
HAL Id: hal-03879237
https://hal.science/hal-03879237

Submitted on 30 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Synthesis of Mechanisms
Munyque Mittelmann, Bastien Maubert, Aniello Murano, Laurent Perrussel

To cite this version:
Munyque Mittelmann, Bastien Maubert, Aniello Murano, Laurent Perrussel. Automated Synthe-
sis of Mechanisms. 31st International Joint Conference on Artificial Intelligence (IJCAI-22), IJCAI
Organization, Jul 2022, Vienna, Austria. pp.426-432, �10.24963/ijcai.2022/61�. �hal-03879237�

https://hal.science/hal-03879237
https://hal.archives-ouvertes.fr

Abstract
Mechanism Design aims to design a game so that a
desirable outcome is reached regardless of agents’
self-interests. In this paper, we show how this prob-
lem can be rephrased as a synthesis problem, where
mechanisms are automatically synthesized from a
partial or complete specification in a high-level log-
ical language. We show that Quantitative Strategy
Logic is a perfect candidate for specifying mecha-
nisms as it can express complex strategic and quan-
titative properties. We solve automated mechanism
design in two cases: when the number of actions is
bounded, and when agents play in turn.

1 Introduction
Mechanism Design is focused on the designing of games, that
is, mechanisms, that aggregate agents’ preferences towards a
single joint decision. When participants act rationally (in the
game theoretical sense), such games should ensure a prefer-
able behavior of the players (e.g. truthfullness) as well as de-
sirable features of the decision (e.g. social welfare maximiza-
tion) [Nisan et al., 2007]. Traditionally, mechanisms have
been formulated by human specialists, who use their knowl-
edge and experience for defining the game rules. Conitzer and
Sandholm (2003) introduced Automated Mechanism Design
(AMD), whose goal is to automatically create mechanisms
for solving a specific preference aggregation problem.

AMD is usually tackled from an optimization and/or data-
driven point of view. For instance, neural networks have been
used to learn mechanisms that optimize a given parameter,
such as revenue [Shen et al., 2019; Dütting et al., 2019]. Sta-
tistical machine learning techniques have also been consid-
ered in domains without money [Narasimhan et al., 2016].
[Vorobeychik et al., 2007] proposes a black-box optimization
algorithm for evaluating candidate mechanisms. Evolution-
ary search methods have also been used to optimize double
auctions [Niu et al., 2012], and [Asselin et al., 2006] ad-
dresses AMD through linear programming and optimization.

In the spirit of the long-established logical approach to sys-
tems verification [Clarke et al., 2018] and synthesis [David
and Kroening, 2017], in this work we propose a new approach

∗Contact Author

to Automated Mechanism Design, which consists in automat-
ically synthesizing mechanisms from a partial or complete
specification expressed in a high-level logical language.

A related topic is normative systems [Ågotnes et al., 2007],
which define constraints (or obligations) on the behaviour of
agents. [Bulling and Dastani, 2016] investigates how con-
cepts from mechanism design can be used to analyse the en-
forcement of norms with preferences modelled using Linear-
time Temporal Logic (LTL).

Concerning the choice of specification language, Auction
Description Language [Mittelmann and Perrussel, 2020] is
general enough to represent many kinds of protocols, but
lacks a strategic dimension and cannot be used to reason
about equilibria. [Okada et al., 2019] uses Boolean Satisfi-
ability, but their approach is restricted to one type of mech-
anism and does not handle strategic, temporal and quanti-
tative specifications. [Gutierrez et al., 2019] considers sys-
tem specifications given in LTL, and studies the implementa-
tion of a mechanism to ensure temporal properties in equi-
librium. [Pauly and Wooldridge, 2003; Wooldridge et al.,
2007] first advocated the use of strategic logics to reason
about mechanisms. They consider Alternating-time Tempo-
ral Logic (ATL) [Alur et al., 2002], but observe that it lacks
the ability to reason about quantitative aspects such as prefer-
ences, as well as game-theoretic concepts such as equilibria.
Such features are key for modelling and evaluating mecha-
nisms, specially the ones with monetary transfers.

We consider Quantitative Strategy Logic (SL[F]) [Bouyer
et al., 2019], a logic that has recently been shown to be a great
candidate to formally reason about mechanisms [Maubert et
al., 2021]. Indeed SL[F], which subsumes ATL, is expres-
sive enough to express complex solution concepts such as
Nash equilibrium and properties about quantities. This lan-
guage thus allows for specifications that contain constraints
on mechanism properties (for instance, in Auction Design,
the efficiency and budget-balance). Its quantitative seman-
tics, with satisfaction values that reflect how well a model
satisfies a formula, also allows us to investigate the construc-
tions of mechanisms that approximate such properties, which
is not possible with standard Strategy Logic (SL) [Chatterjee
et al., 2010; Mogavero et al., 2014].

Contribution. In this work we propose a novel perspective
on the design of mechanisms. Our approach enables auto-
matically generating optimal mechanisms from a quantitative

Automated Synthesis of Mechanisms

Munyque Mittelmann1∗ , Bastien Maubert2 , Aniello Murano2 and Laurent Perrussel1
1IRIT - Université Toulouse 1 Capitole, France

2Università degli Studi di Napoli “Federico II”, Italy

{munyque.mittelmann,laurent.perrussel}@ut-capitole.fr,
{bastien.maubert,nello.murano}@gmail.com

logical specification, which may include not only game rules
but also requirements over the strategic behaviour of partic-
ipants and quality of the outcome. We rephrase the AMD
problem in terms of synthesis from SL[F] specifications. To
solve this synthesis problem we investigate the related satisfi-
ability problem for SL[F], which had not been studied so far.
Finally, we illustrate the relevance of mechanism synthesis
with examples based on Auction Design.

Outline. In Section 2 we recall the logic SL[F]. In Section
3 we address the satisfiability and synthesis for this logic. In
Section 4, we address the problem of AMD using SL[F]. Fi-
nally, Section 5 concludes the paper.

2 Quantitative Strategy Logic
For the remainder of the paper, we fix a set of atomic propo-
sitions AP, a set of agents Ag and a set of strategy variables
Var, except when stated otherwise. We let n be the number
of agents in Ag. We also let F ⊆ {f : [−1, 1]m → [−1, 1] |
m ∈ N} be a set of functions over [−1, 1] of possibly differ-
ent arities, that will parameterise the logics we consider.

Definition 1. The syntax of SL[F] is defined by the grammar

ϕ ::= p | ∃s. ϕ | (a, s)ϕ | f(ϕ, ..., ϕ) | Xϕ | ϕUϕ

where p ∈ AP, s ∈ Var, a ∈ Ag, and f ∈ F .

The intuitive reading of the operators is as follows: ∃s. ϕ
means that there exists a strategy such that ϕ holds; (a, s)ϕ
means that when strategy s is assigned to agent a, ϕ holds;
X and U are the usual temporal operators “next” and “until”.
The meaning of f(ϕ1, ..., ϕn) depends on the function f . We
use �, ∨, and ¬ to denote, respectively, function 1, function
x, y �→ max(x, y) and function x �→ −x.

Remark 1. While [Bouyer et al., 2019] considers values in
[0,1], we follow [Maubert et al., 2021] and use interval [-1,1]
instead, which is more adapted to model some mechanisms
of interest, such as double-sided auctions.

A variable is free in formula ϕ if it is bound to an agent
without being quantified upon, and an agent a is free in ϕ if
ϕ contains a temporal operator (X or U) not in the scope of
any binding for a. The set of free variables and agents in ϕ is
written free(ϕ), and a formula ϕ is a sentence if free(ϕ) = ∅.

Definition 2. A weighted concurrent game structure (wCGS)
is a tuple G = (Ac, V, vι, δ, �) where (i) Ac is a finite set of
actions; (ii) V is a finite set of positions; (iii) vι ⊆ V is
an initial position; (iv) δ : V × AcAg → V is a transition
function; (v) � : V × AP → [−1, 1] is a weight function.

Remark 2. Because we are interested in synthesizing mecha-
nisms of finite size, we restrict attention to finite models.

In a position v ∈ V , each player a chooses an action ca ∈
Ac, and the game proceeds to position δ(v, c) where c is an
action profile (ca)a∈Ag.

We write o for a tuple of objects (oa)a∈Ag, one for each
agent, and such tuples are called profiles. Given a profile o
and a ∈ Ag, we let oa be agent a’s component, and o−a is
(ob)b�=a. Similarly, we let Ag−a = Ag \ {a}.

A play π = v1v2... is an infinite sequence of positions such
that for every i ≥ 1 there exists an action profile c such that

δ(vi, c) = vi+1. We write πi = vi for the position at index i
in play π. A history h is a finite prefix of a play, last(h) is the
last position of history h, |h| is the length of h and Hist is the
set of histories.

A strategy is a function σ : Hist → Ac that maps each
history to an action. We let Str be the set of strategies.

Remark 3. Unlike [Maubert et al., 2021], which considers
strategies without memory, we consider strategies with per-
fect recall, as in [Bouyer et al., 2019]. The main reason is that
for memoryless strategies satisfiability, and thus synthesis, is
undecidable already for SL, even for bounded actions or turn-
based systems [Laroussinie and Markey, 2015]. Considering
perfect recall strategies means that the systems we synthesize
satisfy the strategic aspects of the specification assuming that
agents’ actions can depend on the past.

An assignment A : Ag ∪ Var → Str is a function from
players and variables to strategies. For an assignment A, an
agent a and a strategy σ for a, A[a �→ σ] is the assignment
that maps a to σ and is otherwise equal to A, and A[s �→ σ]
is defined similarly, where s is a variable.

For an assignment A and a history h, we let Out(A, h)
be the unique play that continues h following the strategies
assigned by A. Formally, Out(A, h) is the play hv0v1... such
that for all i ≥ 0, vi = δ(vi−1, c) where for all a ∈ Ag,
ca = A(a)(hv0...vi−1), and v−1 = last(h).

Definition 3. Let G = (Ac, V, δ, �, Vι) be a wCGS, and A an

assignment. The satisfaction value �ϕ�GA(h) ∈ [−1, 1] of an
SL[F] formula ϕ in a history h is defined as follows, where
π denotes Out(A, h):

�p�GA(h) = �(last(h), p)

�∃s. ϕ�GA(h) = max
σ∈Str

�ϕ�GA[s�→σ](h)

�(a, s)ϕ�GA(h) = �ϕ�GA[a �→A(s)](h)

�f(ϕ1,..., ϕm)�GA(h) = f(�ϕ1�
G
A(h), ..., �ϕm�GA(h))

�Xϕ�GA(h) = �ϕ�GA(π|h|+1)

�ϕ1Uϕ2�
G
A(h) = sup

i≥0
min

(
�ϕ2�

G
A(π|h|+i),

min
0≤j<i

�ϕ1�
G
A(π|h|+j)

)

If ϕ is a sentence, its satisfaction value does not depend on

the assignment, and we write �ϕ�G(h) for �ϕ�GA(h) where A
is any assignment. We also let �ϕ�G = �ϕ�G(vι).

We can define the following classic abbreviations:
⊥:= ¬�, ϕ ∧ ϕ′ := ¬(¬ϕ ∨ ¬ϕ′), ϕ → ϕ′ := ¬ϕ ∨ ϕ′,
Fψ := �Uψ, Gψ := ¬F¬ψ and ∀s. ϕ := ¬∃s.¬ϕ. We
also use Aϕ as a shorthand for a universal quantification on
strategies and bindings for all agents, followed by ϕ; this
simulates the universal path quantifier of CTL∗

.

3 Satisfiability and Synthesis of SL[F]

We investigate the following satisfiability problem for SL[F].

Definition 4. The satisfiability problem for SL[F] takes a
sentence ϕ ∈ SL[F] and a threshold ϑ > −1, and decides
whether there exists a wCGS G s.t. �ϕ�G ≥ ϑ.

The satisfiability problem for SL was proved undecidable
in [Mogavero et al., 2017], but the proof there considers mod-
els with infinitely many actions. However it is also known to
be undecidable when considering finite models, i.e., models
with both finitely many states and finitely many actions, as
we do. Indeed, it is shown in [Troquard and Walther, 2012;
Laroussinie and Markey, 2015] that satisfiability of ATL with
strategy context (ATLsc) is undecidable for finite models.
Since ATLsc can be expressed in SL [Laroussinie and Markey,
2015] and SL in SL[F], by taking F = {�,∨,¬} [Bouyer et
al., 2019], we obtain the following result.

Proposition 1. The satisfiability problem for SL[F] is unde-
cidable as soon as F contains �, ∨ and ¬.

However satisfiability of SL is known to be decidable when
restricted to turn-based systems or systems with a bounded
number of actions [Laroussinie and Markey, 2015]. We show
that in these cases satisfiability is decidable for SL[F] as
well. To do so we first recall Booleanly-quantified CTL∗

(BQCTL∗[F]) and solve its satisfiability problem, and we
then show that for bounded actions or turn based systems sat-
isfiability of SL[F] reduces to that of BQCTL∗[F].

3.1 Booleanly-Quantified CTL∗[F]

The logic BQCTL∗[F] [Bouyer et al., 2019], a quantitative
extension of QCTL∗ [Laroussinie and Markey, 2014], itself
an extension of CTL∗

with quantifiers on atomic proposition.
In BQCTL∗[F] the semantics is quantitative, but the quan-
tifiers on propositions consider only Boolean values. To be
consistent with SL[F] we consider [-1,1] as range of values
instead of [0,1] as in [Bouyer et al., 2019]. This changes
nothing to the results presented there.

The syntax of BQCTL∗[F] is defined by:

ϕ ::= p | ∃p. ϕ | Eψ | f(ϕ, ..., ϕ)
ψ ::= ϕ | Xψ | ψUψ | f(ψ, ..., ψ)

where p ranges over AP and f over F .
Eψ is the quantitative counterpart to the path quantifier of

CTL∗
, and it maximizes the value of ψ over all branches.

Formulas of type ϕ are called state formulas, those of type ψ
are called path formulas, and BQCTL∗[F] consists of all the
state formulas defined by the grammar. We again use �, ∨,
and ¬ to denote functions 1, max and −x, as well as classic
abbreviations already introduced for SL[F].

Definition 5. A weighted Kripke structure (wKS) is a tuple
S = (S, sι, R, �) where S is a set of states, sι ∈ S is an
initial state, R ⊆ S ×S is a left-total1 transition relation, and
� : S → [−1, 1]AP is a weight function.

A path in S is an infinite word λ = s0s1... over S such
that s0 = sι and (si, si+1) ∈ R for all i. Finite prefixes of
paths are histories, and we let HistS be the set of all histories
in S. We also let ValS = {�(s)(p) | s ∈ S and p ∈ AP} be
the finite set of values appearing in S.

Given finite nonempty sets X of directions and V ⊆
[−1, 1] of possible values, a VAP-labeled X-tree, (or
(VAP, X)-tree for short, or VAP-tree when directions are un-
derstood), is a pair t = (τ, �) where τ ⊆ X+ is closed under

1i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.

non-empty prefixes, all nodes u ∈ τ start with the same di-
rection r, called the root, and have at least one child u ·d ∈ τ ,
and � : τ → VAP is a weight function. We let Valt ⊆ V be
the image of � on τ . A branch λ = u0u1... is an infinite se-
quence of nodes such that for all i ≥ 0, ui+1 is a child of ui.
For i ≥ 0, λ≥i denotes the suffix of λ that starts at node ui,
and we let Br(u) be the set of branches that start in node u.

A binary tree is a X-tree where |X| = 2. A tree is regular
if it is the unfolding of some finite Kripke structure.

Let p ∈ AP. A p-labeling for a V-tree t = (τ, �) is a
mapping �p : τ → {−1, 1}. The composition of t with �p is

the (V ∪ {−1, 1})AP-tree defined as t ⊗ �p := (τ, �′), where
�′(u)(p) = �p(u) and �′(u)(q) = �(u)(q) for q �= p.

Finally, the tree unfolding of a weighted Kripke structure S
with state set S is the ValAP

S -labeled S-tree tS = (HistS , �′),
where �′(u) = �(last(u)) for every u ∈ HistS .

Different semantics exist for QCTL∗
, which differ on how

proposition quantification is interpreted (see [Laroussinie
and Markey, 2014] for more on the different semantics for
QCTL∗

). In this paper we focus on the tree semantics, which
allows capturing perfect-recall strategies.

Definition 6 (Semantics). Consider a finite set V ⊆ [−1, 1]
of possible values. The satisfaction value �ϕ�t(u) of a
BQCTL∗[F] state formula ϕ in a node u of a VAP-tree t =
(τ, �), and the satisfaction value �ψ�t(λ) of a path formula ψ
along some branch λ of t, are defined inductively as follows:

�p�t(u) = �(u)(p)

�∃p. ϕ�t(u) = sup
�p : τ→{−1,1}

�ϕ�t⊗�p(u)

�Eψ�t(u) = sup
λ∈Br(u)

�ψ�t(λ)

�f(ϕ1, ..., ϕn)�
t(u) = f(�ϕ1�

t(u), ..., �ϕn�t(u))

�ϕ�t(λ) = �ϕ�t(λ0)

�Xψ�t(λ) = �ψ�t(λ≥1)

�ψ1Uψ2�
t(λ) = sup

i≥0
min(�ψ2�

t(λ≥i),

min
0≤j<i

�ψ1�
t(λ≥j))

�f(ψ1, ..., ψn)�
t(λ) = f(�ψ1�

t(λ), ..., �ψn�t(λ))

For a tree t with root r we write �ϕ�t for �ϕ�t(r), for a
weighted Kripke structure S we write �ϕ�S for �ϕ�tS .

3.2 Deciding BQCTL∗[F] Satisfiability
As for SL[F], we define the quantitative satisfiability prob-
lem for BQCTL∗[F] as follows.

Definition 7. The satisfiability problem for BQCTL∗[F]
takes a formula ϕ ∈ BQCTL∗[F] and a threshold ϑ > −1,
and decides whether there exists a wKS S s.t. �ϕ�tS ≥ ϑ.

Satisfiability for QCTL∗
with structure semantics is un-

decidable [French, 2003], but decidable for the tree seman-
tics [Laroussinie and Markey, 2014] which we consider in
this paper. Relying on the automata construction developed
in [Bouyer et al., 2019] to model check BQCTL∗[F], we
show that satisfiability is also decidable for BQCTL∗[F].

Theorem 1. Satisfiability of BQCTL∗[F] is decidable.
The lower bounds are inherited from the satisfiability prob-

lem for QCTL∗ [Laroussinie and Markey, 2014]. The reduc-
tion is direct with threshold ϑ = 1. For the upper bounds, the
first step is to show that one can restrict attention to structures
with binary branching, i.e., where each state has at most two
successor states.

Given a finite wKS S, by adding dummy nodes labeled

with proposition pint one can build a wKS S̃ with binary
branching that simulates S; given a BQCTL∗[F] formula ϕ,
one can then define a formula ϕ̃ that ignores these dummy

nodes and has same satisfaction value on S̃ as ϕ on S.

Lemma 1. For every BQCTL∗[F] formula ϕ and every finite
wKS S , �ϕ�S = �ϕ̃�

˜S .
Let Φ be a BQCTL∗[F] formula and ϑ > −1 a threshold.

Let also Φ̃ be the corresponding formula on structures with
binary branching, and ϕ2 = ¬pint ∧ AGF¬pint. Consider
also function Bool such that Bool(x) = 1 if x ∈ {−1, 1}, and
−1 otherwise, which we use to check that propositions take
only Boolean values −1 or 1. We can prove the following:

Lemma 2. There exists a (finite) wKS S such that �Φ�S ≥ ϑ
if and only if there exists a regular binary tree t such that
�AGBool(pint) ∧ ϕ2 ∧ Φ̃�t ≥ ϑ.

It is shown in [Bouyer et al., 2019] that we can build an
automaton A that accepts binary trees t on which the satis-

faction value of AGBool(pint)∧ϕ2 ∧ Φ̃ belongs to [ϑ, 1] (we
refer to [Pin, 2021, Ch. 8] for standard definitions and results
on tree automata). The number of states of the automaton is
(k + 1)-exponential in the nesting depth of the formula, and
its index k-exponential. From Lemma 2 and the fact that ev-
ery regular tree language contains a regular tree it follows that
A is nonempty if and only if there exists a finite wKS S such
that �Φ�t ≥ ϑ. The emptiness of A can be tested in time poly-
nomial in the number of states and exponential in the index.
The overall complexity is thus (k + 1)-exponential in time.

3.3 Decidable Cases for SL[F] Satisfiability
In the qualitative setting, satisfiability of ATL with strategy
context and SL are known to be decidable in two cases: when
the number of possible actions is bounded, and when agents
play in turns. With respect to bounded actions, we call Ac-
wCGS a wCGS whose set of actions is Ac. Concerning turn-
based systems, intuitively a wCGS is turn-based when in ev-
ery position there is a unique agent who can determine the
next position by the choice of its action. Formally, a wCGS
G = (Ac, V, vι, δ, �) is turn-based if for every position v ∈ V
there exists a unique agent a such that for every successor

v′ ∈ {δ(v, c) | c ∈ AcAg} there is an action c such that
δ(v, c) = v′ for all joint actions c where ca = c. We call
owner of a position the agent that can choose the successor.

We show that, as for SL, the satisfiability problem for
SL[F] is decidable when the number of actions is bounded
(a priori) or systems are turn-based, if in addition we restrict
to models in which atomic propositions take values in a given
finite set of possible values. Given a set V ⊆ [−1, 1] of pos-
sible values with {−1, 1} ⊆ V , we call V-weighted wCGS a
wCGS whose weight function takes values in V .

Definition 8. Given a finite set V ⊂ [−1, 1] such that
{−1, 1} ⊆ V , the V-satisfiability problem for SL[F] is the
restriction of the satisfiability problem to V-weighted wCGS.

We establish the following results (proofs are in appendix).

Theorem 2. Let V be a finite set of values and Ac a finite set
of actions. Then V-satisfiability of SL[F] over Ac-wCGS is
decidable.

Theorem 3. Let V be a finite set of values. Then V-
satisfiability of SL[F] over turn-based wCGS is decidable.

Concerning complexity, for Theorems 1, 2 and 3 the
problems are (k + 1)-EXPTIME-complete where k is the
maximal number of nested quantifiers on propositions (for
BQCTL∗[F]) or strategies (for SL[F]). Blocks of successive
quantifiers can be counted as one if they are all existential or
all universal, so that an existential quantification on a strategy
profile for all agents just adds one exponential for instance.

3.4 Automated Synthesis of Optimal Mechanism
We describe how we can use our algorithm for SL[F] satis-
fiability to synthesize mechanisms that optimally satisfy the
specification, in the sense that they achieve the best possible
satisfaction value for the specification.

First, we observe that the algorithms developed in the
previous section for the satisfiability problem of SL[F] in
the case of bounded actions or turn-based systems can be
tweaked to actually return a satisfying wCGS when one ex-
ists. Indeed classic algorithms to solve emptiness of parity
tree automata can produce a witness regular tree accepted by
the automaton (see [Pnueli and Rosner, 1989]), and from such
a tree in our setting we can infer a witness wCGS.

Second, it is proved in [Bouyer et al., 2019] that given a
finite set V of possible values for atomic propositions and a
formula ϕ ∈ SL[F] there is only a finite number of possi-
ble satisfaction values ϕ can take in any wCGS, and we can
compute an over-approximation of this set.

Lemma 3 ([Bouyer et al., 2019]). Let V ⊂ [−1, 1] be a finite
set of values with {−1, 1} ⊆ V and let ϕ be an SL[F] sen-
tence. The set Valϕ,V = {�ϕ�G | G is a V-weighted wCGS}
is finite, and one can compute a set Ṽalϕ,V of size at most
|V||ϕ| such that Valϕ,V ⊆ Ṽalϕ,V .

Algorithm 1: Optimal mechanism synthesis

Data: A SL[F] specification Φ and a set of possible
values for atomic propositions V

Result: A wCGS G such that �Φ�G is maximal

Compute ṼalΦ,V ;

Let ν1, ..., νn be a decreasing enumeration of ṼalΦ,V ;
for i=1...n do

Solve V-satisfiability for Φ and ϑ = νi;

if there exists G such that �Φ�G ≥ νi then
return G;

end
end

Consider now Algorithm 1. This algorithm synthesizes
a wCGS that maximizes the satisfaction value of the given
SL[F] specification, in all cases where the satisfiability prob-
lem for SL[F] can be solved and a witness produced. In par-
ticular, it works in the case of bounded actions and the case
of turn-based systems. We now show how this can be used to
solve automated mechanism design.

4 Automated Mechanism Design
This section aims to motivate the use of synthesis of SL[F]
for mechanism design. We first recall basic concepts used to
formalize mechanisms, which determine how to choose one
option among several alternatives, based on agents’ strate-
gies. Since many mechanisms describe monetary transfers,
we assume that each alternative is a tuple (x,p) where x ∈ X
is a choice from a finite set of choices X ⊂ [−1, 1], and
pa ∈ [−1, 1] is the payment for agent a. For each agent
a ∈ Ag, let also Θa ⊂ [−1, 1] be a finite set of pos-
sible types for a. We let Θ =

∏
a∈Ag Θa, and we note

θ = (θa)a∈Ag ∈ Θ for a type profile, which assigns a type θa
to each agent a. The type θa of an agent a determines how she
values each choice x ∈ X ; this is represented by a valuation
function va : X ×Θa → [−1, 1].

In this section we assume that F contains the constant θa
and the function va for each agent a and type θa ∈ Θa. We
also assume that F contains the difference function −, the
n-ary sum function

∑
, the equality function = and the com-

parison functions ≤, >, < and �=. For readability we use the
infix notation x−y. These functions are defined with the stan-
dard meaning. Finally, we assume that types, payments and
valuations are normalized so that all values remain in [−1, 1].

A mechanism consists of a description of the agents’ possi-
ble strategies, and a description of the alternatives that result
from them. As described in [Maubert et al., 2021], we can
represent mechanisms as wCGS and verify their equilibrium
outcome in relation to a number of economic properties.

Definition 9. Let AP ⊇ {choice, paya, ter : a ∈ Ag}, where
choice and paya denote respectively the choice elected by the
mechanism, and the payment of agent a. The proposition
ter specifies whether a position is terminal. A mechanism
G is a wCGS over the atomic propositions AP that satisfies
the following: (i) every play eventually reaches a terminal
position, i.e., a sink2 where proposition ter has value 1; (ii) in
all non-terminal positions, ter has value -1.

4.1 Characterizing Properties With SL[F]

SL[F] can express a variety of important notions in mecha-
nism design, such as strategy proofness, individual rational-
ity, efficiency, budget-balance, Pareto optimality, and differ-
ent kinds of game-theoretic equilibria [Maubert et al., 2021].
We recall the formulas for some of these notions. Let θ =
(θa)a∈Ag be a type profile in Θ.

First define utila(θa) := va(choice, θa)− paya. This is an
SL[F] formula, whose value in a terminal position is equal to
the agent’s utility, which she tries to maximize.

2A sink is a position that loops for all action profiles.

Individual rationality (IR) expresses the idea that an agent
has an incentive to participate [Parkes, 2001], that is, she can
ensure to always get nonnegative utility. In SL[F] we encode
(ex-post) individual rationality [Nisan et al., 2007] through
the formula IR(θ) :=

∧
a∈Ag 0 ≤ utila(θa).

A mechanism is efficient (EF) if it chooses the alterna-
tive maximizing the social welfare, i.e.the cumulative of the
agent’s valuations over the assigned choice [Parkes, 2001].
In SL[F], we can write this condition with the formula
EF(θ) :=

∑
a∈Ag va(choice, θa) = maxvθ , where maxvθ =

maxx∈X
∑

a∈Ag va(x, θa) is a constant in F . In a terminal

position, it means that the social welfare is maximal.
To express that a mechanism satisfies a property we need

to capture its equilibria. A strategy profile σ = (σa)a∈Ag is a
Nash equlibrium (NE) if no agent can increase her utility with
a unilateral change of strategy [Parkes, 2001]. The following
SL[F]-formula characterizes Nash equilibria:

NE(s,θ) :=
a∈Ag

∀t. (Ag−a, s−a)(a, t)F(ter ∧ utila(θa))

≤ (Ag, s)F(ter ∧ utila(θa))
]

where s = (sa)a∈Ag is a profile of strategy variables.
The following formula maximizes the value of ϕ in the ter-

minal positions of all Nash equilibria:

Max-Nash(ϕ,θ) := ∃s.NE(s,θ) ∧ F(ter ∧ ϕ)

We now use these formulas to illustrate our approach to
mechanism synthesis. To avoid detailing tie-breaking rules,
in the examples we assume agents have distinct types, that is
θa �= θb for any b �= a and θ ∈ Θ. Given an agent a, we let
winsa ∈ (−1, 1] be a constant value denoting the choice in
which a is the winner, with winsa �= winsb for any b �= a. We
consider the choice set X = {winsa : a ∈ Ag}∪{−1}, where
−1 specifies the case where there is no winner at the end of
the game. In the examples we let each valuation function va
be defined as va(θa, x) = θa if x = winsa, and va(θa, x) = 0
otherwise. That is, the valuation of an agent depends only on
her type and whether she won.

4.2 Action-Bounded Mechanisms
Action-bounded mechanisms are of great interest since the
amount of resources available is often limited. For instance,
the actions in a market could consist in bids representing dis-
crete monetary values bounded by the participants’ budget. In
this section, we illustrate the synthesis problem with such re-
striction by considering rules based on the Japanese auction.

Example 1. The Japanese auction is an ascending proto-
col in which the price is repeatedly raised by the auction-
eer until only one bidder remains. The remaining bidder
wins the item at the final price [Klemperer, 1999]. Let us
fix a price increment inc > 0. There are only two pos-
sible actions, accept (acc) or decline (dec), so that the set
Ac = {acc, dec} is indeed bounded. Furthermore, we let
AP = {price, sold, init, choice, bida, paya, ter : a ∈ Ag},
where price denotes the current price, init denotes whether
the position is the initial one, sold specifies whether the item
was sold, and bida specifies whether a is an active bidder.

The following SL[F]-formulae are a partial description of
a mechanism, inspired by the Japanese auction. The meaning
of Rules J1-J8 is intuitive. Similar rules for encoding auc-
tions through a logic-based language can be seen in [Mittel-
mann and Perrussel, 2020]. Rule J9 specifies that for all type
profiles there should exist a NE whose outcome is IR and EF.

J1. AG((init → price = 0 ∧ ¬ter) ∧ (XG¬init ∧ F ter))

J2. AG(sold ↔ choice �= −1)

J3. AG((¬sold ∧ price + inc ≤ 1) → (price + inc =
Xprice ∧ ¬Xter))

J4. AG((sold ∨ price + inc > 1) → (price = Xprice ∧
Xter))

J5. AG(choice = winsa ↔ bida ∧ b�=a ¬bida)

J6. AG(choice = −1 ↔ ¬(a∈Ag(bida ∧ b�=a ¬bida)))

J7. AG
(∧

a∈Ag(choice = winsa → paya = price)
)

J8. AG
(∧

a∈Ag(choice �= winsa → paya = 0)
)

J9. θ∈Θ Max-Nash(IR(θ) ∧ EF(θ),θ)

We denote by Σjpn the conjunction of Rules J1-J9. Algo-
rithm 1 constructs a wCGS that maximizes the satisfaction
value of Σjpn. We show that this value is 1, meaning that there
exists a mechanism that is individually rational and efficient
for some Nash equilibrium, for all type profiles.

Proposition 2. There exists a wCGS-mechanism Gjpn such
that �Σjpn�

Gjpn = 1.
Such an optimal mechanism is produced by Algorithm 1.

4.3 Turn-Based Mechanisms
In a number of mechanisms, such as picking sequences,
agents play in turns. Hereby, we exemplify the synthesis of a
turned-based mechanism. In this example we also show how
Algorithm 1 can be used to maximize the social welfare.

Example 2. The English auction is an ascending auction in
which the participants are allowed to outbid the last bidder by
proposing a highest price. The auction ends when no agent is
willing to raise the last bid. The highest bidder wins the item
at her proposed price [Nisan et al., 2007].

In this specification, let us consider two agents, with Ag =
{a1, a2}. We let −a denote the opponent of a ∈ Ag. Fur-
thermore, we let AP = {price, init, choicea, bida, tua, paya,
ter : a ∈ Ag}, where price denotes the current price, init
denotes whether the position is the initial one, tua specifies
whether it is a’s turn and bida specifies the value of a’s bid.

The following SL[F]-formulae are a partial description of
a two-player turned-based variant of the English auction.

E1. AG(init → tua1
∧ ¬tua2

∧ ¬ter ∧ a∈Ag(bida = 0))

E2. AG(price = max(bida1 , bida2))

E3. AG
(¬ter→ a∈Ag(tua→¬Xtua ∧ ¬tua→Xtua)

)
E4. AG

(¬ter → a∈Ag(bid−a < Xbida ∧ tua →
Xchoice = winsa)

)
E5. AG

(¬ter → a∈Ag(bid−a ≥ Xbida ∧ tua →
X(choice = wins−a) ∧ ter)

)

E6. AG
(∧

a∈Ag(bida = 1∧tua∧X(choice = winsa)∧ter)
)

E7. Max-Nash(
∑

a∈Ag va(choice, θa),θ)

The value of formula E7 is the social welfare in the best
NE for type profile θ. Letting Σeng(θ) be the conjunction of
Rules E1-E7 alongside with the payment rules in Σjpn (Rules
J7-J8), we have:

Proposition 3. There exists a wCGS-mechanism Geng such
that �Σeng(θ)�

Geng = maxx∈X
∑

a∈Ag va(x, θa), for each
type profile θ ∈ Θ.

As a result, Algorithm 1 applied to
∧

θ∈Θ Σeng(θ) returns a
mechanism that satisfies all the rules E1-E7 and J7-J8, and in
which the minimal social welfare in all possible type profiles
is as high as possible.

Complexity. The synthesis problem in these examples can
be solved in 3-EXPTIME. The complexity is dominated by
Rules J9 and E7, which express the existence of NE. Without
them the complexity would be in 2-EXPTIME. Most impor-
tantly, the complexity is only in the size of the formula, which
is typically rather small.

Approximate mechanisms. The well-known results of
Green and Laffont (1979) and Myerson and Satterthwaite
(1983) show the impossibility of defining mechanisms whose
equilibrium is efficient while having strict balance of mone-
tary transfers. The quantitative semantics of SL[F] and Al-
gorithm 1 enable synthesizing mechanisms that approximate
efficiency by maximizing social welfare.

5 Conclusion
We propose a novel approach for AMD in which mecha-
nisms can be automatically generated (or synthesized) from
partial or complete specifications in a rich logical language.
The great expressiveness of the specification language SL[F]
makes our approach of automated synthesis very general, un-
like previous proposals. While mechanism synthesis from
SL[F] specifications is undecidable, we solve it in two cases:
when the number of actions is bounded, and when agents play
in turn. We achieve this thanks to reductions to the satisfiabil-
ity problem for BQCTL∗[F], which we prove to be decidable.

The high expressiveness of SL[F] may not always be
needed for simple classes of mechanisms, and one may con-
sider fragments of it to achieve better complexity. There-
fore, an interesting direction for future work is to study the
complexity of synthesizing from SL[F]-fragments, inspired
from the SL-fragments One-Goal SL [Mogavero et al., 2017;
Cermák et al., 2015] and Simple-Goal SL [Belardinelli et al.,
2019], for instance. These fragments are usually computa-
tionally easier than full SL, and we can hope that similar re-
sults can be established in the quantitative setting.

Acknowledgements
This research is partially supported by the ANR project
AGAPE ANR-18-CE23-0013, the PRIN project RIPER (No.
20203FFYLK), the JPMorgan AI Faculty Research Award
”Resilience-based Generalized Planning and Strategic Rea-
soning”, and the EU ICT-48 2020 project TAILOR (No.
952215).

References
[Ågotnes et al., 2007] T. Ågotnes, W. Van Der Hoek, J. A.

Rodrı́guez-Aguilar, C. Sierra, and M. J. Wooldridge. On
the logic of normative systems. In IJCAI, 2007.

[Alur et al., 2002] R. Alur, T.A. Henzinger, and O. Kupfer-
man. Alternating-time temporal logic. J. ACM, 49(5):672–
713, 2002.

[Asselin et al., 2006] F. Asselin, B. Jaumard, and A. Non-
gaillard. A technique for large automated mechanism de-
sign problems. In IAT, 2006.

[Belardinelli et al., 2019] F. Belardinelli, W. Jamroga,
D. Kurpiewski, V. Malvone, and A. Murano. Strategy
logic with simple goals: Tractable reasoning about
strategies. In IJCAI, 2019.

[Bouyer et al., 2019] P.Bouyer, O.Kupferman, N.Markey, B.
Maubert, A.Murano, and G.Perelli. Reasoning about qua-
lity and fuzziness of strategic behaviours. In IJCAI, 2019.

[Bulling and Dastani, 2016] N. Bulling and M. Dastani.
Norm-based mechanism design. Artificial Intelligence,
239:97–142, 2016.

[Cermák et al., 2015] P. Cermák, A. Lomuscio, and A. Mura-
no. Verifying and synthesising multi-agent systems against
one-goal strategy logic specifications. In AAAI, 2015.

[Chatterjee et al., 2010] K. Chatterjee, T. A. Henzinger, and
N. Piterman. Strategy Logic. Inf. Comput., 208(6):677–
693, 2010.

[Clarke et al., 2018] E.M.Clarke, O.Grumberg, D.Kroening,
D. Peled, and H. Veith. Model checking. MIT press, 2018.

[David and Kroening, 2017] C. David and D. Kroening. Pro-
gram synthesis: challenges and opportunities. Phil. Trans.
Royal Society A, 375(2104):20150403, 2017.

[Dütting et al., 2019] P. Dütting, Z. Feng, H. Narasimhan,
D. Parkes, and S. S. Ravindranath. Optimal auctions
through deep learning. In ICML, 2019.

[French, 2003] T. French. Quantified propositional temporal
logic with repeating states. In TIME, 2003.

[Green and Laffont, 1979] J. R. Green and J. J. Laffont. In-
centives in Public Decision Making. North-Holland, Am-
sterdam, 1979.

[Gutierrez et al., 2019] J. Gutierrez, M. Najib, G. Perelli,
and M. J. Wooldridge. Equilibrium design for concurrent
games. In CONCUR, 2019.

[Klemperer, 1999] P. Klemperer. Auction theory: A guide to
the literature. Journal of Economic Surveys, 13(3):227–
286, 1999.

[Laroussinie and Markey, 2014] F. Laroussinie and N. Mar-
key. Quantified CTL: expressiveness and complexity. Log.
Methods Comput. Sci., 10(4), 2014.

[Laroussinie and Markey, 2015] F. Laroussinie and N. Mar-
key. Augmenting ATL with strategy contexts. Inf. Com-
put., 245:98–123, 2015.

[Maubert et al., 2021] B. Maubert, M. Mittelmann, A. Mu-
rano, and L. Perrussel. Strategic reasoning in automated
mechanism design. In KR, 2021.

[Mittelmann and Perrussel, 2020] M. Mittelmann and
L. Perrussel. Auction description language (ADL): a gen-
eral framework for representing auction-based markets.
In ECAI, 2020.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli,
and M. Y. Vardi. Reasoning about strategies: On the
model-checking problem. ACM Trans. Comput. Log.,
15(4), 2014.

[Mogavero et al., 2017] F. Mogavero, A. Murano, G. Perelli,
and M. Y. Vardi. Reasoning about strategies: on the satisfi-
ability problem. Log. Methods Comput. Sci., 13(1), 2017.

[Myerson and Satterthwaite, 1983] R. B. Myerson and M. A.
Satterthwaite. Efficient mechanisms for bilateral trading.
Journal of Economic Theory, 29(2):265–281, 1983.

[Narasimhan et al., 2016] H. Narasimhan, S. B. Agarwal,
and D. C. Parkes. Automated mechanism design without
money via machine learning. In IJCAI, 2016.

[Nisan et al., 2007] N. Nisan, T. Roughgarden, É. Tardos,
and V. Vazirani. Algorithmic Game Theory. Cambridge
University Press, 2007.

[Niu et al., 2012] J. Niu, K. Cai, S. Parsons, M. Fasli, and
X. Yao. A grey-box approach to automated mechanism
design. Elec. Com. Research and App., 11(1):24–35, 2012.

[Okada et al., 2019] N. Okada, T. Todo, and M. Yokoo. Sat-
based automated mechanism design for false-name-proof
facility location. In PRIMA, 2019.

[Parkes, 2001] D. Parkes. Iterative combinatorial auctions:
Achieving economic and computational efficiency. Univ.
of Pennsylvania Philadelphia, 2001.

[Pauly and Wooldridge, 2003] M. Pauly and M. Wooldridge.
Logic for mechanism design–a manifesto. In Workshop on
Game Theory and Decision Theory in Agent Syst., 2003.

[Pin, 2021] Jean-Éric Pin. Handbook of Automata Theory.
European Math. Society Publis. House, Zuerich, 2021.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the
synthesis of a reactive module. In POPL, 1989.

[Sandholm, 2003] T. Sandholm. Automated mechanism de-
sign: A new application area for search algorithms. In CP,
2003.

[Shen et al., 2019] W. Shen, P. Tang, and S. Zuo. Automated
mechanism design via neural networks. In AAMAS, 2019.

[Troquard and Walther, 2012] N. Troquard and D. Walther.
On satisfiability in ATL with strategy contexts. In JELIA,
2012.

[Vorobeychik et al., 2007] Y. Vorobeychik, D. M. Reeves,
and M. P. Wellman. Constrained automated mechanism
design for infinite games of incomplete information. In
UAI, 2007.

[Wooldridge et al., 2007] M. Wooldridge, T. Agotnes,
P. Dunne, and W. Van der Hoek. Logic for automated
mechanism design-a progress report. In AAAI, 2007.

