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issue and adapt it to our specific case (Section 1). 120 Then, we assess the effect of reallocation through a first set of simulations (Section 2.1).

121

In these simulations, the framework is simplified as much as possible to investigate the 122 impact of reallocation on inference alone: are the estimates biased when reallocating catch 123 declarations data? What is the gain of our alternative approach? For these simulations, 124 the domain is reduced to a single statistical rectangle, only commercial declarations feed 125 the model and the fish distribution is simply considered to arise from a known covariate.

126

In a second set of simulations, we get closer to a real application (Section 2.2). In 127 particular, the integrated dimension of the problem is added to the simulation configura-128 tion and both scientific and commercial data feed the model. This allows to investigate 129 the contribution of both data sources to inference in addition to the effect of reallocation.

The study domain is enlarged to several statistical rectangles. The model is complexified 131 and species distribution is supposed to arise from a known covariate and a spatial random 132 effect.

133 Finally, we compare the 2 methods on a real case study (common sole in the Bay of 134 Biscay -Section 3) and we outline the consistency between simulation results and the real 135 case of application. 

Y i |S(x i ) = p i δ 0 + (1 -p i )µ i e σN i -σ 2 2 , N i ∼ N (0, 1), (1) 
where δ 0 stands for the Dirac mass in 0 and N i a standard Normal random variable.

152

In the following, this mixture distribution will be denoted by

153 Y i |S(x i ) ind ∼ M Y p i , µ i , σ 2 , (2) 
with p i := exp(-e ξ S(x i )) the proportion of the mixture, e ξ a parameter controlling zero-inflation, µ i := S(x i ) 1-p i the expected catch when positive (on the natural-scale) and 

P (Y i = 0|S(x i )) = p i = exp(-e ξ S(x i )) E (Y i |Y i > 0, S(x i )) = µ i = S(x i ) 1 -p i , (3) 
Var(Y i |Y i > 0, S(x i )) = µ 2 i (e σ 2 -
D a = i|x i ∈Ra Y i , (4) 9 F 
µ D a = E(D a |D a > 0) = ma i=1 S(x ai ) 1 -p D a Var(D a |D a > 0) = ma i=1 Var(Y ai ) 1 -p D a - p D a (1 -p D a ) 2 E(D a ) 2 (8) 
with Var(Y ai ) = S(x ai ) The inference is based on maximum likelihood approach with two approximations. We use are summarised in Table 1.

250

The latter two models are then tested on a real case study. to commercial data), we shape the simulation domain to fit the case study domain (i.e.

266

the Bay of Biscay area) which covers several statistical rectangles and we add a spatial 267 random effect in the latent field. These simulations will be referred as multiple-square 268 simulations.

269

In these two sets of simulation studies, there is a unique covariate that we suppose 270 known at each point of the grid. Parameters values are detailed in the Table 2.

271

Regarding commercial data, the number of fishing pings per declaration is fixed to 10 272 as it is the average number of fishing locations for a single declaration in real data. 

282

The MSPE (Equation 10) quantifies the accuracy of the spatial predictions of the 283 latent field over the spatial domain (n cells is the number of locations over the grid).

284

M SP E = n cells j (S(x j ) -Ŝ(x j )) 2 n ( 10 
)
The estimates of the parameter β S is also a key parameter of species distribution 285 models as it quantifies the species habitat relationship.

286

In addition to the M SP E and the species-habitat parameter βS , we look at the qual- 299

First, increasing the amount of data is expected to improve the estimates and the spa-300 tial prediction accuracy. We explore the potential improvement of the spatial predictions 301 brought by an increasing amount of fishing points (10, 100 and 1000) which correspond 302 respectively to 1, 10 and 100 declarations, the number of fishing locations within a decla-303 ration being fixed to 10.

304

Furthermore, the number of fishing zones within the statistical rectangle associated 305 with a declaration might also affect the performance of the different approaches. We ex-306 pect that the reallocation process will be less problematic when all the individual obser-307 vations are spatially close as this situation is likely to correspond to a more homogeneous 308 underlying density than a situation with distant fishing zones. The accuracy of the Real-309 located Model outputs is expected to decrease when the number of fishing zones increases.

310

To assess the effect of such process, we simulated the fishing locations associated with a 311 declaration assuming they were either realized in a single zone, in 3 distinct zones or in 5 312 distinct zones (Figure 2).

313

The results are presented in Figures 3 and4.

314

The reallocation process has a major effect on predictions and estimates accuracy 315 (Figure 3). As expected, the reallocation process conducts to a 10 to 200 times decrease The observation variance (σ) is underestimated -i.e. the data are estimated to be 331 less noisy than they actually are -which is also a direct effect of uniform reallocation of 332 declarations. The intercept of the latent field (µ) is slightly over-estimated (Figure 4).

333

Fitting the model to aggregated declaration allows to recover the species-habitat re-334 lationship and to improve the accuracy of the spatial predictions (Figure 3) even so the 335 model outputs are not as accurate as the ones of the Spatial Model. Furthermore, the 336 zero-inflation parameter is unbiased when the model is fitted to aggregated declarations.

337

Other parameters (observation variance, intercept) are also better estimated than with 338 the Reallocated Model even though they remain slightly biased (Figure 4). This alter-339 native model has some convergence issues (Table 3) as 8% of the model runs did not 340 converge when sample size is medium (100 pings) and only 3% did not when sample size 341 is large (1000 pings). 

373

Note that as in the single square simulation, the Declaration Model face some difficulty 374 in convergence as only 75% of the model built on aggregated declarations converge (Table 375 4).

376

In addition to the 2 metrics introduced at the beginning of the section (M SP E and 377 species-habitat parameter β S ), we also compare the precision of the estimates for the 378 range parameter.

379

The contribution of either scientific or commercial data can be clearly evidenced from Model. This is consistent with the simulations results, see Figure 4. The overall approach that we adopted to handle COS follows the standard structure of 481 hierarchical frameworks. We assumed that both data sources (scientific data and commer-482 cial declarations data) arise from a shared latent process (species distribution) and that, 483 while scientific data are recorded at their exact locations, commmercial declarations are 484 recorded at a rough scale and are a convolution of exact location observations. Linking The general approach that we propose (i.e. considering that aggregated data are con-489 volutions of exact locations data) is relatively generic. To adapt the model to another 490 application, only the moment equations and the probability distribution of the aggre-491 gated level would require to be adapted to the distribution of the underlying punctual 492 observation level. However, considering that a convolution of zero-inflated lognormal dis-493 tribution follows a zero-inflated lognormal is an approximation that can be questionned.

494

We showed that this approximation is reasonnably good in our context (Alglave et al.

495 2022). However, exploring alternative observation models that verify additive property 496 as the Gamma distribution would be an interesting perspectives for the future.

497

Finally, another approach that is common in the COS literature is 'Block krige- The study domain is considered as a statistical rectangle (grey square). Fishermen sample observations in areas of poor biomass where the covariate is relatively low (blue points) and in areas of higher biomass where the covariate is higher and eventually in the hotspot of biomass (orange and red points). These catches belong to the same declaration a and are summed to constitute the declaration D a = 50. The declaration is declared at the level of the statistical rectangle. From VMS data, we know the fishing positions x ai . In standard processing, D a are then uniformly reallocated over the fishing positions x ai . This strongly homogenizes the catch. In particular, the effect of the habitat is no more evidenced in the reallocated catch Y r ai . is the mean squared prediction error and βS is the species-habitat relationship parameter. The number of fishing zones visited within each declaration is represented on the x-axis. The results of the Spatial model are in yellow, in red the results of the Reallocated Model and in green the Declaration Model. Simulations conducted with 10 fishing positions are not represented as they encounter convergence issues as stated in Table 3. The main formulas can be summarised as follows: 

- 1 ξ com -1 -1 σ com 1 1 k com - 1 ξ sci - 0 σ sci - 0.8

34
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18 With

 18 the progress of new technologies, spatial ecological data are becoming more and more 19 accessible every day thanks to the huge effort of the scientific community to generate and 20 get access to intensive information for ecology, evolution and conservation (Nathan et al.

  mandatory data that must be reported by some agent as a legal requirement to on inference has never been explored. In particular, one can suspect that 113 this could lead to strong homogeneization of the catch and to bias parameters inference 114 (Gotway and Young 2007; Pacifici, Reich, Miller, and Pease 2019). There is a need to 115 understand how this procedure negatively affects inference and how the related bias can 116 be corrected through alternative approaches properly handling COS. 117 In the following, we first describe the original model integrating both data sources and 118 propose a generic statistical solution that allow to properly tackle the change of support

  119

  catch model for aggregated data 137 Alglave et al. (2022) have proposed a hierarchical spatial model to combine scientific 138 survey data obtained through a standardized sampling protocol and catch data recorded 139 by fishers. The proposed model will be denoted by GeoCatch in the following and assumes 140 that the catch are precisely geolocalized. 141 A short presentation of the GeoCatch model 142 Let D ⊂ R 2 be a spatial domain and (S) = (S(x), x ∈ D) a spatial random field which 143 represents the biomass for a species of interest. (S) is assumed to be a spatial log-144 Gaussian Random Field (GRF) defined as log(S(x)) = µ + β • Γ(x) + δ(x) (Figure 1) 145 where (δ) = (δ(x), x ∈ D) is a zero mean isotropic GRF with a Matern covariance func-146 tion and (Γ) = (Γ(x), x ∈ D) a field of covariate.

Following

  Thorson (2018), the zero-inflated positive continuous data (Catch Per Unit 149 of Effort -CPUE), Y = (Y 1 , . . . , Y n ) ⊺ at sampled sites (x 1 , . . . , x n ) ⊺ are assumed to be 150 independent conditionally on (S) and for any i in 1..n , 151

230the 13 F

 13 Stochastic Partial Differential Equations (SPDE) approach to represent the spatial 231 Gaussian random field as a Gauss-Markov random field (Lindgren, Rue, and Lindström 232 2011) and we use the Laplace approximation to approximate the marginal likelihood of the 233 model. The stochastic random field is also approximated by a piecewise constant process 234 defined on a fine grid. The optimization of the likelihood relies on Template Model Builder 235 (TMB), an effective tool to build hierarchical models and perform maximum likelihood 236 estimation through automatic differentiation and Laplace approximation (Kristensen et 237 al. 2016). 238 Alternative model configuration 239 In the following, we will first use simulations to compare three alternatives to estimate 240 the spatial field of biomass from declaration data: a first configuration called 'Spatial 241 Model' refers to the GeoCatch model fitted to the true individual observations (as if 242 individual observations were known), a second configuration called 'Reallocated Model' 243 refers to the GeoCatch model fitted to the reallocated observations, a last configuration 244 called 'Declaration Model' refers to the model that accounts for COS and that is fitted to 245 the aggregated data.246 where individual observations are supposed to be known exactly, a 'reallocated model' 247 where the model is fitted to reallocated observations, a 'declaration Model' where the 248 model is fitted to spatially aggregated observations. The different model configurations 249

  drawbacks and the advantages of the different approaches, we conduct two 253 different simulation studies. 254 First, we assess the effect of reallocation alone based on a simplistic statistical model. 255 To do so, we conduct the simulation at the level of a single statistical rectangle on esti-256 mates, based on commercial data alone and with a very simple spatial latent field which 257 only depends on one covariate (with no spatial random effect). This allows to clearly 258 identify and illustrate the effect of reallocation on model estimates without confounding 259 the effect of reallocation with other factors (e.g. the configuration of the study domain, 260 artefacts that could arise from a more complex model). These simulations will be referred 261 as single-square simulations. 262 Then, we extend the analysis to get closer to a real case study and we investigate 263 how integrating several data sources into inference while accounting for change of support 264 improve model predictions. We simulate precisely geolocalized scientific data (in addition 265

  The locations of the individual commercial observation are generally organized in 274 spatial clusters (they are named fishing zones in the following). The simulation process 275 mimics this property by sampling the fishing points using a Neymann Scott process: the 276 centers of the fishing zones are sampled according to a Poisson process and the fishing 277 points are then uniformly sampled within a squared area that approximates the distance 278 of a trawl haul. At each fishing position, an observation is sampled conditionally on the 279 value of the latent field according to the model M Y . 280 We compare the performance of the Spatial Model (the gold standard), the Reallocated 281 Model and the Declaration Model configurations in regards to several metrics/estimates.

2 . 1

 21 287ity of the estimation for the intercept of the latent field μ, the observation variance 288 parameter σ2 and the zero-inflation parameter ξ. When a spatial random effect is simu-289 lated/estimated in the latent field (i.e. the mutliple square simulation), we also investigate 290 the range estimates. 291 To get enough replicates, we run the simulations 100 times for both single-square and 292 multiple square simulations. Analysing the effect of data reallocation alone: single-square simulations 295 Two important variables may affect the accuracy of model outputs: the sample size 296 of commercial data and the number of fishing zones explored and aggregated within 297 a declaration. The single-square simulations intend to explore the effect of these two 298 variables.

  316in accuracy for spatial predictions. Accuracy decreases as the number of visited zones loss of the species-habitat relationship as the number of fishing zones (related 319 to a declaration) increases (i.e. βS estimates get closer to 0). Increasing the number of 320 samples does not improve inference.321The zero-inflation parameter (ξ) is also overestimated when using the Reallocated 322 Model (Figure4). When ξ increases, the amount of zero in the data decreases. Then, an 323 overestimation of the ξ parameter means the model estimates that the amount of zero is 324 smaller than what is actually simulated. This is not surprising: as soon as at least one 325 of the individual observations Y ai associated with the same declaration D a is non-zero, 326 uniform reallocation will lead to a positive observation for each reallocated individual 327 observation Y r , hence to an underestimation of the proportion of zero. Consequently, 328 this will tend to decrease the proportion of zero and will lead to the over-estimation of 329 the ξ parameter.

  330

2 . 2

 22 Integrating several data sources with different spatial reso-343 lution: multiple-square simulations 344 In these simulations, the latent biomass process is modeled as the sum of a covariate 345 effect and a random spatial field which represents the spatial structure not captured by 346 the covariate. We also simulate precisely located scientific data as another source of to one of the ICES rectangles. (2) The centroid of a fishing zone is uniformly sampled 357 within this statistical rectangle. (3) The 10 fishing punctual observations are randomly 358 sampled within the fishing zone. The side of the squared fishing zone is set so as the 359 extent of a fishing operation does not exceed 30 km. Note that we do not explore the 360 effect of exploring several zones within the same declaration as it is already done in the 361 single-square simulations. 362 100 scientific precisely localized scientific fishing points are simulated following a ran-363 dom stratified plan; contrary to commercial data they cover the entire study domain 364 (Figure 6A). Scientific observations are simulated following the observation equation of brings our alternative approach, we compare the Reallocated Model 368 to the Declaration Model.369 to assess the information brought by each data source, we compare models built on 370 scientific data only (scientific-based models), models built on commercial data only 371 (commercial-based models) and models combining both data sources (integrated 372 models).

380

  the MSPE plot: the errors related to the integrated model at the declaration level or 381 at the individual reallocated observation level are always smaller than those obtained 382 from models based on scientific data only or commercial data only. This can be well 383 illustrated from Figure 6. Integrating scientific and commercial data allows to (1) capture 384 the hotspot missed by commercial data through scientific data and (2) better capture the 385 local correlation structures through the dense commercial data. 386 Furthermore, consistently with single-square simulations, the Reallocated Model con-387 ducts to a loss in both the predictions accuracy and the species-habitat relationship (Fig-388ure 5) compared to the Declaration Model.

389 19 F

 19 Interestingly, in addition to the species-habitat relationship, uniform reallocation also 390 affects the range parameter. The Reallocated model provides biased range estimates while 391 provides unbiased estimates. Then, the Declaration Model (as the 392 scientific-based model) better captures and disentangles the covariate effect and the spatial 393 random effect and provides predictions that better fit to the small-scale patterns of the 394 species distribution. 395 3 Case-study: sole of the Bay of Biscay 396 To illustrate our method on a real case study, we applied the approach to the common 397 sole of the Bay of Biscay. VMS-logbook data were extracted for the bottom trawlers 398 fleet (OTB). The methods to cross VMS-logbook data and to filter the fleet is already 399 extensively described in the previous paper (Alglave et al. 2022) and is not developed 400 further here. Scientific data were extracted from the DATRAS database for the Orhago 401 beam trawl survey (Gérard 2003; ICES 2018b). To align the commercial and the scientific 402 data, we filtered scientific data based on the minimum size of sole (24 cm for sole -ICES 403 (2018a)). To illustrate the method, we compare the outputs of (1) the Spatial Model fitted 404 with scientific data only, (2) the Integrated Reallocated Model fitted to both scientific data 405 with known fishing location and declaration data uniformly reallocated on fishing locations 406 and (3) the Integrated Declaration Model fitted to both scientific and declaration data 407 aggregated at the scale of statistical squares. 408 The Integrated Declaration Model faced convergence issues (some of the parameters 409 were hardly estimated e.g. the range parameter). To favor convergence, we integrated 410 in the analysis onboard observer data from the same fleet. They can be considered as 411 precisely geolocalized commercial catch data (86 samples are available for the related 412 time step). Integrating these data allows to have direct information on Y ai and to better 413 estimate the observation equation parameters (i.e. observation variance and zero-inflation 414 parameter of commercial data).

  Furthermore, as commonly done in complex fisheries model using automatic differenti-416 ation method (Fournier et al. 2012), we adopt a phase optimization procedure to initialize 417 the optimization algorithm for the Declaration Model. We first fit the Reallocated model 418 and use the estimates of this model as starting point of the optimization algorithm used 419 for the Declaration Model estimation. We eventually fix the parameters that are hard 420 to estimate in the initial optimization phases (intercept µ, covariate effect β S , range and 421 marginal variance) and finally let them free in the following phases of estimation. 422 Consistently with simulations, the Declaration Model shows differences with the Real-423 located Model in both parameters estimates and spatial pattern of the species distribution 424 (Figures 7, 8). In particular, the substrate effect is recovered in the Declaration Model 425 and fall in the same range as estimates obtained from the scientific-based model (Figures 426 7). The zero-inflation parameter ξ is revised downwards (i.e. there are actually more zero-427 values than in the reallocated data) while the observation variance of commercial data is 428 revised upwards (i.e. the commercial data are noisier than estimated with the Reallocated 429 Model). 430 In addition, uncertainty is also revised when fitting the model at the declaration 431 level. For instance, the confidence intervals of β S , the marginal variance, the range, ξ com , 432 σ com obtained from the Declaration Model are much wider than those obtained from the 433 Reallocated Model. This emphasizes that uncertainty is probably underestimated in the 434 Reallocated Model compared with the Declaration Model. 435 On the contrary, other parameters do not seem well estimated in either the Reallocated 436 or the Declaration Models. For instance, compared to the scientific-based model, the 437 intercept µ is revised upwards when building the likelihood on the individual precisely 438 geolocalized observations and revised downwards when estimated with the Reallocated439

  Regarding the maps of the species distribution, fitting the model at the declaration 441 level strongly modifies the model biomass field compared with the Reallocated Model. In 442 particular, the substrate covariate have a sharper effect on species distribution and the 443 intensity of the hotspots are revised when fitting the Declaration Model.

445 22 F

 22 The benefit of a statistical approach for COS 446 Handling change of support is a key issue in spatial statistics and extensive literature 447 has intended to provide statistical methods to infer fine spatial processes based on data 448 aggregated over rough scales (Wikle, Zammit-Mangion, and Cressie 2019; Wakefield and 449 Lyons 2010). Such methods are key to integrate data that have different spatial resolution 450 to make fine-scale inference on spatial processes (Pacifici, Reich, Miller, and Pease 2019). 451 Still, in many cases, one often refines data resolution through ad-hoc arithmetic methods (proportional allocation, zonal addition) that can transform the data and lead to a loss of information (Young and Gotway 2007; Gotway and Young 2007) or artificially increase 454 the weight of such data when integrating several data sources (Alglave et al. 2022). 455 In this paper, we assessed how the well established method of proportional reallocation 456 of declaration on fishing locations biases the parameter estimation and tend to produce 457 overly smoothed species distribution maps. Based on the framework of Alglave et al.458 (2022), we proposed an alternative integrated spatial framework that combines the two 459 datasets to provide fine resolution maps of species distribution. 460 The base study explored in this paper highlights that even though prediction maps 461 based on uniform reallocation allows to capture the main patterns of species distribution 462 through the spatial random effect, uniform reallocation leads to the loss of the species-463 habitat relationship (parameters estimates are close to 0). Furthermore, results emphasize 464 is also strongly under estimated by uniform reallocation. 465 This is particularly problematic as one of the main objective of species distribution 466 modeling lies in understanding the effect of habitat on species distribution (Guisan and 467 Zimmermann 2000). Reallocated declarations data can provide information on the overall 468 pattern of species distribution through the autocorrelation structures captured by the 469 spatial random effect; however, they will not provide any information on species habitat 470 preferences as the parameters of the species-habitat relationship will be biased. 471 The model that accounts for COS allows to recover the species-habitat relationship 472 and provides more accurate spatial predictions of species distribution. Then, such method 473 accounting for COS is key to estimate properly the species-habitat relationship from 474 declarations data. More generally, COS approaches should be preferred when dealing 475 with aggregated data because they allow (1) to properly reconcile the spatial scale of 476 several data sources within the inference procedure, (2) to provide unbiased estimates of 477 model parameters and (3) to better quantify model uncertainty. 478 The hierarchical structure of the approach and the punctual ob-479 servation layer 480

485

  fine scale with rough scale for commercial data is made possible by relating the moments 486 of the fine-scale observation probability distribution to the rough scale observation prob-

  498 ing' (Gelfand, Zhu, and Carlin 2001; Gelfand 2010; Pacifici, Reich, Miller, Gardner, 499 et al. 2017). In such approach, the aggregation process is modeled in the latent field 500 and one usually consider the latent field average over the statiscal rectangle (or block) 501 S(R a ) = |R a | -1 RaS(x)dx . In this case, the observations are supposed to arise from a 502 distribution M R conditionally on S(R a ) following D a |S(R a ) ∼ M R (S(R a ), σ 2 ). This 503 approach considers declarations arise from the averaged biomass over the statistical rect-504 angle. This may suffer from the same difficulty as the reallocated data and could tend to 505 smoothed the species-habitat relationship. By contrast, our approach considers that all 506 observations are realized at given fishing locations and are then aggregated to constitute 507 the declarations. It valorizes the information on fishing locations available through VMS 508 data and then considers the catch has been realized over these locations conditionally 509 on the related latent field values. In this case, COS is modeled in the observation layer, 510 not in the latent field layer. This allows to remain closer to the actual process occuring 511 during data aggregation (data are first observed and then aggregated
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 2 Figure 2: Simulations of 10 fishing points within 1, 3 and 5 fishing zones. The full grid corresponds to a statistical rectangle. Cross are the centroid of the fishing zones. A declaration declared at the level of the statistical rectangle would be uniformly reallocated over these fishing points.

Figure 3 :

 3 Figure 3: Performance metrics for single-square simulations with a total of 100 or 1000 fishing positions in columns. M SP E = n cells j (S(x j )-Ŝ(x j )) 2 n
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 4 Figure 4: Parameters relative bias for single-square simulations. Only the simulations with 1000 fishing positions are represented. Black line: zero value. Red line: parameter true value.

Figure 5 :

 5 Figure 5: Performance metric for the multiple-square simulations. Red line: true value for the range and the species-habitat parameter (β S ). Blue: scientific-based model.

Figure 6 :

 6 Figure 6: Distribution of simulated/estimated biomass field. A: Simulated biomass field with scientific samples (red) and statistical rectangles. The rectangles that have not been sampled by commercial data are the transparent rectangles. They represent 1/3 of the full area. B: simulated biomass field. C: biomass field from the scientific-based model. D, E: Reallocated Model. F, G: Declaration Model. Scientific model: model fitted to scientific data only. Commercial model: model fitted to commercial data only. Integrated model: model fitted to both data sources.
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 7 Figure 7: Parameters obtained with the model fitted on scientific data only, the integrated model fitted on reallocated catch Y r ai and the integrated model fitted on catch declarations D a .

Figure 8 :( 1 - 2 = ( 1 - 2 = ( 1 -

 812121 Figure 8: Maps obtained from the scientific-based model (left), the integrated model fitted on reallocated catch Y r ai (center), the integrated model fitted on catch declarations D a (right).

  Var(C ai Z ai ) = E(C 2 ai Z 2 ai ) -E(C ai Z ai ) 2 , = E(C 2 ai )E(Z 2 ai ) -E(C ai ) 2 E(Z ai ) 2 , = (1 -p ai )E(Z

  729n.b. all the formulas are conditionned on S and on the fishing positions x ai .730The probability to obtain a zero declaration731 P(D a = 0) = exp -ma i=1 e ξ .S(x ai ) = π aThe expectancy of a positive declaration732 E(D a |D a > 0) = ma i=1 S(x ai ) 1 -π aThe variance of a positive declaration733 Var(D a |D a > 0) = ma i=1 Var(Y ai ) 1 -π a -π a (1 -π a ) 2 E(D a ) 2The variance of an individual observation 734Var(Y ai ) = S(x ai ) 2 1 -p ai (e σ 2 -(1 -p ai ))Then, assuming D a |D a > 0 also follows a Lognormal distribution we can write:735 D a |D a > 0 ∼ L(µ a = E(D a |D a > 0), σ 2 a = ln( Var(D a |D a > 0) E(D a |D a > 0) 2 + 1))

  2 1 -p ai (e σ 2 -(1 -p ai )) and p ai = P(Y ai = 0).our case, we choose to express the latent field (S) is in the same unit as the scientific data

	210	We suggest to approximate the distribution of P(D a |D a > 0) as a Lognormal distri-
	211 212	bution. This is an approximation that we discuss later. Integrating scientific data in the model F o r
	213	Scientific survey observations are available at their exact location and they can provide R
	214	punctual observations to feed the model. They are integrated in inference through an e
	215	observation process that has the same parameterization as the model of the punctual v i
	216	observation layer for commercial data.	e w
	217 218	Y := exp(-e ξ sci S(x ai )), µ (sci) ai |S(x ai ), x ai (sci) ind ∼ M Y p ai := k sci S(x ai ) (sci) ai , µ (sci) ai , σ 2 sci 1-p (sci) . O n ai l k sci is a scaling parameter named catchability in the fisheries science litterature to (9) with p (sci) ai y
	219	account for a proportionality coefficient between expected commercial catch and scientific
	220	catch i.e. k sci = E(Y (sci) )/E(Y (com) ). The parameters ξ sci , σ 2 sci are specific to scientific
	221	data.	
	222	When combining scientific and commercial data, we can either estimate k sci and ex-
	223	press the latent field in the same scale than the commercial data (which is better if the
	224	amount of commercial data is larger than the scientific one as mentionned in Alglave et al.
	225	(2022) or on the opposite express the latent field in the same unit than the scientific data
		and add the corresponding k com parameter to define the commercial cath distribution. In

227

and estimate a parameter k com to match the classical choice in fisheries science.

228

Inference method 229

Table 1 :

 1 ). Furthermore, our 512 approach allows to keep sparsity in the hessian of the likelihood and improve computation Report of the Working Group for the Bay of Biscay and the Iberian Waters Model configurations.

	513
	24

Table 2 :

 2 Parameter values for the simulations

	Parameters	Single-square simulations Multiple-square simulations
	µ	2	2
	β S	2	2
	Range of δ	-	0.6 (≈ 50 km)
	Marginal variance of δ		

Table 3 :

 3 Single-square simulations -Percentage of convergence per simulation-estimation configuration.

	Fishing positions Declarations Reallocation Likelihood level Convergence (%)
	10	1	No	Y ai	99.668
	10	1	Yes	Y r ai	0.333
	10	1	Yes	D a	0.000
	100	10	No	Y ai	100.000
	100	10	Yes	Y r ai	100.000
	100	10	Yes	D a	92.000
	1000	100	No	Y ai	100.000
	1000	100	Yes	Y r ai	100.000
	1000	100	Yes	D a	97.333

Table 4 :

 4 Multiple-square simulations -Percentage of convergence per simulationestimation configuration.

	Model	Likelihood level Convergence (%)
	Commercial model	Y r ai	100.000
	Commercial model	D a	75.377
	Integrated model	Y r ai	100.000
	Integrated model	D a	76.382
	Scientific model		100.000

  2 ai ) -(1 -p ai ) 2 E(Z ai ) 2 , = (1 -p ai )(Var(Z ai ) + E(Z ai ) 2 ) -(1 -p ai ) 2 E(Z ai ) 2 , = S(x ai ) 2 1 -p ai (e σ 2 -1) + S(x ai ) 2 1 -p ai -S(x ai ) 2 , = S(x ai ) 2 1 -p ai (e σ 2 -(1 -p ai ))

	728	Sum up of the main formulas
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proceed with his activity). As they are mandatory, declaration data are usually very large
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Hence, in Alglave et al. (2022), declarations have been preprocessed and reallocated
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information used to infer the spatial hidden biomass field and assess the constribution of 348 scientific data in inference.

349

The study area is based on the case study; it includes the whole coast of the Bay of 350 Biscay and covers several statistical rectangles (Figure 6A). To tailor the case study, we 351 simulate 3000 fishing positions grouped in 300 declarations (10 individual observations 352 per declaration). Commercial data may not cover the full area and consequently we allow