 , setting B = 3.1 and ( k 2 / Q ) i = 0.008,
nd it corresponds to an evolution of the kind A.2: Callisto is
aptured into the three-body resonance given by λ2 − 3 λ3 + 2 λ4 

π and the eccentricity of Callisto jumps to about 0.002. As 
ll eccentricities remain relatively small, high-order MMRs with 
anymede are not strong enough to kick Callisto out of the resonant

hain. In this example, Callisto escapes only when the 7:3 MMR
s crossed: in this case, a 3 / a 4 is already close to today’s value, and
he system needs some time to resettle into today’s configuration. 
MNRAS 518, 3023–3035 (2023) 
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herefore, we continue the evolution until Callisto reaches its current
emimajor axis (about 26.4, and a 3 / a 4 < 0.568) and we assume
hat the resonance lock of Callisto with the interior mode of Jupiter
reaks down, so that its orbital expansion stops. Such a breaking
s indeed expected when the moon is too f ar aw ay from the planet
nd the amplitude of the mode required to sustain the resonance
ocking becomes too large (Fuller et al. 2016 ). Subsequently, the
idal dissipation between Io and Jupiter becomes the dominant driver
f the orbital migration. This makes a 3 / a 4 increase, because the three
nner moons migrate away faster than Callisto. Therefore, after a few
undreds of millions of years the Galilean moons reach orbits similar
o their current ones (see Table 4 ). Differently from the previous
ynamical pathway, both the escape of Callisto from the resonant
hain and the reco v ery of the equilibrium configuration for the inner
oons happen earlier, perhaps several hundreds of millions of years

go. 
In Table 4 , we report the final values of the semimajor axes and

ccentricities for both simulations. They are clearly close to their
bserved mean values, but e 1 and e 2 are a bit smaller. The reason is
hat, if we assume the values the dissipative parameters measured by
ainey et al. ( 2009 ) and the inward migration of Io, the eccentricities
f the moons are not steady, but their values change because of the
hift of the resonance centres. As shown in Lari et al. ( 2020 ), after
o stops its inward migration and all moons evolve outwards (as in
ur simulations), the eccentricities settle to lower equilibrium values
0.0034 for Io and 0.0074 for Europa), which match the ones in
able 4 . 

 C O N C L U S I O N  

he tidal resonance locking theory of Fuller et al. ( 2016 ) and the
ast migration of Titan measured by Lainey et al. ( 2020 ) open new
venues in our understanding of the Solar system dynamics. A fast
igration has also been proposed for Callisto around Jupiter (Fuller

t al. 2016 ), but it was unclear whether this hypothesis could be
n agreement or not with the current peculiar configuration of the
alilean satellite system. A preliminary study of the effects of a

ast migration for Callisto has been conducted by Downey et al.
 2020 ). They showed that if Callisto migrates faster than the other
oons, then it should have crossed the 2:1 MMR with Ganymede

n the past. Their results, ho we ver, are limited to order-of-magnitude
stimates, and a statistical analysis of the possible outcomes of this
haotic event was still missing. Here, we explored the past orbital
ynamics of the Galilean satellites through numerical integrations
nd classified the possible effects of Callisto’s fast migration. As
he resonance crossing event is expected to be quite recent, we have
ssumed that the Laplace resonance between the three inner moons
as already established at that time. This is consistent with formation
odels predicting a primordial origin for the Laplace resonance (see
eale & Lee 2002 ). 
As the resonant encounter between Callisto and Ganymede is

haotic, we cannot know for sure which dynamical pathway the
ystem may have followed, so we must conduct a statistical analysis
f the possible outcomes. To this aim, we have developed an averaged
odel of the Galilean satellites which is valid in the vicinity of the

:1 resonance. This allows us to compute hundreds of simulations
n a reasonable amount of time. We found that Callisto can cross the
esonance without being captured, and the Laplace resonance can
e preserved during this event, with only temporary excitation of
he moons’ eccentricities. Ho we ver, this outcome only represents a
mall fraction of the possible trajectories (about 2 per cent ). 
NRAS 518, 3023–3035 (2023) 
In the vast majority of cases Callisto is captured in resonance
espite its divergent migration. This occurs while Callisto passes
hrough the jungle of three-body MMRs that surrounds the 2:1
ommensurability with Ganymede. The capture of Callisto thus
eads to a resonant chain that involves all four Galilean moons.
rom this point on, the fast migration of Callisto becomes the main
river of the moons’ migration because the large angular momentum
ained by Callisto from Jupiter is redistributed among all four moons.
his strong outward pull of Callisto, ho we ver, cannot go on forever,
ecause it makes each pair of adjacent moons gradually drift away
rom the exact 2:1 commensurability. We explored this drift process
hrough un-averaged numerical simulations. Our simulations show
hat while the moons remain trapped in the four-body resonant chain,
allisto then crosses a high-order two-body MMR with Ganymede

e.g. 7:3, 9:4, 11:5...). Depending on the eccentricity values of the
oons at that time, this final resonance crossing can free Callisto

rom the resonant chain after several hundreds of millions of years.
ence, we may still retrieve a configuration that is qualitatively

imilar to the current Galilean moons even if Callisto is temporarily
aptured. Yet, our simulations show that in this case, it is challenging
o retrieve altogether today’s resonant relations, semimajor axis
atios, and eccentricities of the moons. 

If the eccentricity of Ganymede grows to large values (which hap-
ens in 9 per cent of simulations, provided that the tidal dissipation
ithin Ganymede is low enough), then Callisto escapes early from

he resonant chain and it can migrate to its current location while
he Laplace resonance relaxes to its observed state. In this situation,
allisto may still be migrating fast today. If instead, the eccentricities
f the moons remain quite low (which happens in 78 per cent of
imulations), then Callisto escapes late from the resonant chain,
nd only after having crossed the current ratio a 3 / a 4 . In this second
ituation, the fast migration of Callisto must necessarily have stopped
t some point, so that the other three Galilean moons can catch up
nd restore the current ratio a 3 / a 4 . Even though these two situations
re possible as a result of the chaotic resonant encounter, they require
 fine tuning of the dissipative parameters of the moons in order for
hem to retrieve their current eccentricities by the time the ratio a 3 / a 4 
eaches its current value. 

The temporary increase in the satellites’ eccentricity may be a way
o distinguish between these different pathways. The eccentricity of
anymede, in particular, can grow up to 0.06, which would result in
 strong tidal friction within the satellite. This enhanced interior heat
ould be the source of tectonic resurfacing and the smooth bright
errains on the surface of Ganymede (Malhotra 1991 ; Showman &

alhotra 1997 ; Schubert et al. 2004 ). 
Our current knowledge of tidal dissipation in the Jovian system

omes from astrometric observations of the moons, which allowed
o estimate the strong dissipation within Io (Lainey et al. 2009 ), that
s the main source of its observed heat flow (Veeder et al. 1994 ).
o we ver, because of the limitations of the available data sets, we do
ot have precise estimates of the dissipative parameters related to the
ther moons. In the near future, JUICE and Europa Clipper space
issions will visit the Jovian system, performing multiple flybys of

he Galilean satellites. They will provide important observations that
ill allow to investigate further the energy dissipation in the Jovian

ystem (Dirkx et al. 2017 ; Lari & Milani 2019 ). In particular, with
he combination of precise radio-science from space missions and
ther data sets (like astrometric observations) which co v er wider
imespans, it could be possible to estimate the dissipative parameters
f all four Galilean satellites and of Jupiter at the different orbital
requencies of the moons. In this way, it will be possible not
nly to confirm the strong tidal dissipation within Io, but also to
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btain information on the tidal friction within the other moons. 
ost importantly, these future observations may show evidence 

f Callisto’s migration and dissipative processes at play within 
upiter. 

Throughout this article, our working hypothesis was the hypothet- 
cal fast migration for Callisto proposed by Fuller et al. ( 2016 ). Yet,
ven if future measurements prove that the migration of Callisto is
low today, our results show that it may have been fast in the past
nd still lead to the current configuration of the system. In fact, the
ynamical evolutions of all four Galilean moons are deeply coupled, 
o that the knowledge of all dissipative parameters is essential to 
econstruct their orbital history. 
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