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Abstract
Mechanism Design aims to design a game so that a desirable outcome is reached regardless of agents’
self-interests. In this paper, we show how this problem can be rephrased as a synthesis problem, where
mechanisms are automatically synthesized from a partial or complete specification in a high-level logical
language. We show that Quantitative Strategy Logic is a perfect candidate for specifying mechanisms as
it can express complex strategic and quantitative properties.
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1. Introduction

Mechanism Design is focused on the designing of games that aggregate agents’ preferences
towards a single joint decision. Such games should ensure a preferable behavior of (rational)
players as well as desirable features of the decision [1]. Conitzer and Sandholm [2] introduced
Automated Mechanism Design (AMD), whose goal is to automatically create mechanisms for
solving a specific preference aggregation problem. AMD is usually tackled from an optimization
and/or data-driven point of view (for instance, see [3, 4, 5]).

In this paper we argue that Strategy Logic [6, 7] is a good candidate for a general-purpose
logic for mechanism design. More precisely, we present a recently proposed approach to AMD,
which consists in automating the process of verifying and designing new mechanisms using
formal methods and strategic reasoning. This approach was inspired by Wooldridge et al.
(2007) [8], who advocated the use of Alternating-time Temporal Logic (ATL) [9] to reason about
mechanisms. ATL lacks the ability to reason about quantitative aspects such as preferences, as
well as game-theoretic concepts such as equilibria, which are key features for modeling and
evaluating mechanisms, more precisely the ones with monetary transfers. For addressing these
aspects, we consider Quantitative Strategy Logic (SL[ℱ ]) [10]. SL[ℱ ] is expressive enough to
express complex solution concepts such as Nash equilibrium and properties about quantities.
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First, we demonstrated how to represent and verify knowledge-based benchmarks and properties
(such as efficiency and strategyproofness) in the newly proposed Epistemic SL[ℱ ] (SLK[ℱ ]) [11].
Previous extensions for imperfect information [12, 13, 14] focused on the qualitative versions
of SL, and SLK[ℱ ] is the first logic for strategic reasoning that combines quantitative aspects,
imperfect information, and the ability to express complex concepts from game theory.

In a second stage, we considered SL[ℱ ] with Natural Strategies [15] for reasoning with
bounded recall [16]. This work offers a new perspective for reasoning about mechanisms based
on the complexity of agents’ strategies, which we illustrated by modeling the repeated keyword
auction.

Finally, we reduced the design of deterministic mechanisms to SL[ℱ ]-synthesis [17]. In this
work, mechanisms are synthesized from a partial or complete specification expressed in a
high-level logical language. The quantitative semantics of SL[ℱ ] allows us to investigate the
constructions of mechanisms that approximate such properties, which is not possible with
standard Strategy Logic (SL) [6, 7]. Our approach enables generating optimal mechanisms
from a SL[ℱ ] specification, which may include requirements over the strategic behaviour of
participants and quality of the outcome. In this communication paper, we focus on the results
obtained in relation to synthesis of action-bounded mechanisms [17].

2. Quantitative Strategy Logic

Let us first present SL[ℱ ] [10] syntax and semantics.

Definition 1. The syntax of SL[ℱ ] is defined by the grammar

𝜙 ::= 𝑝 | ∃𝑠. 𝜙 | (i, 𝑠)𝜙 | 𝑓(𝜙, ..., 𝜙) | X𝜙 | 𝜙U𝜙

where 𝑝 ∈ AP is an atomic proposition, 𝑠 ∈ Var is a strategy variable, i ∈ N is an agent, and
𝑓 ∈ ℱ is a function over [−1, 1].

The intuitive reading of the operators is as follows: ∃𝑠. 𝜙 means that there exists a strategy
such that𝜙 holds; (i, 𝑠)𝜙means that when strategy 𝑠 is assigned to agent i, 𝜙 holds; X and U are
the usual temporal operators “next” and “until”. The meaning of 𝑓(𝜙1, ..., 𝜙𝑛) depends on the
function 𝑓 . We use ⊤, ∨, and ¬ to denote, respectively, function 1, function 𝑥, 𝑦 ↦→ max(𝑥, 𝑦)
and function 𝑥 ↦→ −𝑥.

Definition 2. A weighted concurrent game structure (wCGS) is a tuple 𝒢 = (ℬ, 𝑉, 𝑣𝜄, 𝛿, ℓ) where
(i) ℬ is a finite set of actions; (ii) 𝑉 is a finite set of positions; (iii) 𝑣𝜄 ⊆ 𝑉 is an initial position;
(iv) 𝛿 : 𝑉 × ℬN → 𝑉 is a transition function; (v) ℓ : 𝑉 × AP→ [−1, 1] is a weight function.

In a position 𝑣 ∈ 𝑉 , each player i chooses an action 𝑎i ∈ ℬ, and the game proceeds to position
𝛿(𝑣,𝑎) where 𝑎 is the action profile (𝑎i)i∈N. We write 𝑜 for a tuple of objects (𝑜i)i∈N, one for
each agent, and such tuples are called profiles. Given a profile 𝑜 and i ∈ N, we let 𝑜i be agent i’s
component, and 𝑜−i is (𝑜r)r ̸=i. Similarly, we let N−i = N ∖ {i}.

A play 𝜋 = 𝑣1𝑣2... is an infinite sequence of positions such that for every 𝑖 ≥ 1 there exists
an action profile 𝑎 such that 𝛿(𝑣𝑖,𝑎) = 𝑣𝑖+1. We write 𝜋𝑖 = 𝑣𝑖 for the position at index 𝑖 in



play 𝜋. A history ℎ is a finite prefix of a play. A strategy is a function 𝜎 : Hist→ ℬ that maps
each history to an action. We let Str be the set of strategies. An assignment 𝒜 : N ∪ Var→ Str
is a function from players and variables to strategies. For an assignment 𝒜, an agent i and a
strategy 𝜎 for i, 𝒜[𝑎 ↦→ 𝜎] is the assignment that maps 𝑎 to 𝜎 and is otherwise equal to 𝒜, and
𝒜[𝑠 ↦→ 𝜎] is defined similarly, where 𝑠 is a variable. For an assignment 𝒜 and a history ℎ, we
let Out(𝒜, ℎ) be the unique play that continues ℎ following the strategies assigned by 𝒜.

Definition 3. (Partial, see complete definition in [10]) Let 𝒢 = (ℬ, 𝑉, 𝛿, ℓ, 𝑉𝜄) be a wCGS, and
𝒜 an assignment. The satisfaction value J𝜙K𝒢𝒜(ℎ) ∈ [−1, 1] of an SL[ℱ ] formula 𝜙 in a history ℎ
is defined as follows, where 𝜋 denotes Out(𝒜, ℎ):

J𝑝K𝒢𝒜(ℎ) = ℓ(last(ℎ), 𝑝)

J∃𝑠. 𝜙K𝒢𝒜(ℎ) = max
𝜎∈Str

J𝜙K𝒢𝒜[𝑠 ↦→𝜎](ℎ)

J(i, 𝑠)𝜙K𝒢𝒜(ℎ) = J𝜙K𝒢𝒜[i↦→𝒜(𝑠)](ℎ)

We write J𝜙K𝒢(ℎ) when the satisfaction value of 𝜙 does not depend on the as-
signment. We also let J𝜙K𝒢 = J𝜙K𝒢(𝑣𝜄). We can define the classic abbreviations:
⊥=def ¬⊤, 𝜙 ∧ 𝜙′ =def ¬(¬𝜙 ∨ ¬𝜙′), 𝜙→ 𝜙′ =def ¬𝜙 ∨ 𝜙′, F𝜓 =def ⊤U𝜓, G𝜓 =def ¬F¬𝜓
and ∀𝑠. 𝜙 =def ¬∃𝑠.¬𝜙. We also use A𝜙 as a shorthand for a universal quantification on
strategies and bindings for all agents.

3. Satisfiability and Synthesis of SL[ℱ ]
The satisfiability of SL is undecidable in general [18], but it is decidable when restricted to
systems with a bounded number of actions [19], which we show to be also the case for SL[ℱ ].
We restrict our attention to models in which atomic propositions take values in a given finite set
of possible values. Given a finite set 𝒱 ⊂ [−1, 1] s.t. {−1, 1} ⊆ 𝒱 , the 𝒱-satisfiability problem
for SL[ℱ ] is the restriction of the satisfiability problem to 𝒱-weighted wCGS. We have that:

Theorem 1. Let 𝒱 be a finite set of values and ℬ a finite set of actions. Then 𝒱-satisfiability of
SL[ℱ ] over the wCGS 𝒢 = (ℬ, 𝑉, 𝑣𝜄, 𝛿, ℓ) is decidable.

The algorithm for SL[ℱ ] satisfiability to synthesize mechanisms that optimally satisfy the
specification, in the sense that they achieve the best possible satisfaction value for the specifica-
tion. First, we note that the algorithm for the satisfiability problem of SL[ℱ ] can actually return a
satisfying wCGS when one exists. Second, it is proved in [10] that given a finite set 𝒱 of possible
values for atomic propositions and a formula 𝜙 ∈ SL[ℱ ] there is only a finite number of possible
satisfaction values 𝜙 can take in any wCGS, and we can compute an over-approximation ̃︁Val𝜙,𝒱
of this set.

Algorithm 1 synthesizes a wCGS that maximizes the satisfaction value of the given SL[ℱ ]
specification, in all cases where the satisfiability problem for SL[ℱ ] can be solved and a witness
produced. We now show how this can be used to solve automated mechanism design.



Algorithm 1 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠(Φ,𝒱)
Input: a SL[ℱ ]-formula Φ and a set of possible values for atomic propositions 𝒱 .
Output: a wCGS 𝒢 such that JΦK𝒢 is maximal

1: Compute ̃︁ValΦ,𝒱

2: Let 𝜈1, ..., 𝜈𝑛 be a decreasing enumeration of ̃︁ValΦ,𝒱
3: for 𝑖← 1 to 𝑛 do
4: Solve 𝒱-satisfiability for Φ and 𝜀 = 𝜈𝑖
5: if there exists 𝒢 such that JΦK𝒢 ≥ 𝜈𝑖 then

return 𝒢

4. Synthesis for Mechanism Design

We first recall basic concepts used to formalize mechanisms, which determine how to choose one
option among several alternatives, based on agents’ strategies. We assume that each alternative
is a tuple (𝑥, p) where 𝑥 ∈ 𝒳 is a choice from a finite set of choices 𝒳 ⊂ [−1, 1], p = (pi)i∈N,
and pi ∈ [−1, 1] is the payment for agent i. For each agent i ∈ N, let also Θi ⊂ [−1, 1] be a
finite set of possible types for i. We let Θ =

∏︀
i∈N Θi, and we note 𝜃 = (𝜃i)i∈N ∈ Θ for a type

profile, which assigns a type 𝜃i to each agent i. The type 𝜃i of an agent i determines how she
values each choice 𝑥 ∈ 𝒳 ; this is represented by a valuation function vi : 𝒳 ×Θi → [−1, 1]. A
mechanism consists of a description of the agents’ possible strategies, and a description of the
alternatives that result from them. As shown in [11], we can represent mechanisms as wCGS
and verify their equilibrium outcome.
SL[ℱ ] can express a variety of important notions in mechanism design, such as strategyproof-

ness, individual rationality, and efficiency [11]. We recall the formulas for some of these notions.
Let 𝜃 = (𝜃i)i∈N be a type profile in Θ.

First the agent’s utility is denoted by the SL[ℱ ] formula utili(𝜃i) =def vi(choice, 𝜃i)− payi.
Efficiency can be expressed as follows: EF(𝜃) =def

∑︀
i∈N vi(choice, 𝜃i) = maxv𝜃 , where

maxv𝜃 = max𝑥∈𝒳
∑︀

i∈N vi(𝑥, 𝜃i) is a constant in ℱ .
We also recall the SL[ℱ ]-formula that characterizes Nash equilibria:

NE(𝑠,𝜃) =def

⋀︁
i∈N

∀𝑡.
[︀
(N−i, 𝑠−i)(i, 𝑡)F(term ∧ utili(𝜃i)) ≤ (N, 𝑠)F(term ∧ utili(𝜃i))

]︀
where 𝑠 = (𝑠i)i∈N is a profile of strategy variables.

We now illustrate the mechanism synthesis problem by considering rules based on the
Japanese auction. We let winsi ∈ (−1, 1] be a constant value denoting the choice in which
the agent i is the winner, with winsi ̸= winsr for any r ̸= i. We consider the choice set
𝒳 = {winsi : i ∈ N} ∪ {−1}, where −1 specifies the case where there is no winner at the end
of the game.

Example 1. In the Japanese auction, the price is repeatedly raised by the auctioneer un-
til only one bidder remains. The remaining bidder wins the item at the final price [20].
Let us fix a price increment inc > 0. There are only two possible actions, accept (acc)
or decline (dec), so that the set ℬ = {acc, dec} is indeed bounded. Furthermore, we let



Φ = {price, sold, initial, choice, bidi, payi, term : i ∈ N}, where price denotes the current price,
initial denotes whether the position is the initial one, sold specifies whether the item was sold,
bidi specifies whether i is an active bidder, choice and payi denote respec. the choice elected by
the mechanism, and the payment of agent i. The proposition term specifies whether a position
is terminal. The following SL[ℱ ]-formulae are a partial description of a mechanism, inspired by
the Japanese auction. The meaning of Rules J1-J8 is intuitive. Rule J9 specifies that for all type
profiles there should exist a NE whose outcome is IR and EF.

J1. AG((initial→ price = 0 ∧ ¬sold ∧ ¬term) ∧ (XG¬initial ∧ F term))

J2. AG(sold↔ choice ̸= −1)

J3. AG((¬sold ∧ price + inc ≤ 1)→ (price + inc = Xprice ∧ ¬Xterm))

J4. AG((sold ∨ price + inc > 1)→ (price = Xprice ∧Xterm))

J5. AG(choice = winsi ↔ bidi ∧
⋀︀

r ̸=i ¬bidi)

J6. AG(choice = −1↔ ¬(
⋁︀

i∈N(bidi ∧
⋀︀

r ̸=i ¬bidi)))

J7. AG
(︀⋀︀

i∈N(choice = winsi → payi = price)
)︀

J8. AG
(︀⋀︀

i∈N(choice ̸= winsi → payi = 0)
)︀

J9.
⋀︀

𝜃∈Θ(∃𝑠.NE(𝑠,𝜃) ∧ F(term ∧ IR(𝜃) ∧ EF(𝜃)))

We denote by Σjpn the conjunction of Rules J1-J9. Algorithm 1 constructs a wCGS that
maximizes the satisfaction value of Σjpn. We show that this value is 1, meaning that there exists
a mechanism that is individually rational and efficient for some Nash equilibrium, for all type
profiles [17].

5. Conclusion

We present a novel approach for AMD based on Strategy Logic and formal methods, which
builds an important bridge between logics for strategic reasoning in MAS and economic theory
(in particular, computational social choice and mechanisms design). In the results presented here,
in which mechanisms can be automatically generated from partial or complete specifications in
a rich logical language. The great expressiveness of the specification language SL[ℱ ] makes our
approach of automated synthesis very general, unlike previous proposals. Another advantage is
the use of formal methods, which are developed to guarantee their correctness by construction.
While mechanism synthesis from SL[ℱ ] specifications is undecidable, we solve it when the
number of actions is bounded.
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