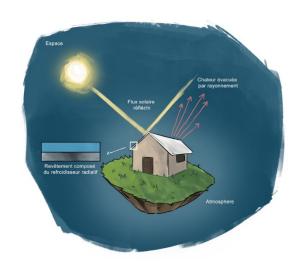


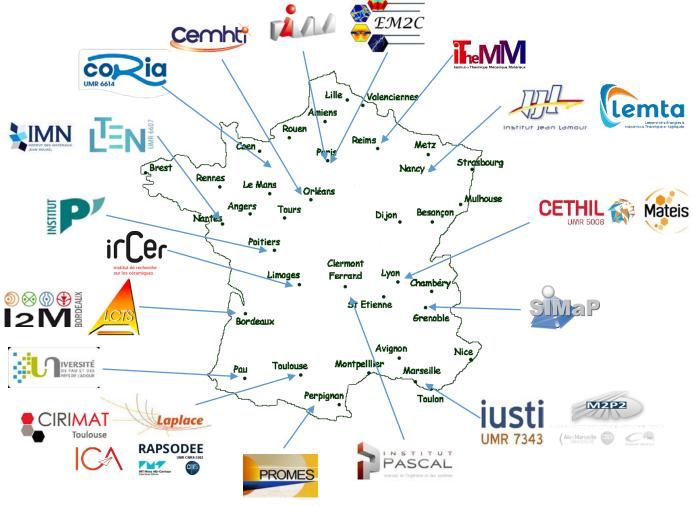
Décarbonation de quelques procédés industriels impliquant les transferts radiatifs

Benoit Rousseau – DR2 CNRS

Laboratoire de Thermique et Energie de Nantes UMR CNRS 6607

S10 du CoNRS : Milieux fluides et réactifs : transports, transferts, procédés de transformation


Quelques applications radiantes : approche multi-échelle & multi-physique

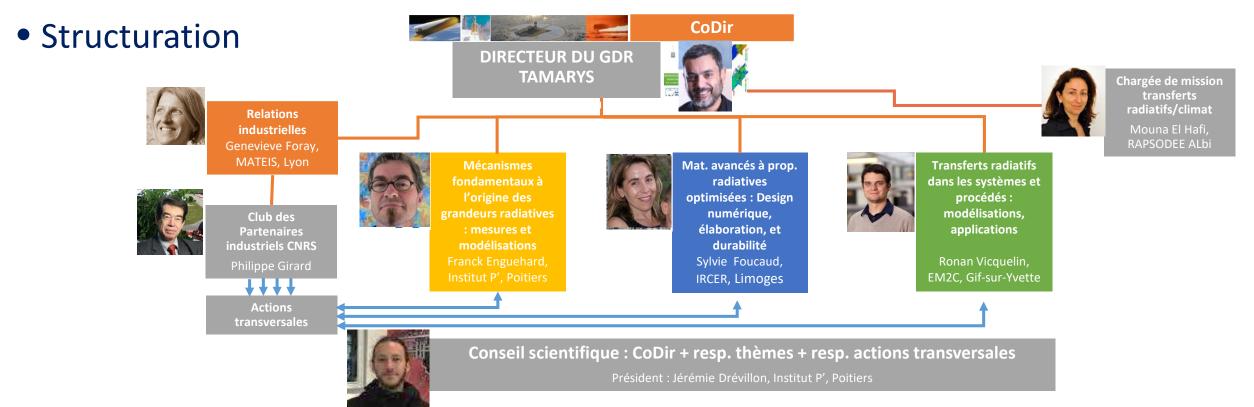

- Interaction onde-matière
- Compréhension multi-échelle (atome→grain→matériau architecturé) de l'absorption du rayonnement thermique
- Quantification des échanges thermiques (résolution de l'Equation du Transfert Radiatif)
- Quelles optimisations?

GDR TAMARYS : « Transferts rAdiatifs, MAtériaux, pRocédés et sYstèmes aSsociés » CDTS

50 % S10 (INSIS)- 50 % S15 (INC)

179 C-EC, Ing., Resp R&D 26 lab. académiques (4 UPR, 21 UMR, 1 EA), 6 entreprises, 3 EPIC au 16/06/22

Gestion – partenariat



Objectif du GDR TAMARYS - structuration

• Objectif: fédérer des spécialistes en science des matériaux et en science des transferts radiatifs → lever les verrous multi-échelles et multi-physiques rencontrés dans le développement des procédés et systèmes industriels où la contribution énergétique du rayonnement thermique (infrarouge, solaire) est majeure.

Actions transversales

steam turbine

condensator

with generator

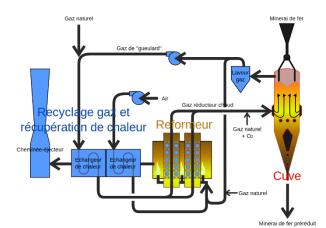
Action Transversale 1 : Solaire thermodynamique (chaleur HT, carburants solaires)

Acteurs: CEA Le Ripault, IRCER, LAPLACE, LTeN, Mersen,

PROMES, RAPSODEE, SIMAP, TotalEnergies, 3D CERAM

Animateurs : G. Flamant PROMES, P.M. Geoffroy IRCER

Acteurs: AGS, CEA CESTA, CNES, EM2C, LCTS


Animateur : J. Annaloro CNES, J. Lachaud I2M

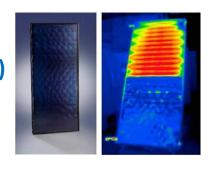
Receiver

Hot air

HRSG

Action Transversale 3 : Récupération de la chaleur haute température en industrie intensive

Acteurs: CIRIMAT, IRCER, iTHeMM, LEMTA, LTeN, LCTS, Mersen,

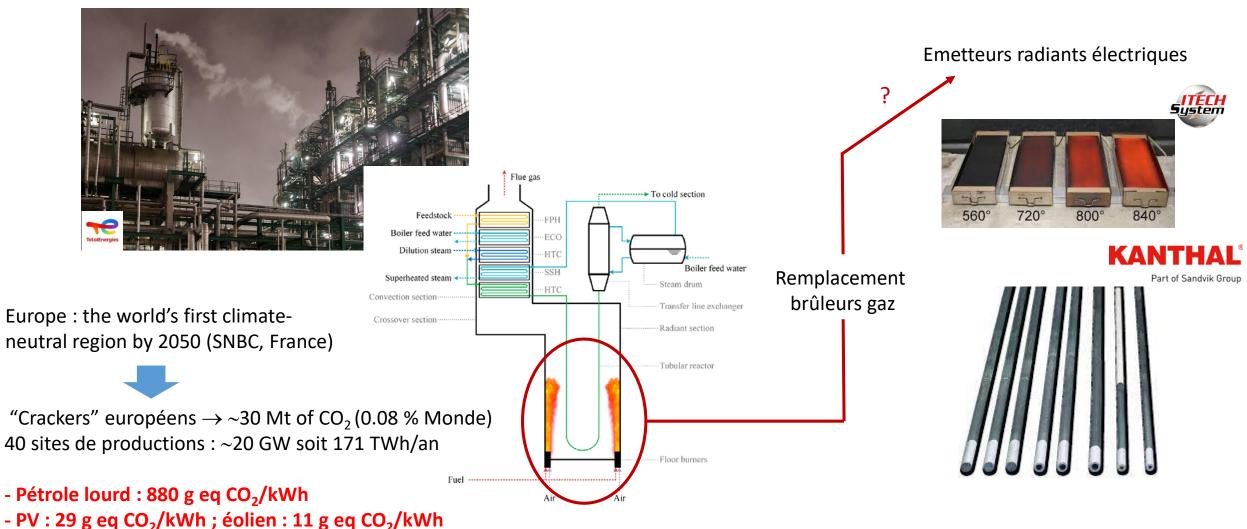

3D CERAM

Animateur: G. Vignoles LCTS, B. Remy LEMTA

Action Transversale 4 : Contrôle radiatif des systèmes & procédés (bâtiment, centrale solaire)

Acteurs: ENGIE, IJL, IMN, INL, Institut P', LMAP, MATEIS, PROMES, Solvay

Animateurs : C. Caliot LMAP, F. Capon IJL



Electrification du vapocraquage (production éthylène)

BASF, Borealis, BP, LyondellBasell, SABIC, TotalEnergies

Production de chaleur industrielle : solaire thermodynamique

Procédé de conversion	GWP (gCO₂eq/KWh)	CED (MJ/kWh)
Centrale à charbon	1000	12,6
Centrale à gaz	760	7,79
Centrale à pétrole	880	11,9
Centrale nucléaire	12	78,8
Solaire PV	29,2	0,61
Solaire concentré	30,9	0,44
Eoliennes	9,4	0,13
Hydraulique	11,6	0,16
Géothermie	33,6	0,52

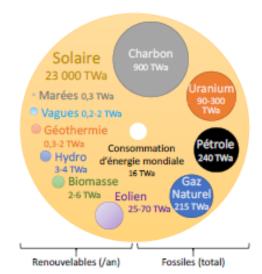


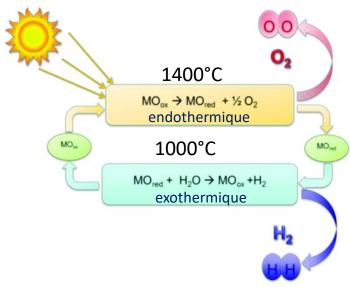
Figure 1-1 : Comparaison des réserves d'énergies IX primaires p/r au besoin annuel en énergie (2009) [7] 1 Twa = 8760 TWh

Tableau 1-1 : Indicateurs d'impact environnementaux de différents procédés de conversion [4] [5]

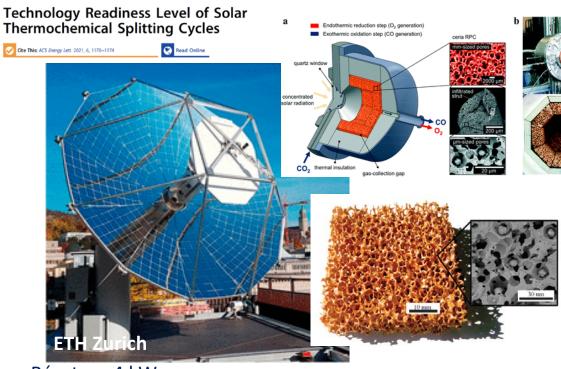
CED: Cumulative Energy Demand (consommation d'énergie primaire ou « énergie grise »)

Thèse Yasmine Lalau - UPVD - 2017 yasmine.lalau@mines-albi.fr

Туре	Linéaire		Ponctuelle	
Principe	Cylindro-parabolique	Fresnel	Parabolique	Tour
Ex. de centrale	Noor I, 160 MW	Dhursar, 250 MW	Maricopa, 1.5 MW	Crescent Dunes, 110 MW
С	80	50	1500	1000
Tmax	550°C	300°C	1000°C	800°C
η conv.	23-27%	18-22%	30%	20-27%
η annuel	15-16%	8-10%	26%	15-17%
Eau**	4.7 L.kWh ⁻¹ [19]	3-4 L.kWh ⁻¹ [15]	>0.1 L.kWh ⁻¹ [15]	1.4 L.kWh ⁻¹ [20]
Sol	6-8 m ² .MWh ⁻¹	4-6 m ² .MWh ⁻¹	8-12 m ² .MWh ⁻¹	8-12 m ² .MWh ⁻¹
GWP	26 gCO₂eq.kWh ⁻¹ [19]	31 gCO₂eq.kWh ⁻¹ [21]	NC	37 gCO₂eq.kWh ⁻¹ [20]
CED	0.4 MJeq.kWh ⁻¹ [19]	0.55 MJeq.kWh ⁻¹ [21]	NC	0.49 MJeq.kWh ⁻¹ [20]
Coût*	0.16 €/kWh	0.2 €/kWh	NC	0.2 €/kWh
Stockage	++	+	-	+++


Tableau 1-2: Comparaison des technologies de centrales thermodynamiques. [22] [23] *pour générer 100 MW avec 2.5 MWh.m⁻².an⁻¹ d'ensoleillement, avec stockage si applicable **sans « dry cooling »

Comportement thermo-chemo-mécanique des matériaux à T > 1000°C?


Dissociation thermochimique de la vapeur d'eau

Fort intérêt pour l'oxyde de cérium $CeO_{2-\delta}$:

- Stabilité thermique (T>1400°C)
- Bonne cinétique d'oxydation (~1000°C),
- Bon taux de diffusion de l'oxygène
- Bonne disponibilité d'approvisionnement

- Réacteur 4 kW
- Concentration: 3000 suns
- Efficacité de conversion solaire-H₂ ~ 5.25 %

Merci pour votre attention: questions?

4èmes Journées Annuelles du **GDR CNRS TAMARYS**

27-29 juin 2022 Amphithéâtre Chaude Chappe – INSA Lyon

Keynote speakers

Jean-Michel Hartmann LMD - Palaiseau

Vadim Allheily ISL - Saint Louis

Aurélie Quet **CEA Le Ripault - Monts**

Vincent Moureau CORIA - Rouen

Katia Cargnelli-Barral **INSIS - Paris**

