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Abstract4

In spatial ecology, huge amount of aggregated and non-aggregated5

spatial data offer possibilities to map wild species distribution. How-6

ever, this requires to properly handle the difference in spatial resolu-7

tion between the different data sources. Such issue is often referred8

as the change of support (COS) problem. In this paper, we develop9

a hierarchical approach that allows (1) to handle COS for a mixture10

of zero-inflated positive continuous data and (2) to combine fine11

scale data and aggregated data. We assess the framework through12

simulations and apply it on real data for the common sole of the13

Bay of Biscay.14

Keywords: spatial statistics, change of support, integrated hierarchical model, species15

distribution model, fisheries data.16
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Introduction17

Context18

With the progress of new technologies, spatial ecological data are becoming more and more19

accessible every day thanks to the huge effort of the scientific community to generate and20

get access to intensive information for ecology, evolution and conservation (Nathan et al.21

2022; Hampton et al. 2013; Grémillet, Chevallier, and Guinet 2022). These data are cru-22

cial to face the current challenges related to large- and small-scale ecological questions: for23

instance, following animal movement (Nathan et al. 2022), mapping species distribution24

(Isaac et al. 2020) or tracking climate change (Maureaud et al. 2020).25

These data sources are often highly heterogeneous in size, type and sampling design,26

making their combination a methodological challenge (Fletcher et al. 2019; Isaac et al.27

2020; Miller et al. 2019; Pacifici, Reich, Miller, Gardner, et al. 2017; Renner, Louvrier,28

and Gimenez 2019). For instance, in species distribution modeling, recent studies have29

investigated how to combine scientific standardized data with auxiliary data such as citizen30

science data (Fletcher et al. 2019). Typically, count data from planned surveys can be31

combined with other counts data coming from citizen science programs (e.g. see the32

eBird program for bird ecology - Sullivan et al. (2014)). These first ones benefit from a33

standardized protocol, a controlled sampling plan and they are designed to cover the full34

range of species distribution. The second ones provide a larger amount of data with lower35

cost, but they arise from non-standardized sampling and consequently they may not cover36

the whole area. Integrating these data sources typically allows to benefit from the good37

coverage of the survey while improving spatial prediction accuracy through the massive38

amount of data available through citizen science programs.39

Another massive source of information are declaration data (we refer to declaration40
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data as the mandatory data that must be reported by some agent as a legal requirement to41

proceed with his activity). As they are mandatory, declaration data are usually very large42

datasets (much larger than scientific or citizen science datasets). They can proove highly43

valuable to map wildlife species distribution. In fisheries science, a common example44

of such data sources are commercial catch declaration data. They can be used to map45

fish distribution and provide valuable information to identify spawning areas or nursery46

grounds Alglave et al. (2022) and Azevedo and Silva (2020).47

Although massive, these data are most often registered at the scale of coarse spatial48

units while scientific survey and citizen science data are usually reported with their exact49

locations. Generally, these administrative units do not have a resolution that is relevant50

for ecological analysis (Pacifici, Reich, Miller, and Pease 2019).51

Developing statistical methods that properly handle spatially aggregated data and52

integrate these with higher resolution data is then a major challenge to make precise and53

unbiased inference of species distribution at a fine scale.54

The change of support issue55

Inferring fine-scale spatial processes from coarse data and reconciling spatial scales prop-56

erly when different set of observations do not have the same resolution is a well known57

issue in geography, ecology, agriculture, geology and statistics (Gotway and Young 2002).58

In the statistical literature, Change of Support (COS) refers to ‘the summary or analysis59

of spatial data at a scale different from that at which it was originally collected’ (Gotway60

and Young 2002; Gelfand 2010). It is often also reffered as ’downscaling/upscaling’ or61

Modifiable Areal Unit Problem (MAUP) in the literature (Wikle, Zammit-Mangion, and62

Cressie 2019). This is typically the case where data are aggregated over larger geograph-63

ical scales, but one would like to infer processes at a different resolution. In such case,64
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conclusions from a fine-resolution analysis can strongly differ from an analysis at a coarser65

scale based on the aggregation of the fine-resolution data. Such phenomena is also called66

the ecological fallacy (Wakefield and Lyons 2010).67

Since 2000, several studies have described how COS issues could be overcome; Mugglin,68

Carlin, and Gelfand (2000), Gelfand, Zhu, and Carlin (2001), Gotway and Young (2007)69

and Wikle and Berliner (2005) proposed generic approaches (and extensions of these70

approaches - Kim and Berliner (2016)) for addressing COS in a spatial or spatio-temporal71

context. In health analysis, Young and Gotway (2007) proposed to compare some rough72

approach based on centroids of areal units to relate environmental and health outcomes73

with an approach that honors the spatial support of the data (size, shape, orientation).74

Berrocal, Gelfand, and Holland (2010a) and Berrocal, Gelfand, and Holland (2010b)75

proposed a spatio-temporal method for fusing several air pollution data: one from coarse76

resolution but with full spatial coverage and another recorded at point level, with sparse77

distribution but where records almost corresponds to the true value of the process. In78

climate science, Reich, Chang, and Foley (2014) and Parker, Reich, and Sain (2015)79

proposed a spectral statistical approach to downscale information from large-scale model80

to lower scale. In the field of ecology, some recent studies have tackled such issues: Finley,81

Banerjee, and Cook (2014) provided a framework for integrating spatially misaligned82

data, Hefley, Brost, and Hooten (2017) proposed a solution based on COS to account for83

location error in presence-only data, Pacifici, Reich, Miller, and Pease (2019) introduced a84

framework for integrating data sources of different resolution to map species distribution.85

Applying similar ideas, Gilbert et al. (2021) integrated harvest data (aggregated data)86

and camera trap (precisely geolocalized data) to map several wildlife species in Wisconsin.87
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Focus of the paper88

One of the main challenge limiting the number of application consists in the type of ob-89

servation data that can be fitted to the existing COS framework. Indeed, the frameworks90

that were developed so far and their related applications mainly limited their scope to91

relatively simple observation data: count data were modeled through Poisson processes92

(Gilbert et al. 2021; Gotway and Young 2007; Mugglin, Carlin, and Gelfand 2000; Pacifici,93

Reich, Miller, and Pease 2019) and continuous data were modeled through Gaussian or94

Gamma distributions (Berrocal, Gelfand, and Holland 2010a; Gelfand, Zhu, and Carlin95

2001; Wikle and Berliner 2005). However, ecological data do not always consist of ob-96

servations that can be modeled with standard probability distributions. For instance, in97

frequent cases data may be zero-inflated and positive-continuous data. Several studies98

have developed models to handle properly such data in a computationally efficient way99

Lecomte et al. 2013; Thorson 2018. However, these may complicate a bit the way COS is100

tackled when dealing with an aggregation of such complex data as their convolution may101

not be as simple as Poisson or Gaussian ones.102

In this paper, we aim at illustrating how to deal with change of support in ecological103

applications when the observation data are complex (e.g. zero-inflated and positive con-104

tinuous). We base our approach on an existing framework developed by Alglave et al.105

(2022) in the field of marine and fisheries ecology. The framework aims at predicting the106

spatial distribution of fish species based on 2 datasets: scientific survey data and com-107

mercial catch declaration data. Commercial catch declarations are declared at the level of108

ICES rectangles (resolution of 0.5° x 1°) while scientific data benefit from exact location109

records. Usually in standard processing, declaration data are reallocated uniformly over110

their GPS fishing positions (available through Vessel Monitoring Satellites - VMS) in or-111

der to improve their spatial resolution (Hintzen et al. 2012b). However, the consequence112
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of this procedure on inference has never been explored. In particular, one can suspect that113

this could lead to strong homogeneization of the catch and to bias parameters inference114

(Gotway and Young 2007; Pacifici, Reich, Miller, and Pease 2019). There is a need to115

understand how this procedure negatively affects inference and how the related bias can116

be corrected through alternative approaches properly handling COS.117

In the following, we first describe the original model integrating both data sources and118

propose a generic statistical solution that allow to properly tackle the change of support119

issue and adapt it to our specific case (Section 1).120

Then, we assess the effect of reallocation through a first set of simulations (Section 2.1).121

In these simulations, the framework is simplified as much as possible to investigate the122

impact of reallocation on inference alone: are the estimates biased when reallocating catch123

declarations data? What is the gain of our alternative approach? For these simulations,124

the domain is reduced to a single statistical rectangle, only commercial declarations feed125

the model and the fish distribution is simply considered to arise from a known covariate.126

In a second set of simulations, we get closer to a real application (Section 2.2). In127

particular, the integrated dimension of the problem is added to the simulation configura-128

tion and both scientific and commercial data feed the model. This allows to investigate129

the contribution of both data sources to inference in addition to the effect of reallocation.130

The study domain is enlarged to several statistical rectangles. The model is complexified131

and species distribution is supposed to arise from a known covariate and a spatial random132

effect.133

Finally, we compare the 2 methods on a real case study (common sole in the Bay of134

Biscay - Section 3) and we outline the consistency between simulation results and the real135

case of application.136
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1 A spatialized catch model for aggregated data137

Alglave et al. (2022) have proposed a hierarchical spatial model to combine scientific138

survey data obtained through a standardized sampling protocol and catch data recorded139

by fishers. The proposed model will be denoted by GeoCatch in the following and assumes140

that the catch are precisely geolocalized.141

A short presentation of the GeoCatch model142

Let D ⊂ R2 be a spatial domain and (S) = (S(x), x ∈ D) a spatial random field which143

represents the biomass for a species of interest. (S) is assumed to be a spatial log-144

Gaussian Random Field (GRF) defined as log(S(x)) = µ + β · Γ(x) + δ(x) (Figure 1)145

where (δ) = (δ(x), x ∈ D) is a zero mean isotropic GRF with a Matern covariance func-146

tion and (Γ) = (Γ(x), x ∈ D) a field of covariate.147

148

Following Thorson (2018), the zero-inflated positive continuous data (Catch Per Unit149

of Effort - CPUE), Y = (Y1, . . . , Yn)
⊺ at sampled sites (x1, . . . , xn)

⊺ are assumed to be150

independent conditionally on (S) and for any i in J1 ..nK,151

Yi|S(xi) = piδ0 + (1− pi)µie
σNi−σ2

2 , Ni ∼ N (0, 1), (1)

where δ0 stands for the Dirac mass in 0 and Ni a standard Normal random variable.152

In the following, this mixture distribution will be denoted by153

Yi|S(xi)
ind∼ MY

(
pi, µi, σ

2
)
, (2)

with pi := exp(−eξS(xi)) the proportion of the mixture, eξ a parameter controlling154

zero-inflation, µi := S(xi)
1−pi

the expected catch when positive (on the natural-scale) and155

8
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σ2 the variance parameter on the log-scale. While accounting for the zero inflation in156

the data, this choice allows to represent continuous positive data and ensures that the157

expected catch at site x equals the local biomass S(x). A more detailed presentation158

is available in the Supplementary Material. The three main quantities of interest are159

summed up by the following equations for any i = 1, . . . , n:160

P (Yi = 0|S(xi)) = pi = exp(−eξS(xi))

E (Yi|Yi > 0, S(xi)) = µi =
S(xi)

1− pi
, (3)

Var(Yi|Yi > 0, S(xi)) = µ2
i (e

σ2 − 1),

Aggregated observation layer for commercial data161

In the approach of Alglave et al. (2022) all fishing locations xi and the corresponding162

individual catch Yi are supposed to be recorded. However, fishers do not declare the163

individual catch but only the total daily catch aggregated at a given administrative spatial164

unit named statistical rectangles in the fisheries management vocabulary. Those units are165

represented for the Bay of Biscay map in Figure 6. A given vessel fishing with a given166

gear on a given day declares the total catch realized in a statistical rectangle, this will be167

referred to as a declaration and denoted by D. Dvgda is therefore the sum of all individual168

catch Yi realized by vessel v with gear g on day d in administrative unit a. For the sake169

of simplicity, we fix the vessel, gear and day in the presentation and we omit them, so170

that Da is defined by:171

Da =
∑

i|xi∈Ra

Yi, (4)

9
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Ra being the geographical area corresponding to the administrative unit a.172

Hence, in Alglave et al. (2022), declarations have been preprocessed and reallocated173

on fishing locations previously identified from VMS data as it is classically done when174

defining spatialized CPUE (Hintzen et al. 2012a; Murray et al. 2013).175

This process consists in identifying the locations xi ∈ Ra, associated with declaration176

Da and defining for each the associated reallocated individual observation Y r
i :177

Y r
i :=

Da

ma

1{Ra}(xi), ∀i = 1, . . . , n, (5)

where 1{Ra}(x) stands for the characteristic function which equals 1 when x belongs to178

the geographical area corresponding to the administrative unit and ma the cardinal of179

set {xi ∈ Ra}. As noted by Alglave et al. (2022), this process has several drawbacks.180

First, as a consequence of the reallocation process, the reconstructed observations tend181

to exhibit smoother patterns than the original observations. Second, the actual sample182

size is the total number of declarations while the new sample size after the reallocation183

process is the number of fishing locations, which is approximately 10 times the number184

of declarations. From a statistical point of view, this artificial data augmentation tend to185

overestimate the information brought by the data and for example to produce excessively186

narrow confidence intervals.187

To circumvent such limitations, we propose an alternative approach that models the188

declarations D instead of the reconstructed individual catch Y r. By defining the observa-189

tion process at the declaration level, we expect to avoid some of the drawbacks previously190

mentioned. To specify an aggregated version of the GeoCatch model, we need to specify191

the probability distribution of a sum of a fixed number of random variables, each following192

the mixture defined in Equation 1. Although this distribution has no known analytical193

form, it also exhibits some zero-inflation and a long tail repartition of the values and thus194

10

Page 10 of 45

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

a mixture model is a good candidate to model D and we propose to model D using the195

same mixture form as in Equation 1 but with adequate parameters:196

Da|S, (xa1, . . . , xama) ∼ MD

(
pDa , µ

D
a , σ

D 2
a

)
(6)

with (xa1, ..., xi, ..., xama) is the list of all the fishing positions associated to the decla-197

ration Da in area Ra, µ
D
a the expected positive biomass, pDa the proportion of the mixture198

and σD 2
a the variance parameter.199

200

In order to relate the individual observation level Y and the declaration level D,201

we choose to match the key quantities of the two distributions. In the following, both202

Y and D are defined conditionally on the latent field (S) and on the related fishing203

positions. With no loss of generality, we can rename the sequence Y = (Yi)i=1,...n in204

(Yai)a=1,...,A,i=1,...ma , A being the total number of administrative units.205

1. As the Ya1, . . . , Yama are independent conditionally on S, we have:206

pDa = P(Da = 0) = Πma
i=1P(Yai = 0) = exp

{
−

ma∑
i=1

eξ.S(xai)

}
(7)

2. The continuous component of the mixture is defined by the expected mean of a207

positive declaration and a transformation of its variance (see Equations 8 and SM).208

It is straightforward to prove that209
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µD
a = E(Da|Da > 0) =

∑ma

i=1 S(xai)

1− pDa

Var(Da|Da > 0) =

∑ma

i=1 Var(Yai)

1− pDa
− pDa

(1− pDa )
2
E(Da)

2 (8)

with Var(Yai) =
S(xai)

2

1− pai
(eσ

2 − (1− pai)) and pai = P(Yai = 0).

We suggest to approximate the distribution of P(Da|Da > 0) as a Lognormal distri-210

bution. This is an approximation that we discuss later.211

Integrating scientific data in the model212

Scientific survey observations are available at their exact location and they can provide213

punctual observations to feed the model. They are integrated in inference through an214

observation process that has the same parameterization as the model of the punctual215

observation layer for commercial data.216

Y
(sci)
ai |S(xai), xai

ind∼ MY

(
p
(sci)
ai , µ

(sci)
ai , σ2

sci

)
(9)

with p
(sci)
ai := exp(−eξsciS(xai)), µ

(sci)
ai := ksci

S(xai)

1−p
(sci)
ai

.217

ksci is a scaling parameter named catchability in the fisheries science litterature to218

account for a proportionality coefficient between expected commercial catch and scientific219

catch i.e. ksci = E(Y(sci))/E(Y(com)). The parameters ξsci, σ
2
sci are specific to scientific220

data.221

When combining scientific and commercial data, we can either estimate ksci and ex-222

press the latent field in the same scale than the commercial data (which is better if the223

amount of commercial data is larger than the scientific one as mentionned in Alglave et al.224

(2022) or on the opposite express the latent field in the same unit than the scientific data225

and add the corresponding kcom parameter to define the commercial cath distribution. In226
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our case, we choose to express the latent field (S) is in the same unit as the scientific data227

and estimate a parameter kcom to match the classical choice in fisheries science.228

Inference method229

The inference is based on maximum likelihood approach with two approximations. We use230

the Stochastic Partial Differential Equations (SPDE) approach to represent the spatial231

Gaussian random field as a Gauss-Markov random field (Lindgren, Rue, and Lindström232

2011) and we use the Laplace approximation to approximate the marginal likelihood of the233

model. The stochastic random field is also approximated by a piecewise constant process234

defined on a fine grid. The optimization of the likelihood relies on Template Model Builder235

(TMB), an effective tool to build hierarchical models and perform maximum likelihood236

estimation through automatic differentiation and Laplace approximation (Kristensen et237

al. 2016).238

Alternative model configuration239

In the following, we will first use simulations to compare three alternatives to estimate240

the spatial field of biomass from declaration data: a first configuration called ‘Spatial241

Model’ refers to the GeoCatch model fitted to the true individual observations (as if242

individual observations were known), a second configuration called ’Reallocated Model’243

refers to the GeoCatch model fitted to the reallocated observations, a last configuration244

called ’Declaration Model’ refers to the model that accounts for COS and that is fitted to245

the aggregated data.246

where individual observations are supposed to be known exactly, a ‘reallocated model’247

where the model is fitted to reallocated observations, a ‘declaration Model’ where the248

model is fitted to spatially aggregated observations. The different model configurations249
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are summarised in Table 1.250

The latter two models are then tested on a real case study.251

2 Simulation252

To assess the drawbacks and the advantages of the different approaches, we conduct two253

different simulation studies.254

First, we assess the effect of reallocation alone based on a simplistic statistical model.255

To do so, we conduct the simulation at the level of a single statistical rectangle on esti-256

mates, based on commercial data alone and with a very simple spatial latent field which257

only depends on one covariate (with no spatial random effect). This allows to clearly258

identify and illustrate the effect of reallocation on model estimates without confounding259

the effect of reallocation with other factors (e.g. the configuration of the study domain,260

artefacts that could arise from a more complex model). These simulations will be referred261

as single-square simulations.262

Then, we extend the analysis to get closer to a real case study and we investigate263

how integrating several data sources into inference while accounting for change of support264

improve model predictions. We simulate precisely geolocalized scientific data (in addition265

to commercial data), we shape the simulation domain to fit the case study domain (i.e.266

the Bay of Biscay area) which covers several statistical rectangles and we add a spatial267

random effect in the latent field. These simulations will be referred as multiple-square268

simulations.269

In these two sets of simulation studies, there is a unique covariate that we suppose270

known at each point of the grid. Parameters values are detailed in the Table 2.271

Regarding commercial data, the number of fishing pings per declaration is fixed to 10272

as it is the average number of fishing locations for a single declaration in real data.273
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The locations of the individual commercial observation are generally organized in274

spatial clusters (they are named fishing zones in the following). The simulation process275

mimics this property by sampling the fishing points using a Neymann Scott process: the276

centers of the fishing zones are sampled according to a Poisson process and the fishing277

points are then uniformly sampled within a squared area that approximates the distance278

of a trawl haul. At each fishing position, an observation is sampled conditionally on the279

value of the latent field according to the model MY .280

We compare the performance of the Spatial Model (the gold standard), the Reallocated281

Model and the Declaration Model configurations in regards to several metrics/estimates.282

The MSPE (Equation 10) quantifies the accuracy of the spatial predictions of the283

latent field over the spatial domain (ncells is the number of locations over the grid).284

MSPE =

∑ncells

j (S(xj)− Ŝ(xj))
2

n
(10)

The estimates of the parameter βS is also a key parameter of species distribution285

models as it quantifies the species habitat relationship.286

In addition to the MSPE and the species-habitat parameter β̂S, we look at the qual-287

ity of the estimation for the intercept of the latent field µ̂, the observation variance288

parameter σ̂2 and the zero-inflation parameter ξ̂. When a spatial random effect is simu-289

lated/estimated in the latent field (i.e. the mutliple square simulation), we also investigate290

the range estimates.291

To get enough replicates, we run the simulations 100 times for both single-square and292

multiple square simulations.293
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2.1 Analysing the effect of data reallocation alone: single-square294

simulations295

Two important variables may affect the accuracy of model outputs: the sample size296

of commercial data and the number of fishing zones explored and aggregated within297

a declaration. The single-square simulations intend to explore the effect of these two298

variables.299

First, increasing the amount of data is expected to improve the estimates and the spa-300

tial prediction accuracy. We explore the potential improvement of the spatial predictions301

brought by an increasing amount of fishing points (10, 100 and 1000) which correspond302

respectively to 1, 10 and 100 declarations, the number of fishing locations within a decla-303

ration being fixed to 10.304

Furthermore, the number of fishing zones within the statistical rectangle associated305

with a declaration might also affect the performance of the different approaches. We ex-306

pect that the reallocation process will be less problematic when all the individual obser-307

vations are spatially close as this situation is likely to correspond to a more homogeneous308

underlying density than a situation with distant fishing zones. The accuracy of the Real-309

located Model outputs is expected to decrease when the number of fishing zones increases.310

To assess the effect of such process, we simulated the fishing locations associated with a311

declaration assuming they were either realized in a single zone, in 3 distinct zones or in 5312

distinct zones (Figure 2).313

The results are presented in Figures 3 and 4.314

The reallocation process has a major effect on predictions and estimates accuracy315

(Figure 3). As expected, the reallocation process conducts to a 10 to 200 times decrease316

in accuracy for spatial predictions. Accuracy decreases as the number of visited zones317

related to a declaration increases. Besides, the estimation of β̂S is biased and reallocation318
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leads to the loss of the species-habitat relationship as the number of fishing zones (related319

to a declaration) increases (i.e. β̂S estimates get closer to 0). Increasing the number of320

samples does not improve inference.321

The zero-inflation parameter (ξ) is also overestimated when using the Reallocated322

Model (Figure 4). When ξ increases, the amount of zero in the data decreases. Then, an323

overestimation of the ξ parameter means the model estimates that the amount of zero is324

smaller than what is actually simulated. This is not surprising: as soon as at least one325

of the individual observations Yai associated with the same declaration Da is non-zero,326

uniform reallocation will lead to a positive observation for each reallocated individual327

observation Yr, hence to an underestimation of the proportion of zero. Consequently,328

this will tend to decrease the proportion of zero and will lead to the over-estimation of329

the ξ parameter.330

The observation variance (σ) is underestimated - i.e. the data are estimated to be331

less noisy than they actually are - which is also a direct effect of uniform reallocation of332

declarations. The intercept of the latent field (µ) is slightly over-estimated (Figure 4).333

Fitting the model to aggregated declaration allows to recover the species-habitat re-334

lationship and to improve the accuracy of the spatial predictions (Figure 3) even so the335

model outputs are not as accurate as the ones of the Spatial Model. Furthermore, the336

zero-inflation parameter is unbiased when the model is fitted to aggregated declarations.337

Other parameters (observation variance, intercept) are also better estimated than with338

the Reallocated Model even though they remain slightly biased (Figure 4). This alter-339

native model has some convergence issues (Table 3) as 8% of the model runs did not340

converge when sample size is medium (100 pings) and only 3% did not when sample size341

is large (1000 pings).342
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2.2 Integrating several data sources with different spatial reso-343

lution: multiple-square simulations344

In these simulations, the latent biomass process is modeled as the sum of a covariate345

effect and a random spatial field which represents the spatial structure not captured by346

the covariate. We also simulate precisely located scientific data as another source of347

information used to infer the spatial hidden biomass field and assess the constribution of348

scientific data in inference.349

The study area is based on the case study; it includes the whole coast of the Bay of350

Biscay and covers several statistical rectangles (Figure 6A). To tailor the case study, we351

simulate 3000 fishing positions grouped in 300 declarations (10 individual observations352

per declaration). Commercial data may not cover the full area and consequently we allow353

the commercial samples to cover 2/3 of the area similarly as in the case study. Similarly354

to the single-square simulations, the sampling of the commercial fishing points associated355

with a declaration is realized in three steps. (1) The declaration is randomly affected356

to one of the ICES rectangles. (2) The centroid of a fishing zone is uniformly sampled357

within this statistical rectangle. (3) The 10 fishing punctual observations are randomly358

sampled within the fishing zone. The side of the squared fishing zone is set so as the359

extent of a fishing operation does not exceed 30 km. Note that we do not explore the360

effect of exploring several zones within the same declaration as it is already done in the361

single-square simulations.362

100 scientific precisely localized scientific fishing points are simulated following a ran-363

dom stratified plan; contrary to commercial data they cover the entire study domain364

(Figure 6A). Scientific observations are simulated following the observation equation of365

MY (with specific parameters for scientific data - Table 2).366

We compare several model configurations:367
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� to assess what brings our alternative approach, we compare the Reallocated Model368

to the Declaration Model.369

� to assess the information brought by each data source, we compare models built on370

scientific data only (scientific-based models), models built on commercial data only371

(commercial-based models) and models combining both data sources (integrated372

models).373

Note that as in the single square simulation, the Declaration Model face some difficulty374

in convergence as only 75% of the model built on aggregated declarations converge (Table375

4).376

In addition to the 2 metrics introduced at the beginning of the section (MSPE and377

species-habitat parameter βS), we also compare the precision of the estimates for the378

range parameter.379

The contribution of either scientific or commercial data can be clearly evidenced from380

the MSPE plot: the errors related to the integrated model at the declaration level or381

at the individual reallocated observation level are always smaller than those obtained382

from models based on scientific data only or commercial data only. This can be well383

illustrated from Figure 6. Integrating scientific and commercial data allows to (1) capture384

the hotspot missed by commercial data through scientific data and (2) better capture the385

local correlation structures through the dense commercial data.386

Furthermore, consistently with single-square simulations, the Reallocated Model con-387

ducts to a loss in both the predictions accuracy and the species-habitat relationship (Fig-388

ure 5) compared to the Declaration Model.389

Interestingly, in addition to the species-habitat relationship, uniform reallocation also390

affects the range parameter. The Reallocated model provides biased range estimates while391
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the Declaration Model provides unbiased estimates. Then, the Declaration Model (as the392

scientific-based model) better captures and disentangles the covariate effect and the spatial393

random effect and provides predictions that better fit to the small-scale patterns of the394

species distribution.395

3 Case-study: sole of the Bay of Biscay396

To illustrate our method on a real case study, we applied the approach to the common397

sole of the Bay of Biscay. VMS-logbook data were extracted for the bottom trawlers398

fleet (OTB). The methods to cross VMS-logbook data and to filter the fleet is already399

extensively described in the previous paper (Alglave et al. 2022) and is not developed400

further here. Scientific data were extracted from the DATRAS database for the Orhago401

beam trawl survey (Gérard 2003; ICES 2018b). To align the commercial and the scientific402

data, we filtered scientific data based on the minimum size of sole (24 cm for sole - ICES403

(2018a)). To illustrate the method, we compare the outputs of (1) the Spatial Model fitted404

with scientific data only, (2) the Integrated Reallocated Model fitted to both scientific data405

with known fishing location and declaration data uniformly reallocated on fishing locations406

and (3) the Integrated Declaration Model fitted to both scientific and declaration data407

aggregated at the scale of statistical squares.408

The Integrated Declaration Model faced convergence issues (some of the parameters409

were hardly estimated e.g. the range parameter). To favor convergence, we integrated410

in the analysis onboard observer data from the same fleet. They can be considered as411

precisely geolocalized commercial catch data (86 samples are available for the related412

time step). Integrating these data allows to have direct information on Yai and to better413

estimate the observation equation parameters (i.e. observation variance and zero-inflation414

parameter of commercial data).415
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Furthermore, as commonly done in complex fisheries model using automatic differenti-416

ation method (Fournier et al. 2012), we adopt a phase optimization procedure to initialize417

the optimization algorithm for the Declaration Model. We first fit the Reallocated model418

and use the estimates of this model as starting point of the optimization algorithm used419

for the Declaration Model estimation. We eventually fix the parameters that are hard420

to estimate in the initial optimization phases (intercept µ, covariate effect βS, range and421

marginal variance) and finally let them free in the following phases of estimation.422

Consistently with simulations, the Declaration Model shows differences with the Real-423

located Model in both parameters estimates and spatial pattern of the species distribution424

(Figures 7, 8). In particular, the substrate effect is recovered in the Declaration Model425

and fall in the same range as estimates obtained from the scientific-based model (Figures426

7). The zero-inflation parameter ξ is revised downwards (i.e. there are actually more zero-427

values than in the reallocated data) while the observation variance of commercial data is428

revised upwards (i.e. the commercial data are noisier than estimated with the Reallocated429

Model).430

In addition, uncertainty is also revised when fitting the model at the declaration431

level. For instance, the confidence intervals of βS, the marginal variance, the range, ξcom,432

σcom obtained from the Declaration Model are much wider than those obtained from the433

Reallocated Model. This emphasizes that uncertainty is probably underestimated in the434

Reallocated Model compared with the Declaration Model.435

On the contrary, other parameters do not seem well estimated in either the Reallocated436

or the Declaration Models. For instance, compared to the scientific-based model, the437

intercept µ is revised upwards when building the likelihood on the individual precisely438

geolocalized observations and revised downwards when estimated with the Reallocated439

Model. This is consistent with the simulations results, see Figure 4.440
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Regarding the maps of the species distribution, fitting the model at the declaration441

level strongly modifies the model biomass field compared with the Reallocated Model. In442

particular, the substrate covariate have a sharper effect on species distribution and the443

intensity of the hotspots are revised when fitting the Declaration Model.444

4 Discussion445

The benefit of a statistical approach for COS446

Handling change of support is a key issue in spatial statistics and extensive literature447

has intended to provide statistical methods to infer fine spatial processes based on data448

aggregated over rough scales (Wikle, Zammit-Mangion, and Cressie 2019; Wakefield and449

Lyons 2010). Such methods are key to integrate data that have different spatial resolution450

to make fine-scale inference on spatial processes (Pacifici, Reich, Miller, and Pease 2019).451

Still, in many cases, one often refines data resolution through ad-hoc arithmetic methods452

(proportional allocation, zonal addition) that can transform the data and lead to a loss453

of information (Young and Gotway 2007; Gotway and Young 2007) or artificially increase454

the weight of such data when integrating several data sources (Alglave et al. 2022).455

In this paper, we assessed how the well established method of proportional reallocation456

of declaration on fishing locations biases the parameter estimation and tend to produce457

overly smoothed species distribution maps. Based on the framework of Alglave et al.458

(2022), we proposed an alternative integrated spatial framework that combines the two459

datasets to provide fine resolution maps of species distribution.460

The base study explored in this paper highlights that even though prediction maps461

based on uniform reallocation allows to capture the main patterns of species distribution462

through the spatial random effect, uniform reallocation leads to the loss of the species-463

habitat relationship (parameters estimates are close to 0). Furthermore, results emphasize464
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that uncertainty estimation is also strongly under estimated by uniform reallocation.465

This is particularly problematic as one of the main objective of species distribution466

modeling lies in understanding the effect of habitat on species distribution (Guisan and467

Zimmermann 2000). Reallocated declarations data can provide information on the overall468

pattern of species distribution through the autocorrelation structures captured by the469

spatial random effect; however, they will not provide any information on species habitat470

preferences as the parameters of the species-habitat relationship will be biased.471

The model that accounts for COS allows to recover the species-habitat relationship472

and provides more accurate spatial predictions of species distribution. Then, such method473

accounting for COS is key to estimate properly the species-habitat relationship from474

declarations data. More generally, COS approaches should be preferred when dealing475

with aggregated data because they allow (1) to properly reconcile the spatial scale of476

several data sources within the inference procedure, (2) to provide unbiased estimates of477

model parameters and (3) to better quantify model uncertainty.478

The hierarchical structure of the approach and the punctual ob-479

servation layer480

The overall approach that we adopted to handle COS follows the standard structure of481

hierarchical frameworks. We assumed that both data sources (scientific data and commer-482

cial declarations data) arise from a shared latent process (species distribution) and that,483

while scientific data are recorded at their exact locations, commmercial declarations are484

recorded at a rough scale and are a convolution of exact location observations. Linking485

fine scale with rough scale for commercial data is made possible by relating the moments486

of the fine-scale observation probability distribution to the rough scale observation prob-487

ability distribution.488
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The general approach that we propose (i.e. considering that aggregated data are con-489

volutions of exact locations data) is relatively generic. To adapt the model to another490

application, only the moment equations and the probability distribution of the aggre-491

gated level would require to be adapted to the distribution of the underlying punctual492

observation level. However, considering that a convolution of zero-inflated lognormal dis-493

tribution follows a zero-inflated lognormal is an approximation that can be questionned.494

We showed that this approximation is reasonnably good in our context (Alglave et al.495

2022). However, exploring alternative observation models that verify additive property496

as the Gamma distribution would be an interesting perspectives for the future.497

Finally, another approach that is common in the COS literature is ‘Block krige-498

ing’ (Gelfand, Zhu, and Carlin 2001; Gelfand 2010; Pacifici, Reich, Miller, Gardner,499

et al. 2017). In such approach, the aggregation process is modeled in the latent field500

and one usually consider the latent field average over the statiscal rectangle (or block)501

S(Ra) = |Ra|−1
∫
RaS(x)dx

. In this case, the observations are supposed to arise from a502

distribution MR conditionally on S(Ra) following Da|S(Ra) ∼ MR(S(Ra), σ
2). This503

approach considers declarations arise from the averaged biomass over the statistical rect-504

angle. This may suffer from the same difficulty as the reallocated data and could tend to505

smoothed the species-habitat relationship. By contrast, our approach considers that all506

observations are realized at given fishing locations and are then aggregated to constitute507

the declarations. It valorizes the information on fishing locations available through VMS508

data and then considers the catch has been realized over these locations conditionally509

on the related latent field values. In this case, COS is modeled in the observation layer,510

not in the latent field layer. This allows to remain closer to the actual process occuring511

during data aggregation (data are first observed and then aggregated). Furthermore, our512

approach allows to keep sparsity in the hessian of the likelihood and improve computation513

24

Page 24 of 45

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

time, while Block krigeing would imply to loose sparsity by integrating over block areas514

Ra.515

Future perspectives for the framework516

More and more declarative data are now becoming available in the field of ecology, epi-517

demiology and environnemental science. Typically, these are hunting records (Gilbert518

et al. 2021), administrative healthcare data (Morel et al. 2020), teledetection data (Gar-519

rigues, Allard, and Baret 2008). They are not specifically designed for a scientific analysis,520

but they can provide huge information for research and expertise provided the method-521

ological challenges related or these data are overcome. Many drawbacks may impede522

the use of these data. Data aggregation is one of these issues, but as in citizen science523

programs sampling bias (Botella, Joly, Bonnet, Munoz, et al. 2021) as well as species524

misspecification can arise (Botella, Joly, Bonnet, Monestiez, et al. 2018). The approach525

that we propose is a step forward for a wider use of declarative data for scientific analysis526

and should be combined with other methods that have been developped to correct for the527

several potential deleterious bias that can arise in non-standardized data (Dobson et al.528

2020).529
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[11] Sébastien Garrigues, Denis Allard, and Frédéric Baret. “Modeling temporal changes580

in surface spatial heterogeneity over an agricultural site”. In: Remote Sensing of581

Environment 112.2 (2008), pp. 588–602.582

[12] Alan E Gelfand. “Misaligned Spatial Data; The Change of Suport Problem”. In:583

Handbook of spatial statistics 29 (2010), pp. 495–515.584

[13] Alan E Gelfand, Li Zhu, and Bradley P Carlin. “On the change of support problem585

for spatio-temporal data”. In: Biostatistics 2.1 (2001), pp. 31–45.586

[14] BIAIS Gérard. “ORHAGO”. In: (2003). Publisher: Sismer. doi: 10.18142/23.587

[15] Hans Gerritsen and Colm Lordan. “Integrating vessel monitoring systems (VMS)588

data with daily catch data from logbooks to explore the spatial distribution of catch589

and effort at high resolution”. In: ICES Journal of Marine Science 68.1 (2010),590

pp. 245–252.591

[16] Neil A Gilbert et al. “Integrating harvest and camera trap data in species distribu-592

tion models”. In: Biological Conservation 258 (2021), p. 109147.593

[17] Carol A Gotway and Linda J Young. “A geostatistical approach to linking geo-594

graphically aggregated data from different sources”. In: Journal of Computational595

and Graphical Statistics 16.1 (2007), pp. 115–135.596

[18] Carol A Gotway and Linda J Young. “Combining incompatible spatial data”. In:597

Journal of the American Statistical Association 97.458 (2002), pp. 632–648.598

[19] David Grémillet, Damien Chevallier, and Christophe Guinet. “Big data approaches599

to the spatial ecology and conservation of marine megafauna”. In: ICES Journal of600

Marine Science (2022).601

[20] Antoine Guisan and Niklaus E. Zimmermann. “Predictive habitat distribution mod-602

els in ecology”. In: Ecological modelling 135.2-3 (2000). Publisher: Elsevier, pp. 147–603

186.604

[21] Stephanie E Hampton et al. “Big data and the future of ecology”. In: Frontiers in605

Ecology and the Environment 11.3 (2013), pp. 156–162.606

[22] Trevor J Hefley, Brian M Brost, and Mevin B Hooten. “Bias correction of bounded607

location errors in presence-only data”. In: Methods in Ecology and Evolution 8.11608

(2017), pp. 1566–1573.609

[23] Niels T. Hintzen et al. “VMStools: Open-Source software for the processing, analysis610

and visualisation of fisheries logbook and VMS data”. In: Fisheries Research 115611

(2012). Publisher: Elsevier, pp. 31–43.612

[24] Niels T. Hintzen et al. “VMStools: Open-source software for the processing, analysis613

and visualisation of fisheries logbook and VMS data”. In: Fisheries Research 115614

(2012). Publisher: Elsevier, pp. 31–43.615

28

Page 28 of 45

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://doi.org/10.18142/23


For Review Only

[25] ICES. Report of the Working Group for the Bay of Biscay and the Iberian Waters616

Ecoregion (WGBIE). Tech. rep. Copenhagen, Denmark, 2018, p. 642.617

[26] ICES. Report of the Working Group on Beam Trawl Surveys (WGBEAM). en. Tech.618

rep. Galway, Ireland, 2018, p. 121.619

[27] Nick JB Isaac et al. “Data integration for large-scale models of species distributions”.620

In: Trends in ecology & evolution 35.1 (2020), pp. 56–67.621

[28] Yongku Kim and L Mark Berliner. “Change of spatiotemporal scale in dynamic622

models”. In: Computational Statistics & Data Analysis 101 (2016), pp. 80–92.623

[29] Kasper Kristensen et al. “TMB: Automatic Differentiation and Laplace Approxima-624

tion”. English. In: Journal of Statistical Software 70.1 (Apr. 2016), pp. 1–21. issn:625

1548-7660. doi: 10.18637/jss.v070.i05. url: https://www.jstatsoft.org/626

index.php/jss/article/view/v070i05 (visited on 01/24/2020).627

[30] Jean-Baptiste Lecomte et al. “Compound Poisson-gamma vs. delta-gamma to han-628

dle zero-inflated continuous data under a variable sampling”. In: L’Institut des Sci-629

ences et Industries du Vivant et de l’Environnement (AgroParisTech) (2013), p. 37.630

[31] Finn Lindgren, H\aavard Rue, and Johan Lindström. “An explicit link between631

Gaussian fields and Gaussian Markov random fields: The stochastic partial dif-632

ferential equation approach”. In: Journal of the Royal Statistical Society: Series B633

(Statistical Methodology) 73.4 (2011). Publisher: Wiley Online Library, pp. 423–498.634

[32] Aurore Maureaud et al. “Are we ready to track Climate-driven shifts in marine635

species across international boundaries? - A global survey of scientific bottom trawl636

data”. English. In: Global Change Biology (Oct. 2020). tex.options: useprefix=true,637

gcb.15404. issn: 1354-1013, 1365-2486. doi: 10.1111/gcb.15404. url: https:638

//onlinelibrary.wiley.com/doi/10.1111/gcb.15404 (visited on 10/18/2020).639

[33] David AW Miller et al. “The recent past and promising future for data integration640

methods to estimate species’ distributions”. In: Methods in Ecology and Evolution641

10.1 (2019), pp. 22–37.642

[34] Maryan Morel et al. “ConvSCCS: convolutional self-controlled case series model for643

lagged adverse event detection”. In: Biostatistics 21.4 (2020), pp. 758–774.644

[35] Andrew S Mugglin, Bradley P Carlin, and Alan E Gelfand. “Fully model-based645

approaches for spatially misaligned data”. In: Journal of the American Statistical646

Association 95.451 (2000), pp. 877–887.647

[36] Lee G. Murray et al. “The effectiveness of using CPUE data derived from Vessel648

Monitoring Systems and fisheries logbooks to estimate scallop biomass”. In: ICES649

Journal of Marine Science 70.7 (2013), pp. 1330–1340.650

[37] Ran Nathan et al. “Big-data approaches lead to an increased understanding of the651

ecology of animal movement”. In: Science 375.6582 (2022), eabg1780.652

29

Page 29 of 45

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://doi.org/10.18637/jss.v070.i05
https://www.jstatsoft.org/index.php/jss/article/view/v070i05
https://www.jstatsoft.org/index.php/jss/article/view/v070i05
https://www.jstatsoft.org/index.php/jss/article/view/v070i05
https://doi.org/10.1111/gcb.15404
https://onlinelibrary.wiley.com/doi/10.1111/gcb.15404
https://onlinelibrary.wiley.com/doi/10.1111/gcb.15404
https://onlinelibrary.wiley.com/doi/10.1111/gcb.15404


For Review Only

[38] Krishna Pacifici, Brian J Reich, David AW Miller, Beth Gardner, et al. “Integrating653

multiple data sources in species distribution modeling: a framework for data fusion”.654

In: Ecology 98.3 (2017), pp. 840–850.655

[39] Krishna Pacifici, Brian J Reich, David AW Miller, and Brent S Pease. “Resolving656

misaligned spatial data with integrated species distribution models”. In: Ecology657

100.6 (2019), e02709.658

[40] Ryan J Parker, Brian J Reich, and Stephan R Sain. “A multiresolution approach659

to estimating the value added by regional climate models”. In: Journal of Climate660

28.22 (2015), pp. 8873–8887.661

[41] Benjamin Planque et al. “Understanding what controls the spatial distribution of662

fish populations using a multi-model approach”. English. In: Fisheries Oceanography663

20.1 (2011), pp. 1–17. issn: 1365-2419. doi: 10.1111/j.1365-2419.2010.00546.x.664

url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2419.665

2010.00546.x (visited on 08/31/2020).666

[42] Brian J Reich, Howard H Chang, and Kristen M Foley. “A spectral method for667

spatial downscaling”. In: Biometrics 70.4 (2014), pp. 932–942.668

[43] Ian W Renner, Julie Louvrier, and Olivier Gimenez. “Combining multiple data669

sources in species distribution models while accounting for spatial dependence and670

overfitting with combined penalized likelihood maximization”. In: Methods in Ecol-671

ogy and Evolution 10.12 (2019), pp. 2118–2128.672

[44] Brian L. Sullivan et al. “The eBird enterprise: An integrated approach to develop-673

ment and application of citizen science”. In: Biological Conservation 169 (Jan. 1,674

2014), pp. 31–40. issn: 0006-3207. doi: 10.1016/j.biocon.2013.11.003. url:675

https://www.sciencedirect.com/science/article/pii/S0006320713003820676

(visited on 04/19/2022).677

[45] James T. Thorson. “Three problems with the conventional delta-model for biomass678

sampling data, and a computationally efficient alternative”. In: Canadian Journal679

of Fisheries and Aquatic Sciences 75.9 (2018). Publisher: NRC Research Press,680

pp. 1369–1382.681

[46] Jonathan Wakefield and Hilary Lyons. “Spatial aggregation and the ecological fal-682

lacy”. In: Handbook of spatial statistics 541 (2010), p. 558.683

[47] Christopher K Wikle and L Mark Berliner. “Combining information across spatial684

scales”. In: Technometrics 47.1 (2005), pp. 80–91.685

[48] Christopher K Wikle, Andrew Zammit-Mangion, and Noel Cressie. Spatio-temporal686

Statistics with R. Chapman and Hall/CRC, 2019.687

[49] Linda J Young and Carol A Gotway. “Linking spatial data from different sources:688

the effects of change of support”. In: Stochastic Environmental Research and Risk689

Assessment 21.5 (2007), pp. 589–600.690

30

Page 30 of 45

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://doi.org/10.1111/j.1365-2419.2010.00546.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2419.2010.00546.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2419.2010.00546.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2419.2010.00546.x
https://doi.org/10.1016/j.biocon.2013.11.003
https://www.sciencedirect.com/science/article/pii/S0006320713003820


For Review Only

Tables691

Table 1: Model configurations.

Model name Configuration

Spatial Model Baseline configuration (or gold standard).
The commercial observations are known
at there exact locations. This is an ideal
situation with no actual application.

Reallocated Model The original model fitted with commercial
reallocated individual catch (and potentially few
precisely geolocalized scientific data) as done
in Alglave et al. (2022).

Declaration Model The alternative approach introduced in this paper
where the biomass model is fitted using
commercial catch declaration at a coarse
spatial level and potentially few precisely
geolocalized scientific data.
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Table 2: Parameter values for the simulations

Parameters Single-square simulations Multiple-square simulations

µ 2 2
βS 2 2
Range of δ – 0.6 (≈ 50 km)
Marginal variance of δ – 1
ξcom -1 -1
σcom 1 1
kcom – 1
ξsci – 0

σsci – 0.8

Table 3: Single-square simulations - Percentage of convergence per simulation-estimation
configuration.

Fishing positions Declarations Reallocation Likelihood level Convergence (%)

10 1 No Yai 99.668
10 1 Yes Y r

ai 0.333
10 1 Yes Da 0.000
100 10 No Yai 100.000
100 10 Yes Y r

ai 100.000

100 10 Yes Da 92.000
1000 100 No Yai 100.000
1000 100 Yes Y r

ai 100.000
1000 100 Yes Da 97.333
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Table 4: Multiple-square simulations - Percentage of convergence per simulation-
estimation configuration.

Model Likelihood level Convergence (%)

Commercial model Y r
ai 100.000

Commercial model Da 75.377
Integrated model Y r

ai 100.000
Integrated model Da 76.382
Scientific model 100.000

692
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Figures693

Figure 1: Schematic representation of the reallocation process. The biomass field (the
background field) depends on a covariate and a spatial random effect. The covariate is
the x axis. It has a positive effect on biomass values (i.e. biomass is higher on the right of
the grid than on the left). The spatial random effect conduct to a hotspot on the bottom-
right of the latent field. The study domain is considered as a statistical rectangle (grey
square). Fishermen sample observations in areas of poor biomass where the covariate is
relatively low (blue points) and in areas of higher biomass where the covariate is higher
and eventually in the hotspot of biomass (orange and red points). These catches belong
to the same declaration a and are summed to constitute the declaration Da = 50. The
declaration is declared at the level of the statistical rectangle. From VMS data, we know
the fishing positions xai. In standard processing, Da are then uniformly reallocated over
the fishing positions xai. This strongly homogenizes the catch. In particular, the effect of
the habitat is no more evidenced in the reallocated catch Y r

ai.

34

Page 34 of 45

12 Errol Street, London, EC1Y 8LX, UK

Journal of the Royal Statistical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only
Figure 2: Simulations of 10 fishing points within 1, 3 and 5 fishing zones. The full
grid corresponds to a statistical rectangle. Cross are the centroid of the fishing zones. A
declaration declared at the level of the statistical rectangle would be uniformly reallocated
over these fishing points.
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Figure 3: Performance metrics for single-square simulations with a total of 100 or 1000

fishing positions in columns. MSPE =
∑ncells

j (S(xj)−Ŝ(xj))
2

n
is the mean squared prediction

error and β̂S is the species-habitat relationship parameter. The number of fishing zones
visited within each declaration is represented on the x-axis. The results of the Spatial
model are in yellow, in red the results of the Reallocated Model and in green the Declara-
tion Model. Simulations conducted with 10 fishing positions are not represented as they
encounter convergence issues as stated in Table 3.
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Figure 4: Parameters relative bias for single-square simulations. Only the simulations
with 1000 fishing positions are represented. Black line: zero value. Red line: parameter
true value.

Figure 5: Performance metric for the multiple-square simulations. Red line: true value
for the range and the species-habitat parameter (βS). Blue: scientific-based model.
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Figure 6: Distribution of simulated/estimated biomass field. A: Simulated biomass field
with scientific samples (red) and statistical rectangles. The rectangles that have not been
sampled by commercial data are the transparent rectangles. They represent 1/3 of the
full area. B: simulated biomass field. C: biomass field from the scientific-based model.
D, E: Reallocated Model. F, G: Declaration Model. Scientific model: model fitted to
scientific data only. Commercial model: model fitted to commercial data only. Integrated
model: model fitted to both data sources.
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Figure 7: Parameters obtained with the model fitted on scientific data only, the integrated
model fitted on reallocated catch Y r

ai and the integrated model fitted on catch declarations
Da.
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For Review OnlyFigure 8: Maps obtained from the scientific-based model (left), the integrated model
fitted on reallocated catch Y r

ai (center), the integrated model fitted on catch declarations
Da (right).
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Supplementary material694

Reparameterization of the Lognormal distribution695

The Lognormal distribution can be written as Z ∼ L(ρ;σ2) with Z = eρ+σN and N ∼696

N (0, 1).697

698

In this case, E(Z) = eρ+
σ2

2 and Var(Z) = (eσ
2 − 1)e2ρ+σ2

.699

We choose to slightly reparameterize the Lognormal distribution. Let’s define ρ =700

ln(µ)− σ2

2
, then:701

� Z = µeσN−σ2

2702

� E(Z) = µ703

� Var(Z) = µ2(eσ
2 − 1) ⇔ σ2 = ln(Var(Z)

E(Z)2
+ 1)704

Probability distribution and moments of declarations Da705

Probability distribution of individual observations Yai706

We have to express the probability distribution of Da and its moments as a function of707

Yai and its related moments. Let’s assume Yai = Cai · Zai is a zero-inflated Lognormal708

distribution with Cai and Zai the two components of the mixture. Cai is a binary random709

variable and Zai a Lognormal random variable.710

Cai|S(xai), xai ∼ B(1− pai)

with pai = exp(−eξ · S(xai)) the probability to obtain a zero value.711

Zai|S(xai), xai ∼ L(
S(xai)

1− pai
, σ2)
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Probability of obtaining a zero declaration712

As mentioned in the core text, the probability to obtain a zero declaration is the proba-713

bility that all individual observations within this declaration are null. This gives:714

P(Da = 0) =
ma∏
i=1

P(Yai = 0|S(xai), xai),

= exp

{
−

ma∑
i=1

eξ.S(xai)

}
= πa.

715

716

Expectation of a positive declaration717

Conditionally on S and fishing positions xia.718

E(Da|Da > 0) = E(Da1{Da>0})/P (Da > 0) ,

= E(Da1{Da>0})/ (1− πa) .

As E(Da1{Da>0}) = E(Da), we can write E(Da|Da > 0) as:719

E(Da|Da > 0) = (1− πa)
−1 E(Da),

= (1− πa)
−1

ma∑
i=1

E(CaiZai),

= (1− πa)
−1

ma∑
i=1

(1− pai)
S(xai)

1− pai
,

= (1− πa)
−1

ma∑
i=1

S(xai).
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Variance of a positive declaration720

The variance then can be expressed as:721

Var(Da|Da > 0) = E(D2
a|Da > 0)− E(Da|Da > 0)2.

with,722

E(D2
a|Da > 0) = (1− πa)

−1E(D2
a1{Da>0})

= (1− πa)
−1E(D2

a)

and723

E(Da|Da > 0)2 = ((1− πa)
−1E(Da1{Da>0}))

2

= (1− πa)
−2E(Da)

2

Then, using these two expressions in the variance formula gives:724

Var(Da|Da > 0) = (1− πa)
−1E(D2

a)− (1− πa)
−2E(Da)

2

= (1− πa)
−1Var(Da)−

πa

(1− πa)2
E(Da)

2.

As the (Yai)xai∈Ra are independent, Var(Da) =
∑ma

i=1Var(Yai) =
∑ma

i=1 Var(Cai · Zai).725

Obtaining Var(CaiZai) is then straightforward due to conditional independence prop-726

erties:727
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Var(CaiZai) = E(C2
aiZ

2
ai)− E(CaiZai)

2,

= E(C2
ai)E(Z2

ai)− E(Cai)
2E(Zai)

2,

= (1− pai)E(Z2
ai)− (1− pai)

2E(Zai)
2,

= (1− pai)(Var(Zai) + E(Zai)
2)− (1− pai)

2E(Zai)
2,

=
S(xai)

2

1− pai
(eσ

2 − 1) +
S(xai)

2

1− pai
− S(xai)

2,

=
S(xai)

2

1− pai
(eσ

2 − (1− pai))
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Sum up of the main formulas728

The main formulas can be summarised as follows:729

n.b. all the formulas are conditionned on S and on the fishing positions xai.730

� The probability to obtain a zero declaration731

P(Da = 0) = exp

{
−

ma∑
i=1

eξ.S(xai)

}
= πa

� The expectancy of a positive declaration732

E(Da|Da > 0) =

∑ma

i=1 S(xai)

1− πa

� The variance of a positive declaration733

Var(Da|Da > 0) =

∑ma

i=1Var(Yai)

1− πa

− πa

(1− πa)2
E(Da)

2

� The variance of an individual observation734

Var(Yai) =
S(xai)

2

1− pai
(eσ

2 − (1− pai))

Then, assuming Da|Da > 0 also follows a Lognormal distribution we can write:735

Da|Da > 0 ∼ L(µa = E(Da|Da > 0), σ2
a = ln(

Var(Da|Da > 0)

E(Da|Da > 0)2
+ 1))
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