

#### Finite Element Solver for Thermo-Hydraulic Optimization of Architected Ceramics (NExT I-Site industrial partnership program: OPTHOCERA): project overview

Benoit Rousseau, Salih Ouchtout, Jérôme Delmas, Christophe Le Bozec, Gwenael Biotteau, Steven Le Corre, Jerôme Vicente, Ludovic Charpentier, Cindy Schick, Eric Louradour, et al.

#### ▶ To cite this version:

Benoit Rousseau, Salih Ouchtout, Jérôme Delmas, Christophe Le Bozec, Gwenael Biotteau, et al.. Finite Element Solver for Thermo-Hydraulic Optimization of Architected Ceramics (NExT I-Site industrial partnership program: OPTHOCERA): project overview. 28ieme SolarPaces Conference, Solar Power & Chemical Energy Systems, Sep 2022, Albuquerque, NM, United States. hal-03879008

#### HAL Id: hal-03879008 https://hal.science/hal-03879008v1

Submitted on 30 Nov 2022

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.





# Finite Element Solver for Thermo-Hydraulic Optimization of Architected Ceramics (NExT I-Site industrial partnership program: OPTHOCERA): project overview

Benoit Rousseau<sup>1,</sup> Salih Ouchtout<sup>1</sup>, Jerôme Delmas<sup>1</sup>, Christophe le Bozec<sup>1</sup>, Gwenaell Biotteau<sup>1</sup>, Steven Le Corre<sup>1</sup>, Jerôme Vicente<sup>2</sup>, Ludovic Charpentier<sup>3</sup>, Cindy Schick<sup>4</sup>, Eric Louradour<sup>4</sup>, Christophe Chaput<sup>4</sup>

<sup>1</sup> Nantes Université, CNRS, Nantes, France, <sup>2</sup> AMU Université, CNRS, Marseilles, France, <sup>3</sup> CNRS, Font-Romeu, France, <sup>4</sup> 3D CERAM SINTO Bonnac La Côte, France





September 27-30, 2022 Albuquerque, NM, USA

28<sup>th</sup> SolarPACES Conference

### Decarbonization of high-temperature industrial processes (T> 1,000°C)

- Stabilization of global warming<sup>1</sup>→net-zero emission of CO<sub>2</sub> in human activities (industry, transpoirt, residential sector...)
- Industry accounts for 32 % of the final energy consumption with 74 % of this component is required for heat production of which 90 % is provided by burning fossil combustible (coal, oil, gas)
- 48 % of energy consumption for producing industrial heat is due to high-temperature processes (T > 400°C)



#### Production of fuels and chemical commodities



Zimmermann in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany, 2009



#### **Metallurgical sector**

<sup>1)</sup> Masson-Delmotte et al., In: Climate Change 2021 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

#### Interest of high-temperature concentrated solar heat

- Solar energy →abundant : 1% of the 3.8×10<sup>24</sup> joules of solar energy reaching the earth's surface every year → 40 times the electricity generated globally
- But dilute, geographically non uniform, temporally intermittent, variable
- Concentration<sup>2)</sup> of solar radiation (paraboloid dishes and solar towers) →1,000°C (with incident fluxes > 1MW/m<sup>2</sup>)





 Development of high-temperature solar receivers with high solar-to-heat conversion efficiency and service life of 10,000 cycles under harsh conditions → thermal, mechanical, material challenges

<sup>2)</sup> Romero, M., Steinfeld, A., 2012. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234–9245

### **Volumetric solar receivers = radiative-convective heat exchangers**



Avila-Marin et al., Renewable and Sustainable Energy Reviews, 2019, 111 15

#### **Conventional 3D geometries**

Refractory porous ceramics (SiC, Al<sub>2</sub>O<sub>3</sub>,...)

- High solar absorptance
- Good thermal conductivity
- High volumetric surface
- Low thermal emittance
- High thermal shock resistance

New concepts based on additive manufacturing coupled with radiative transfer design → Improvement of the volume propagation of concentrated solar light, reduction of thermal emission

150 mm



## Numerical design approach coupled with additive manufacturing



HEM : Homogeneous Equivalent Method  $\rightarrow$  continuous scale approach DS : Detailed Simulation  $\rightarrow$  pore scale approach

## **OPTHOCERA** program (1 year)





Numerical design of 3D digitalized porous architectures (regular, pore size gradient) Conductiveradiative modelling→Temper ature and flux fields (HEM and DS)

Selected architectures according to Planck number → elaboration by stereolithography



Performance tests : solar-to-heat conversion (OPTISOL bench, PROMES Odeillo, France).



# Radiative Transfer Equation : modelling of volume propagation of thermal and solar radiations

- Macro-porous ceramics  $\rightarrow$  semi-transparent media (absorption, scattering, emission)
- Valid if the medium is homogeneous, continous and weakly spatially correlated



 $\widehat{\Omega}. \nabla I_{\nu}(s, \widehat{\Omega}) + (\kappa_a + \kappa_s) - \kappa_s \int_{4\pi} I_{\nu}(s, \widehat{\Omega}) P(\widehat{\Omega}' \to \widehat{\Omega}) d\widehat{\Omega}' - \kappa_a I_{P\nu} = 0$ 



Chandrasekhar, Radiative Transfer, Dover, 1960

$$\nabla . \dot{q}''(s) = \int_{0}^{\infty} \kappa_{av} 4\pi I_{bv}(T) dv - \int_{0}^{\infty} \int_{4\pi} \kappa_{av} I_{v}(s, \hat{\Omega}) d\Omega dv$$

$$\rho c_{p} \frac{\partial T}{\partial t}(s) = \nabla . (k_{cond} \nabla T(s) - \dot{q}''(s))$$

#### Methods for solving the steady-state RTE



#### Use of the FEM solver for analyzing the coupling between conduction and radiation within a 1D slab sandwiched by a hot and a cold wall



#### **Comparison between HEM model/exact solution from Viskanta**





- $\tau = 0.9 (+36 \%)$
- ightarrow @T=700 K , + 252 K
- low  $\kappa_e$ : for a given p, high  $d_{nom}$  (low PPI)



#### Typical values of *N* for real ceramic-based open cell foams (T=1,300 K)

| 0,000   | size =                                                           | size =                                                    | size =                                                    | size =                                                    | 80 %, cell<br>size =                                      | @1000°C                                             | material                                            |
|---------|------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 0.02456 | 4mm<br>0.04913                                                   | 0.09826                                                   | 0.04913                                                   | 0.09826                                                   | 0.19652                                                   | ~6.8                                                | alumina                                             |
| 0,01156 | 0,02312                                                          | 0,04624                                                   | 0,02312                                                   | 0,04624                                                   | 0,09248                                                   | ~3.2                                                | mullite                                             |
| 0,00542 | 0,01084                                                          | 0,02167                                                   | 0,01084                                                   | 0,02167                                                   | 0,04335                                                   | ~1.5                                                | cordierite                                          |
| 0,18062 | 0,36124                                                          | 0,72249                                                   | 0,36124                                                   | 0,72249                                                   | 1,44497                                                   | ~50                                                 | silicon carbide                                     |
|         | size =<br><u>4mm</u><br>0,04913<br>0,02312<br>0,01084<br>0,36124 | size =<br>2mm<br>0,09826<br>0,04624<br>0,02167<br>0,72249 | size =<br>8mm<br>0,04913<br>0,02312<br>0,01084<br>0,36124 | size =<br>4mm<br>0,09826<br>0,04624<br>0,02167<br>0,72249 | size =<br>2mm<br>0,19652<br>0,09248<br>0,04335<br>1,44497 | @1000°C<br>[W/(m.K)]<br>~6.8<br>~3.2<br>~1.5<br>~50 | alumina<br>mullite<br>cordierite<br>silicon carbide |

Interest for semi-transparent porous ceramics with high p and high  $d_{nom}$ 

#### Comparison of the Rosseland↔HEM model and of the HEM↔DS model



331 860 tetrahedral elements for the solid phase and 1 753 680 elements for the fluid phase ; 62 processors, 128 directions

# Thermal behaviour of 4 fictitious alumina-based Kelvin Cell Foams exposed to a collimated concentrated solar beam (10<sup>6</sup> W.m<sup>2</sup>)



| Porosity = 91 %, $\emptyset$ = 5 cm, h= 5 cm |  |
|----------------------------------------------|--|
|----------------------------------------------|--|

|                                                                         | d <sub>nom</sub> =0,004 m<br>without coating<br>Case 1 | d <sub>nom</sub> =0,008 m<br>without coating<br>Case 2 | d <sub>nom</sub> =0,004 m<br>with coating<br>Case 3 | d <sub>nom</sub> =0,008 m<br>with coating<br>Case 4 |
|-------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| $eta_{eff}(m^{-1})$                                                     | 108                                                    | 54                                                     | 108                                                 | 54                                                  |
| $\kappa_{eff}$ (m <sup>-1</sup> )                                       | 33.7                                                   | 12,7                                                   | 79                                                  | 33                                                  |
| $\sigma_{eff}$ (m <sup>-1</sup> )                                       | 74.3                                                   | 41.3                                                   | 29                                                  | 21                                                  |
| E <sub>eff</sub>                                                        | 0.31                                                   | 0.24                                                   | 0.73                                                | 0.61                                                |
| $\lambda_{eff}$ (W.m <sup>-1</sup> .K <sup>-1</sup> )                   | 0,33                                                   | 0,33                                                   | 0,33                                                | 0,33                                                |
| $N_{P,\beta_{eff}}$                                                     | 0,04422                                                | 0,02211                                                | 0,04422                                             | 0,02211                                             |
| $\omega_{eff}$                                                          | 0.67                                                   | 0.76                                                   | 0.27                                                | 0.39                                                |
| $ ho_{eff}$ (kg.m³)                                                     | 330                                                    | 330                                                    | 330                                                 | 330                                                 |
| $C_{P,eff}$ (J. Kg <sup>-1</sup> K <sup>-1</sup> )                      | 1200                                                   | 1200                                                   | 1200                                                | 1200                                                |
| $h_{x_{min}} = 10h_{x_{max}}$<br>(W. m <sup>-2</sup> .K <sup>-1</sup> ) | 10                                                     | 10                                                     | 10                                                  | 10                                                  |

Addition of an absorbing coating on the alumina ligaments

#### Thermal behaviour of porous alumina ceramics exposed to a collimated concentrated solar beam (10<sup>6</sup> W.m<sup>2</sup>)



Mora Monteros et al., Ceramics International 46 (2020) 2805-2815

ceramics exposed to artificial concentrated

 $N_{P,\beta_{eff}}(1,3) = 2N_{P,\beta_{eff}}(2,4) \rightarrow$  volume radiation effect more important  $\omega_{eff}(1,2) < \omega_{eff}(3,4) \rightarrow$  volume radiation effect more important  $\varepsilon_{eff}(1,2) < \varepsilon_{eff}(3,4) \rightarrow$  decreasing of the radiative losses at the front face

# From the numerical design of porous ceramics up to elaboration thanks to stereolithography



# Improvement of the solar absorptance of the alumina skeleton with a commercial refractory black coating



# Numerical computations of the Kelvin cell foams emissivities with genMat



Parallelized Monte Carlo Ray-Tracing code

## Absorption length of the incident collimated beam : effect of $d_{nom}$



# Impact $d_{nom}$ on the absorption of the incident radiative flux and the position of $T_{max}$

2000



Radiation transport is stopped at the first rank of cell : after conductive (convective) heat transfer

### Solar-to-heat performances : OPTISOL bench





Mey-Cloutier et al., Solar Energy 136 (2016) 226-235

Qualitative agreement but some experiments must still be explained

$$\begin{split} \eta_{ST,1} &< \eta_{ST,2} \leftrightarrow N_{P,\beta_{eff},1} > N_{P,\beta_{eff},2} \\ \eta_{ST,4} &< \eta_{ST,3} \text{ but } N_{P,\beta_{eff},3} > N_{P,\beta_{eff},4} \end{split}$$

 $\eta_{ST,4} < \eta_{ST,3} \leftrightarrow \omega_{eff,3} < \omega_{eff,4}$ 

#### Modification of the front face for case 4 ? Heat exchange coefficient?

| d <sub>nom</sub> =0,004 m without coating |           |             |             |  |  |
|-------------------------------------------|-----------|-------------|-------------|--|--|
| : case 1                                  |           |             |             |  |  |
| DNI                                       | q air     | T out       | $\eta_{ST}$ |  |  |
| (W/m²)                                    | (g/s)     | (° C)       |             |  |  |
| 1017                                      | 3         | 219         | 0,39        |  |  |
| 1020                                      | 2         | 270         | 0,33        |  |  |
| 1022                                      | 1         | 387         | 0,24        |  |  |
| $d_{not}$                                 | m=0,004 m | i with coat | ing         |  |  |
|                                           | : ca      | se 3        |             |  |  |
| DNI                                       | q air     | T out       | $\eta_{ST}$ |  |  |
| (W/m²)                                    | (g/s)     | (° C)       |             |  |  |
| 1014                                      | 3         | 423         | 0,82        |  |  |
| 1024                                      | 2         | 574         | 0,75        |  |  |
| 1014                                      | 1         | 838         | 0,57        |  |  |
| $d_{nom}$ =0,008 m without coating        |           |             |             |  |  |
| : case 2                                  |           |             |             |  |  |
| DNI                                       | q air     | T out       | $\eta_{ST}$ |  |  |
| (W/m²)                                    | (g/s)     | (° C)       |             |  |  |
| 1027                                      | 3         | 307         | 0,56        |  |  |
| 1028                                      | 2         | 368         | 0,46        |  |  |
| 1024                                      | 1         | 490         | 0,32        |  |  |
| $d_{nom}$ =0,008 m with coating :         |           |             |             |  |  |
| case 4                                    |           |             |             |  |  |
| DNI                                       | q air     | T out       | $\eta_{ST}$ |  |  |
| (W/m²)                                    | (g/s)     | (° C)       |             |  |  |
| 1022                                      | 3         | 382         | 0,72        |  |  |
| 1034                                      | 2         | 507         | 0,64        |  |  |
| 1034                                      | 1         | 731         | 0,48        |  |  |
|                                           |           |             |             |  |  |

Experimental data

$$\begin{split} N_{P,\beta_{eff}} &= 0.04422\\ \omega_{eff} &= 0.67 \end{split}$$

 $N_{P,\beta_{eff}} = 0,04422$  $\omega_{eff} = 0.27$ 

 $N_{P,\beta_{eff}} = 0,02211$  $\omega_{eff} = 0.76$ 

$$\begin{split} N_{P,\beta_{eff}} &= 0.02211\\ \omega_{eff} &= 0.39 \end{split}$$

Conduction-toradiation number



## **Conclusions & outlook**

- Fast and robust FEM solver for conduction-radiation heat exchange modelling through HEM and DS method
- Validation of HEM-DS ↔ Viskanta model (hot and black wall) for a porous structure with a regular lattice (cubic cells)
- Volume propagation of radiation locally increases  $T \rightarrow$  interest for developing VSR
- Numerical design and elaboration of 4 based-alumina VSR ( $\emptyset$  = 5 cm, h= 5 cm) with stereolitography
- Performance tests with the OPTISOL bench
- Best VSR : porosity 91 %, nominal pore diameter 4 mm with a coating of high solar absorptance
- Planck number not sufficient for following volume propagation within VSR : need to introduce a trapping effect number.

|                                                                               | International Journal of Heat and Mass Transfer 197 (2022) 123274                                                                                                                                                                               | _                    | Velocity_3D U_exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | Contents lists available at ScienceDirect                                                                                                                                                                                                       | HEAT MASS            | William British Balling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ELSEVIER                                                                      | International Journal of Heat and Mass Transfer                                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Finite eleme<br>within heter<br>S. Ouchtout, B.<br>Nantes Université, CNRS, I | ent framework for modeling conducto-radiative transfers<br>rogeneous media at both discrete and continuous scales<br>Rousseau, Y. Favennec <sup>4</sup><br>aboracoire de thermique et finergie de Nautes ITEN, UMR 6607, Nautes F-44000, France | Chaos for<br>spitial | Market and the second sec |

- Coupling with fluid transport (Darcy-Forchheimer HEM/ Navier-Stokes DS)  $\rightarrow$  ANCRE SdBE FATHERCASE program (2022-2023) with IFPEN and GeM
- PRC ANR ORCHESTRA (2022-2026) with LTeN-GeM-IFPEN-IRCER
- Topology optimization  $\rightarrow$
- Thermal shock resistance modelling
- Elaboration of SiC lattice with binder jetting...



Thank you for your attention ! benoit.rousseau@univ-nantes.fr



#### Influence of the anisotropy factor

#### From macro-scale to meso-scale





S. Guévelou et al., Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 329-338



#### Influence of the albedo



