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RESOLVENT ESTIMATES IN STRIPS FOR OBSTACLE SCATTERING IN 2D AND LOCAL ENERGY DECAY FOR THE WAVE EQUATION

In this note, we are interested in the problem of scattering by J strictly convex obstacles satisfying a no-eclipse condition in dimension 2. We use the result of [Vac22] to obtain polynomial resolvent estimates in strips below the real axis. We deduce estimates in O(|λ| log |λ|) for the truncated resolvent on the real line and give an application to the decay of the local energy for the wave equation.

It is known that the resolvent R(λ) of the Dirichlet Laplacian -∆ Ω in Ω continues meromorphically to the logarithmic cover of C (see for instance [START_REF] Dyatlov | Mathematical Study of Scattering Resonances[END_REF], Chapter 4, Theorem 4.4). More precisely, if χ ∈ C ∞ c (R 2 ) is equal to one in a neighborhood of O, (1.1)

χR(λ)χ = χ(-∆ Ω -λ 2 ) -1 χ : L 2 (Ω) → L 2 (Ω)
is holomorphic in the region {Im λ > 0} and it continues meromorphically to the logarithmic cover Λ of C. Its poles are the scattering resonances and do not depend on χ. In [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF], the following result has been proved :

Theorem 1. There exist γ > 0 and λ 0 > 0 such that there is no resonance in the region

[λ 0 , +∞[+i[-γ, 0]
seen as a region in the first sheet of Λ.

In this note, we reuse the arguments of [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] and the main estimate in [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] (Proposition 4.1) to obtain estimates for the cut-off resolvent (1.1) in this region. We will rather state these resolvent estimates in a semiclassical form, so that it can also be applied to more general semiclassical problems such as the scattering by a smooth compactly potential (see [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF], Section 2, for precise assumptions and [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF], Section 2.2 for applications of Theorem 1 in scattering by a potential under these assumptions). In obstacle scattering, the semiclassical problem is simply a rescaling : we are interested in the semiclassical operator

P (h) = -h 2 ∆ Ω -1 , 0 < h ≤ h 0
and spectral parameter z ∈ [-δ, δ] + i[-Kh, Kh] for some fixed K > 0 and some δ > 0. We note

(1.2) R h (z) = (P (h) -z) -1
continued meromorphically from Im z > 0 to z ∈ [-δ, δ] + i[-Kh, Kh]. We prove :

Theorem 2. Suppose that P (h) = -h 2 ∆ Ω -1 where -∆ Ω is the Dirichlet Laplacian in Ω, or

P (h) = -h 2 ∆ + V -E 0 where V ∈ C ∞ c (R 2
) and E 0 ∈ R * + satisfying the assumptions of [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF], recalled in 2.3.1. Let χ ∈ C ∞ c (R 2 ) be equal to one in a neighborhood of O (in the case of obstacle scattering) or supp V (in the case of scattering by a potential). Fix K > 0. There exists δ 0 > 0, γ > 0, C > 0, h 0 > 0 and β ≥ 0 such that for all 0 < h ≤ h 0 , P (h) has no resonance in

(1.3) D h := {z ∈ C, Re z ∈ [-δ 0 , δ 0 ], -γh ≤ Im z ≤ Kh}
and for all z ∈ D h ,

(1.4) ||χR h (z)χ|| L 2 →L 2 ≤ Ch -β
Remark. In the case of the obstacles, with these notations, for δ small enough and h small enough, z is related to the spectral parameter λ h (z) by the relation λ h (z) 2 = h -2 (1 + z). As a consequence, λ h (z) lies in a neighborhood of 1/h in Λ. In particular, it lives in the first sheet of Λ, that is arg λ h (z) ∈] -π/2, π/2[.

Applications.

Decay of the local energy for the wave equation. As a first application, we obtain a decay rate O(t -2 ) for the local energy of the wave equation outside the obstacles. The link between resolvent estimates and energy decay is quite standard now (see for instance [START_REF] Zworski | Semiclassical Analysis[END_REF], Chapter 5, [START_REF] Lebeau | Equation des ondes amorties[END_REF]). In the particular case of obstacle scattering, Ikawa showed exponential decay in dimension 3, for the case of two obstacles ( [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of two convex obstacles[END_REF]) and for more obstacles under a dynamical assumption ( [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of several convex bodies[END_REF]) involving the topological pressure P (s) of the billiard flow. This assumption requires the pressure to be strictly negative at s = 1/2 (see also [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF]). In the case of dimension 2 (and more generally, of even dimensions), one cannot expect such an exponential decay, due to the logarithmic singularity at 0 for the free resolvent and the fact that the strong Huygens principle does not hold. Even for the free case, the bound for the local energy is O(t -2 ). This is the bound we obtain here, assuming that the initial data are sufficiently regular :

Theorem 3. There exists k ∈ N such that for all R > 0, there exists C R > 0 such that the following holds: let (u 0 , u 1 ) ∈ H k+1 (Ω) ∩ H 1 0 (Ω) × H k (Ω) be initial data supported in B(0, R) ∩ Ω and consider the unique solution of the Cauchy problem

       ∂ 2 t u(t, x) -∆u(t, x) = 0 in Ω u(t, x) = 0 on ∂Ω u t=0 = u 0 ∂ t u t=0 = u 1
Then, for t ≥ 1, the local energy in the ball B(0, R), E R (t), satisfies the bound

E R (t) := B(0,R)∩Ω |∇u(t)| 2 + |∂ t u(t)| 2 ≤ C R t 2 ||u 0 || 2 H k+1 + ||u 1 || 2 H k
Theorem 3 is a consequence of Theorem 2. This fact is proved in Section 3 and the proof uses the strategy of [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF].

Resolvent estimates on the real line. Polynomial resolvent bounds in strips are known to imply better bounds on the real line, by using a semiclassical maximum principle (see for instance [START_REF] Burq | Smoothing effect for Schrödinger equations[END_REF], Lemma 4.7, or [START_REF] Ingremeau | Sharp resolvent bounds and resonance-free regions[END_REF]). As a consequence, we deduce the following estimates on the real line :

Corollary 1.1. Let P (h) be one of the operators described in Theorem 2 and let χ ∈ C ∞ c (R 2 ) as in this Theorem. There exits C 0 > 0, δ 0 > 0 and h 0 > 0 such that for all 0 < h ≤ h 0 and for all z ∈ [-δ 0 , δ 0 ],

||χ(P (h) -z) -1 χ|| L 2 →L 2 ≤ C 0 | log h| h
Remark. As a direct corollary of the proof of Lemma 4.7 in [START_REF] Burq | Smoothing effect for Schrödinger equations[END_REF], we can obtain a more general bound : for h > 0 small enough,

(1.5) ||χ(P (h) -z) -1 χ|| L 2 →L 2 ≤ C 0 | log h|h -1+σ| Im z|/h , z ∈ [-δ 0 , δ 0 ] + i[-γh, 0]
where σ > 0. With this method, based on the maximum principle for analytic functions, the value of σ in not explicit. In fact, our proof gives a bound of the form

||χ(P (h) -z) -1 χ|| L 2 →L 2 ≤ C| log h|h -1-M1-M2| Im z|/h , z ∈ [-δ 0 , δ 0 ] + i[-γh, 0]
where M 2 only depends on constants related to the billiard map (see (2.23)). The extra M 1 is a consequence of the method we use, based on the use of an escape function. It is possible that a more careful analysis could allow to get rid of this extra M 1 and we could straighlty obtain a bound of the form (1.5).

This kind of estimates is known to be useful to prove smoothing effects for the Schrödinger equation and to obtain Strichartz estimates, which turns out to be crucial for the local-well posedness of the non-linear Schrödinger equation (see for instance [START_REF] Burq | Smoothing effect for Schrödinger equations[END_REF], [START_REF] Burq | On nonlinear Schrödinger equations in exterior domains[END_REF]). Let's for instance mention the following smoothing estimates (see the references above for the proof and for pointers to the literature concerning these estimates) :

Corollary 1.2. Let Ω be as in Theorem 2 and let e -it∆Ω be the Schrödinger propagator of the Dirichlet Laplacian -∆ Ω in Ω. Then, for any ε > 0 and for any χ ∈ C ∞ c (R 2 ) equal to one in a neighborhood of O, there exists C > 0 such that for any u 0 ∈ L 2 (Ω),

||χe -it∆Ω χu 0 || L 2 (Rt,H 1/2-ε (Ω)) ≤ C||χu 0 || L 2
Organization of the paper. In Section 2, we prove Theorem 2 using the crucial estimate proved in [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] and recalling the reduction to open quantum maps performed in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF] and [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF]. The main semiclassical ingredients of the above paper are recorded in Appendix A. Section 3 is devoted to the proof of the local energy decay for the wave equation.
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Proof of Theorem 2

In this section, we prove the main resolvent estimate of this note. The central point, concerning a resolvent bound for open hyperbolic quantum maps, is common to the case of obstacle scattering and scattering by a potential. However, the reduction to open quantum maps differs in the two above situations, this is why we distinguish the two cases. We begin by recalling the definitions of open quantum maps from [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF] and [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] and the result of [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] leading to a crucial resolvent bound.

2.1.

Resolvent bound for open quantum maps. 

Y = J j=1 Y j ⊂ J j=1 R and consider U = J j=1 U j ⊂ J j=1 T * R d ; where U j T * Y j are open sets The Hilbert space L 2 (Y ) is the orthogonal sum J i=1 L 2 (Y i ). For j = 1, . . . , J, consider open disjoint subsets ‹ D ij U j , 1 ≤ i ≤ J
, the departure sets, and similarly, for i = 1, . . . , J consider open disjoint subsets A ij U i , 1 ≤ j ≤ J, the arrival sets (see Figure 2). We assume that there exist smooth symplectomorphisms (2.1)

F ij : ‹ D ij → F ij Ä ‹ D ij ä = A ij
We note F for the global smooth map F : ‹ D → A where A and ‹ D are the full arrival and departure sets, defined as

A = J i=1 J j=1 A ij ⊂ J i=1 U i ‹ D = J j=1 J i=1 ‹ D ij ⊂ J j=1 U j
We define the outgoing (resp. incoming) tail by

T + := {ρ ∈ U ; F -n (ρ) ∈ U, ∀n ∈ N} (resp. T -:= {ρ ∈ U ; F n (ρ) ∈ U, ∀n ∈ N}).
We assume that they are closed subsets of U and that the trapped set

(2.2) T = T + ∩ T - is compact.
We also assume that T is totally disconnected. For i, j ∈ {1, . . . , J}, we note

T i = T ∩ U i , D ij = {ρ ∈ T j ; F (ρ) ∈ T i } ⊂ ‹ D ij and A ij = {ρ ∈ T i ; F -1 (ρ) ∈ T j } ⊂ A ij
Remark. It is possible that for some values of i and j, ‹ D ij = ∅. For instance, when dealing with the billiard map (see (2.19)), the sets ‹ D ii are all empty.
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An open baker's map.

Figure 3. Examples when J = 1. The departure sets are in blue, the arrival sets in red. In the first example,

U 1 =] -1, 1[ 2 ⊂ T * R , D 11 =] -1, 1[×] -1/2, 1/2[, A 11 =]-1/2, 1/2[×]-1, 1[ with F (x, ξ) = (x/2, 2ξ).
The trapped set is reduced to a single hyperbolic fixed point. The second example is built on the model of an open baker's map. We have

U 1 =]0, 1[ 2 ⊂ T * R , D 11 =]0, 1[×]0, 1/3[∪]0, 1[×]2/3, 1[, A 11 =]0, 1/3[×]0, 1[∪]2/3, 1[×]0, 1[.
In such a model, the map F is piecewise affine and given by F (x + a, ξ) = (3x, a + ξ/3) for a ∈ {0, 2}, (x, ξ) ∈]0, 1[ 2 .

We then make the following hyperbolic assumption.

(2.3) T is a hyperbolic set for F Namely, for every ρ ∈ T , we assume that there exist stable/unstable tangent spaces E s (ρ) and E u (ρ) such that :

• dim E s (ρ) = dim E u (ρ) = 1 • T ρ U = E s (ρ) ⊕ E u (ρ)
• there exists λ > 0, C > 0 such that for every v ∈ T ρ U and any n ∈ N,

v ∈ E s (ρ) =⇒ ||d ρ F n (v)|| ≤ Ce -nλ ||v|| (2.4) v ∈ E u (ρ) =⇒ ||d ρ F -n (v)|| ≤ Ce -nλ ||v|| (2.5)
where || • || is a fixed Riemannian metric on U . The decomposition of T ρ U into stable and unstable spaces is assumed to be continuous.

Here ends the description of the classical map. See Figure 3 for simple examples of such open hyperbolic maps. We then associate to F open quantum hyperbolic maps, which are its quantum counterparts.

Definition 2.1. Fix δ ∈ [0, 1/2[. We say that T = T (h) is an open quantum hyperbolic map associated with F , and we note T = T (h) ∈ I δ (Y × Y, Gr(F ) ) if : for each couple (i, j) ∈ {1, . . . , J} 2 , there exists a semiclassical Fourier integral operator

T ij = T ij (h) ∈ I δ (Y j ×Y i , Gr(F ij ) ) associated with F ij in the sense of definition A.3, such that T = (T ij ) 1≤i,j≤J : J i=1 L 2 (Y i ) → J i=1 L 2 (Y i ) In particular WF h (T ) ⊂ A × ‹ D. We note I 0 + (Y × Y, Gr(F ) ) = δ>0 I δ (Y × Y, Gr(F ) ).
We will say that T ∈ I 0 + (Y × Y, Gr(F ) ) is microlocally invertible near T if there exists a neighborhood U ⊂ U of T and an operator

T ∈ I 0 + (Y × Y, Gr(F -1 ) ) such that, for every u = (u 1 , . . . , u J ) ∈ L 2 (Y ) ∀j ∈ {1, . . . , J}, WF h (u j ) ⊂ U ∩ U j =⇒ T T u = u + O(h ∞ )||u|| L 2 , T T u = u + O(h ∞ )||u|| L 2
Suppose that T is microlocally invertible near T and recall that T * T ∈ Ψ 0 + (Y ) ⊂ Ψ 1/4 (Y ) (this choice δ = 1/4 is arbitrary). Then, we can write

T * T = Op h (a h ) + O(h 1/4 ) L 2 →L 2
where a h is a smooth principal symbol in the class S 0 + (U ) (the definition of this symbol class is recalled in the appendix). We note α h = |a h | and call it the amplitude of T . Since T is microlocally invertible near T , |a h | > c 2 near T , for some h-independent constant c > 0, showing that α h is smooth and larger than c in a neighborhood of T .

Remark. If T has amplitude α, at first approximation, T transforms a wave packet u ρ0 of norm 1 centered at a point ρ 0 lying in a small neighborhood of T into a wave packet of norm α(ρ 0 ) centered at the point F (ρ 0 ).

2.1.2. Crucial resolvent bound. We now consider M (h) an open quantum hyperbolic map, associated with F . We suppose that M (h) is microlocally invertible near T . Additionally, we make the following assumption : there exists L > 0 and

φ 0 ∈ C ∞ c (T * Y, [0, 1]) such that supp(φ 0 ) is contained in a compact neighborhood W of T , W ⊂ ‹ D, φ 0 = 1 in a neighborhood of T and (2.6) M (h)(1 -Op h (φ 0 )) = O(h L )
Let us note α h the amplitude of M (h) and ||α h || ∞ its sup norm in W. It is a priori h-dependent, but it is uniformly bounded in h. Proposition 4.1 in [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] then states that :

Proposition 2.1. Suppose that M (h) satisfies the above assumptions. There exists δ > 0, γ > 0, h 0 > 0 and a family of integer N (h) ∼ δ| log h|, defined for 0 < h ≤ h 0 , such that for all 0 < h ≤ h 0 ,

(2.7)

||M (h) N (h) || L 2 →L 2 ≤ h γ ||α h || N (h)

∞

Remark.

• Strictly speaking, the result of [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] applies to operators of the form T (h) Op h (α) where T is microlocally unitary near T . We can reduce (2.7) to this case. Indeed, locally near every point ρ 0 ∈ T , M (h) takes this form, and T is totally disconnected, so that M (h) takes this form in a small neighborhood of T . Finally, as showed in [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] (Subsection 4.2), the behavior of M (h) outside any neighborhood of T contributes as a O(h ∞ ) in (2.7), as soon as N (h) is bigger than a fixed N 0 depending on this neighborhood. • Note that the constant δ and γ are purely dynamical, that is, depend only on the dynamics of F near T . Indeed, δ is defined in Section 4.1 in [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] using only dynamical parameters, such as the Jacobian of F . Concerning γ, it is implicitly defined using the porosity of the trapped set (see Section 6 in [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF]). h 0 depends on α (through a finite number of seminorms). This remark will turn out to be important when dealing with scattering by a potential.

This estimate, which is the crucial point in [START_REF] Vacossin | Spectral gap for obstacle scattering in 2d[END_REF] to prove the spectral gap naturally leads to a resolvent bound for (Id -M (h)) -1 : Proposition 2.2. Suppose that M (h) satisfies the above assumptions. Let γ and δ be given in Proposition 2.1 and assume that for some

h 1 > 0, for all 0 < h ≤ h 1 , (2.8) ||α h || ∞ < exp γ δ Let us consider A ≥ 1 such that for all 0 < h ≤ h 1 , ||α h || ∞ ≤ A. Then, there exists h 0 ∈]0, h 1 ] such that for all 0 < h ≤ h 0 , (2.9) (Id -M (h)) -1 L 2 →L 2 ≤ 2δ| log h|h -δ log A Proof. First recall that M * M ∈ Ψ 0 + with σ 0 (M * M ) = α 2 h and M = O(h L ) microlocally outside W.
Hence, we can estimate the operator norm of M (h) (see [START_REF] Zworski | Semiclassical Analysis[END_REF], Theorem 13.13),

||M (h)|| L 2 →L 2 ≤ ||α h || ∞ + O(h η )
where η is any fixed number in ]0, 1[. Let N (h) ∼ δ| log h| be the family of integers given by Proposition 2.1. Without loss of generality, we may assume that N (h) ≤ δ| log h|. We use the fact that

h γ ||α h || N (h) = o(1) when h → 0 if ||α h || ∞ < e γ δ . As a consequence, Id -M N (h) is invertible for h small enough with (2.10) ||(Id -M N (h) ) -1 || ≤ 3 2 , 0 ≤ h 1 This implies that I -M is invertible with inverse (2.11) (Id -M ) -1 = (Id +M + • • • + M N (h)-1 )(Id -M N (h) ) -1
We hence estimate

|| Id +M + • • • + M N (h)-1 || ≤ N (h)(||α h || ∞ + O(h η )) N (h) ≤ N (h)(A + O(h η ))) N (h) ≤ δ| log h|h -δ log A (1 + o(1)) ≤ 4 3 δ| log h|h -δ log A
if h is small enough. Using (2.11), we multiply with (2.10) and find the required inequality.

Remark. The constant 2 can be changed into any 1 + ε by changing h 0 into h 0 (ε).

If lim inf h→0 ||α h || ∞ > 1 we can get rid of the log h term by changing it into a constant depending on ||α h || ∞ . More precisely, a better estimate of the sum can show that

(Id -M (h)) -1 L 2 →L 2 ≤ 2 ||α h || ∞ -1 h -δ log ||α h ||∞
The main interest of the estimate in Proposition 2.2 is that it gives a uniform estimate in the limit

||α h || ∞ → 1.
2.2. Proof in the case of obstacle scattering. In this subsection, we recall the main ingredients of [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] and prove the resolvent estimate of Theorem 2 in obstacle scattering. 

i = j = k, O i does not intersect the convex hull of O j ∪ O k . Let P (h) = -h 2 ∆ Ω -1 and fix a cut-off function χ ∈ C ∞ c (R 2 ) equal to one in a neighborhood of O. First note that by a simple scaling argument, it is enough to prove (1.4) for z ∈ {z ∈ D(0, Kh), Im z ≥ -γh} for any K > 0 fixed. Complex scaling. We fix R χ > 0 such that supp χ ⊂ B(0, R χ ). For a parameter θ ∈]0, π/2[, we consider a complex deformation Γ θ ⊂ C 2 of R 2 such that for some R > R χ , Γ θ ∩ B C 2 (0, R χ ) = R 2 ∩ B R 2 (0, R χ ) Γ θ ∩ C 2 \ B C 2 (0, R ) = e iθ R 2 ∩ C 2 \ B C 2 (0, R ) Γ θ = f θ (R 2 ) ; f θ : R 2 → C 2 injective
By identifying R 2 and Γ θ through f θ , we note ∆ θ the corresponding complex-scaled free Laplacian, and ∆ Ω,θ the complex scaled Laplacian on H 2 (Ω) ∩ H1 0 (Ω). We fix K > 0 (which can be chosen arbitrarily large) and for z ∈ D(0, Kh), we note (2.12)

P • (z) = -h 2 ∆ • -1 -z with either • = θ or • = Ω, θ.
We note the associated resolvent, when they are defined,

R Ω,θ (z) : L 2 (Ω) → H 2 (Ω) ; R θ (z) : L 2 (R 2 ) → H 2 (R 2 )
Remark. With these notations, the parameter λ of the usual resolvent R(λ) takes the form

λ = λ h (z) = h -1 (1 + z) 1/2 with z ∈ D(0, Kh) ⊂ D(0, 1) if h small
enough, so that the square root is well defined and gives a holomorphic function of z.

Thanks to the usual properties of the complex scaling method (see for instance [START_REF] Dyatlov | Mathematical Study of Scattering Resonances[END_REF], Section 4.5 in Chapter 4 and the references given there), we have :

• The operators P θ (z) and P Ω,θ (z) are Fredholm operators of index 0;

• z is a pole of R Ω,θ (z) if and only if λ h (z) is a scattering resonance ; • For z not a pole of R Ω,θ (z)
, in virtue of the properties of χ and Γ θ , we have (recall the definitions of R(λ) and R h (z) in (1.1) and (1.2) respectively),

χR Ω,θ (z)χ = χR h (z)χ = h -2 χR(λ h (z))χ
• Finally, we recall that we have the following standard estimate for R θ (z) (see for instance [START_REF] Dyatlov | Mathematical Study of Scattering Resonances[END_REF], Theorem 6.10)

(2.13) ||R θ (z)|| L 2 (R 2 )→H 2 h (R 2 ) ≤ Ch -1 ; z ∈ D(0, Kh) In particular, it tells that R θ is holomorphic in D(0, Kh). Here, H 2 h (R 2 ) is a semiclassical Sobolev space i.e. H 2 (R 2 ) with the norm ||u|| H 2 h (R 2 ) = ||(1 -h 2 ∆)u|| L 2 .
To prove Theorem 2, it is then enough to give a bound for χR Ω,θ (z)χ : L 2 (Ω) → L 2 (Ω) in the corresponding region.

Reduction to the boundary of the obstacles. Following [NSZ14] (Section 6), we introduce the following operators to obtain a reduction to the boundary. For j = 1, . . . , J, let (2.14)

γ j : u ∈ H 2 (Ω) → u| ∂Oj ∈ H 3/2 (∂O j )
be the (bounded) trace operator and γu = (γ j u)

j ∈ H 3/2 (∂O) := H 3/2 (∂O 1 ) × • • • × H 3/2 (∂O J ), and let 
(2.15)

H j (z) : H 3/2 (∂O j ) → H 2 (R 2 \ O j ) extension by 0 -→ L 2 (R 2 )
be the Poisson operator, defined, for v ∈ H 3/2 (∂O j ), as the solution to the problem

ß P θ (z)H j (z)v = 0 in R 2 \ O j γ j H j (z)v = v. u = H j (z)
v is a solution of the problem P θ (z)u = 0 with outgoing properties. So as P θ (z), H j (z) implicitly depends on h.

For - → v = (v 1 , . . . , v J ) ∈ H 3/2 (∂O), we set H(z) - → v = J j=1 H j (z)v j
Let us define the following operator-valued matrix M(z) :

H 3/2 (∂O) → H 3/2 (∂O) by the relation (2.16) Id -M(z) = γH(z)
We state a few facts concerning these operators. In the following lemma, we give estimates involving the semiclassical version of the Sobolev spaces

H 2 (R 2 \ O j ) and H 3/2 (∂O j ), denoted H 2 h (R 2 \ O j ) and H 3/2
h (∂O j ) respectively. Lemma 2.1. For j = 1, . . . , J, there exists C > 0 such that for all 0 < h ≤ 1, the norm of the bounded operator

γ j from H 2 h (R 2 \ O j ) to H 3/2 h (∂O j ) satisfies ||γ j || H 2 h (R 2 \Oj )→H 3/2 h (∂Oj ) ≤ Ch -1/2
Proof. Using a partition of unity argument and local charts, it is sufficient to prove that the above result holds with R 2 \ O j replaced by R × R * + and ∂O j replaced by R. In this setting, we note γ the associated trace operator. First, we extend an element u ∈ H

2 h (R × R * + ) to an element ũ ∈ H 2 h (R × R) such that ||ũ|| H 2 h ≤ C||u|| H 2 h (see for instance [Eva10],
Chapter 5, Section 4 : in the proof of Theorem 1, one can extend u ∈ H 2 h (R × R * + ) with the formula : for y > 0, u(x, -y) = -3u(x, y) + 4u(x, -y/2)). Then we observe that, with F 1 h (resp. F h ) the semiclassical unitary Fourier transform in 1D (resp. 2D),

F 1 h (γu)(ξ) = 1 (2πh) 1/2 R F h (ũ)(ξ, η)dη
From, this we get (2.17)

||γu|| H 3/2 h ≤ Ch -1/2 ||ũ|| H 2 h Indeed, by Cauchy-Schwarz, we have R F h (ũ)(ξ, η)dη 2 ≤ Å R |F h (ũ)(ξ, η)| 2 (1 + ξ 2 + η 2 ) 2 dη ã Å R (1 + ξ 2 + η 2 ) -2 dη ã ≤ Å R |F h (ũ)(ξ, η)| 2 (1 + ξ 2 + η 2 ) 2 dη ã (1 + ξ 2 ) -3/2 R (1 + η 2 ) -2 dη
We find (2.17) by multiplying by (1 + ξ 2 ) 3/2 and integrating over ξ. This concludes the proof.

Lemma 2.2. For j = 1, . . . , J, for any K > 0, there exists h 0 > 0 such that for all 0 < h ≤ h 0 , χH j (z) is holomorphic in D(0, Kh) and satisfies for some C > 0 independent of h, and for z ∈ D(0, Kh),

||χH j (z)|| H 3/2 h (∂Oj )→L 2 (R 2 \Oj ) ≤ Ch -1/2
Proof. We follow the main lines of the proof of Lemma 6.1 in [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF]. First, let us introduce an extension operator T h j :

H 3/2 h (∂O j ) → H 2 h (R 2 ) such that for v ∈ H 3/2 h (∂O j ), T h j v is supported in a small neighborhood of ∂O j and T h j = O(h 1/2 ) : H 3/2 h (∂O j ) → H 2 h (R 2
) This is possible, for instance by taking the extension operator given in the proof of Lemma 6.1 in [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF]. Another approach consists in using a partition of unity and local charts to replace ∂O j by R, as in the proof of Lemma 2.1. Then, one can consider the following operator

T h : v ∈ H 3/2 h (R) → T h v ∈ H 2 h (R 2 ) ; T h v(x, y) = χ x h hD y v (y) where χ ∈ C ∞ c (R), χ(0) = 1. Then, T h v(0, y) = v and one has ||T h v|| H 2 h (R 2 ) ≤ Ch 1/2 ||v|| H 3/2 h (R)
Indeed, one has

F h (T h v)(ξ, η) = h 1/2 η -1 F 1 1 (χ) Å ξ η ã × F 1 h (v)(η)
and hence

||T h v|| 2 H 2 h (R 2 ) = R 2 |F h (T h v)(ξ, η)| 2 (1 + ξ 2 + η 2 ) 2 dξdη ≤ h η -2 F 1 1 (χ) Å ξ η ã 2 F 1 h (v)(η) 2 (1 + ξ 2 ) 2 (1 + η 2 ) 2 dηdξ ≤ h Å R |F 1 1 χ(ξ)| 2 (1 + ξ 2 ) 2 dξ ã Å R |F 1 h (η)| 2 (1 + η 2 ) 3/2 dη ã ≤ Ch||v|| 2 H 3/2 h (R)
We then assume that for all v ∈ H 3/2 h (∂O j ), supp(T h j v) ⊂ supp χ. Then, we claim that

H j (z) = 1 R 2 \Oj T h j -R j,θ (z)1 R 2 \Oj P θ (z)T h j
where R j,θ (z) is the resolvent of the complex scaled Dirichlet realization of -h 2 ∆ -1 on R 2 \ O j . Indeed, the boundary condition on ∂O j is satisfied since Ran(R j,θ ) ⊂ H 1 0 (R 2 \ O j ), and by definition,

P θ R j,θ w = w in R 2 \ O j , for w ∈ L 2 (R 2 \ O j ).
As a consequence, is suffices to show that χR j,θ (z)χ is holomorphic in D(0, Kh) with the bound

χR j,θ (z)χ = O(h -1 ) : L 2 (R 2 \ O j ) → L 2 (R 2 \ O j )
This is a rather standard non-trapping estimates (here, when there is a single obstacle, the billiard flow is non-trapping). As explained in [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] in the proof of Lemma 6.1, such an estimate relies on propagation of singularities concerning the wave propagator : one can check that an abstract non-trapping condition for black box Hamiltonian is satisfied (see for instance [START_REF] Dyatlov | Mathematical Study of Scattering Resonances[END_REF], Definition 4.42). This implies that the required statement ([DZ19], Theorem 4.43) holds.

Finally, we recall the crucial relation between R Ω,θ (z) and M(z) (see [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF], formula 6.11 and the references given there). Assume that z ∈ D(0, Kh) and that Id -M(z) is invertible. Then, so is R Ω,θ (z) and we have

(2.18) R Ω,θ (z) = 1 Ω R θ (z) -1 Ω H(z)(Id -M(z)) -1 γR θ (z)
In particular, we see that if we have a bound for

||(Id -M(z)) -1 || H 3/2 h →H 3/2 h
we find a resolvent bound for R Ω,θ (z). In fact, as explained in [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF], it is sufficient to work on L 2 (∂O) in virtue of the following result :

Lemma 2.3. ([NSZ14], Lemma 6.5) For j = 1, . . . , J, let B * ∂O j := {(y, η), y ∈ ∂O j , |η| ≤ 1} and consider χ j ∈ C ∞ c (T * ∂O j ) such that χ j = 1 near B * ∂O j . Then, by denoting Op h (χ j ) a quantization of χ j and by D the diagonal operator-valued matrix Diag(Op h (χ 1 ), . . . , Op h (χ J )), we have

(Id -D)(Id -M(z)) = O(h ∞ ) L 2 (∂O)→C ∞ (∂O) (Id -M(z))(Id -D) = O(h ∞ ) L 2 (∂O)→C ∞ (∂O)
As a consequence of this lemma, Id -M(z) extends to an operator L 2 (∂O) → L 2 (∂O) and as soon as Id -M(z) is invertible and z ∈ D(0, Kh)

||(Id -M(z)) -1 || H 3/2 h →H 3/2 h ≤ C 1 ||(Id -M(z)) -1 || L 2 →L 2 (with a constant C 1 independent of z).
Microlocal properties of M(z) and reduction to a simpler problem. We recall the main microlocal properties of M(z) and reduce the invertibility of Id -M(z) to a nicer Fourier integral operator, as explained in [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] (Section 6). To do so, let us introduce the following notations.

For j ∈ {1, . . . , J}, let B * ∂O j be the co-ball bundle of ∂O j , S * ∂Oj be the restriction of S * Ω to ∂O j , π j : S * ∂Oj → B * ∂O j the natural projection and ν j (x) be the outward normal vector at x ∈ ∂O j (see Figure 4a).

For i = j, let B ± ij : B * ∂O j → B * ∂O i be the symplectic open maps defined by

ρ = B ± ij (ρ ) ⇐⇒ ∃t > 0 , ∃ξ ∈ S 1 , ∃x ∈ ∂O j (2.19) x + tξ ∈ ∂O i , ν j (x), ξ > 0 , ± ν i (x + tξ) , ξ < 0, (2.20) π j (x, ξ) = ρ , π i (x + tξ, ξ) = ρ (2.21) B +
ij is the billiard map, whereas B - ij is a shadow map (see Figure 4b and4c).These maps are open. (see Figure 4d). Note that due to our definition of these maps, the glancing rays (that is the rays associated with a point ρ = (x, ξ) ∈ B * ∂O with |η| = 1) are not in the set of definition of B ± ij . Moreover, due to Ikawa's condition, if a point ρ ∈ B * ∂O j has an image by B ± ij , it cannot have one by B ± kj for k = i. Let A ij be the closure of the arrival set of the billiard map, that is

A ij = {ρ ∈ B * ∂O i , ∃ρ ∈ B * ∂O j , ρ = B + ij (ρ )} Similarly, let D ij
be the closure of the departure set of the billiard map, that is

D ij = {ρ ∈ B * ∂O j , ∃ρ ∈ B * ∂O i , ρ = B + ij (ρ )} We also note A i = j =i A ij ; D i = j =i D ji
Finally, we introduce the arrival and departure glancing regions :

A G i = A i ∩ S * ∂O i ; ‹ D G i = D i ∩ S * ∂O i
We recall the main facts proved in [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] concerning these relations and their link with M(z) :

Lemma 2.4. (See Figure 5). Assuming that the obstacles satisfy the no-eclipse condition, the following holds :

let i = j = k. Let (ρ 1 , ρ 1 ) ∈ Gr(B - ji ) and (ρ 2 , ρ 2 ) ∈ Gr(B ± kj ). Then, ρ 1 = ρ 2 Figure 5
. The no-eclipse condition prevents such situation. The points ρ 1 , ρ 2 , ρ 1 are represented on the form ρ = (y, η) with a blue point for y ∈ ∂O and a blue arrow for η ∈ B * y ∂O. The limit situations, where the dotted line would be tangent to one of the obstacle are also excluded. 6a : it means that the ray continues to infinity) 6b : it means that the ray comes from infinity)

In particular, it is possible to consider open neighborhoods U

A i and U D i of A G i and ‹ D G i re- spectively, such that (see Figure 6), by noting π R (resp. π L ) the projection (ρ , ρ) → ρ (resp. (ρ , ρ) → ρ ) ρ ∈ U A i =⇒ ρ ∈ k =i π R Gr(B ± ki ) (see Figure
ρ ∈ U D i =⇒ ρ ∈ k =i π L Gr(B ± ik ) (see Figure
Let us fix cut-off functions χ D i (resp.

χ A i ) such that χ D i = 1 near D G i (resp. χ A i = 1 near A G i ) and supp χ D i ⊂ U D i (resp. supp χ A i ⊂ U A i ).
We gather the results of Proposition 6.7 in [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] and some of its consequence in the following proposition. It is based on the microlocal analysis of the operators involved.

Proposition 2.3. For i = j ,

• uniformly in z ∈ D(0, Kh),

M ij (z) Op h (χ A j ) = O(h ∞ ) L 2 →C ∞ ; Op h (χ D i )M ij (z) = O(h ∞ ) L 2 →C ∞ (a)
Due to the no-eclipse condition, if a trajectory coming from an obstacle becomes glancing, then it goes on to infinity without hitting another obstacle. This holds in a neighborhood of the glancing ray and allows to define U A i .

(b) Due to the no-eclipse condition, if a glancing trajectory hits an obstacle, it means that the ray comes from infinity. This holds in a neighborhood of the glancing ray and allows to define U D i .

Figure 6. The sets U A i and U D i are built by using the properties of the glancing rays. The dotted lines correspond to glancing rays, the broken lines represent trajectories close to the glancing region.

• By excluding the glancing region on the left and on the right, we have

(1 -Op h (χ D i ))M ij (z)(1 -Op h (χ A j )) ∈ I 0 (∂O i × ∂O j , Gr Ä B + ij ä ) + I 0 (∂O i × ∂O j , Gr( Ä B - ij ä ) so let us write (1 -Op h (χ D i ))M ij (z)(1 -Op h (χ A j )) = M + ij (z) + M - ij (z) with M ± ij (z) ∈ I 0 (∂O i × ∂O j , Gr Ä B ± ij ä ).
Only compact parts of the interior of the graphs of B ± ij are involved in the definition of the class I 0 (∂O i × ∂O j , Gr

Ä B ± ij ä
), depending on the support of χ D i and χ A j (see A.2.2 in the appendix, for a description of this class). • The operators M ± ij (z) have amplitude α ± ij (z) satisfying, for z ∈ D(0, Kh) and for some

C 1 , τ > 0, α ± ij (z) ≤ C 1 e -τ Im z h • Finally, in virtue of Lemma 2.4, M ± ij (z) • M - jk (z) = O(h ∞ ) L 2 →C ∞ uniformly for z ∈ D(0, Kh).
Let us note M ± (z) the matrix of operators with

M ± (z) ij = ß M ± ij (z) if i = j 0 if i = j
Then, we observe that

(2.22) (Id -M(z)) (Id +M -(z)) = Id -M + (z) + O(h ∞ ) L 2 →C ∞
Since we are interested in invertibility in strips, let's note :

Ω(γ, K, h) = D(0, Kh) ∩ {Im z ≥ -γh}
We have the rather obvious lemma :

Lemma 2.5. Assume that for z ∈ Ω(γ, K, h), Id -M + (z) is invertible and satisfies the bound

||(Id -M + (z)) -1 || L 2 →L 2 ≤ a(z, h)
with a(z, h) ≤ h -N for some N independent of z ∈ Ω(γ, K, h). Then, there exists h 0 > 0 and C > 0, such that for 0 < h ≤ h 0 , and for all z ∈ Ω(γ, K, h), Id -M(z) is invertible and satisfies

||(Id -M(z)) -1 || L 2 →L 2 ≤ Ca(z, h)
Proof. Assuming the invertibility of Id -M + (z), it suffices to write

(Id -M(z)) (Id +M -(z))(Id -M + (z)) -1 = Id +R(z, h) with R(z, h) = (Id -M + (z)) -1 O(h ∞ ) L 2 →C ∞ = O(h ∞ ) L 2 →L 2 uniformly in z.
We conclude by a Neumann series argument to invert the right hand side Id +R(z, h) and use the bound on the amplitude of M -(z) given in Proposition 2.3, which gives a uniform bound for M -(z) in D(0, Kh).

It is then enough to prove the invertibility of Id -M + (z) with polynomial resolvent bounds, where M + (z) is associated with the billiard map.

Conjugation by an escape function. The operator M + (z) satisfies almost all the assumptions of Proposition 2.1 for the relation F = B + , except that it is not very small outside a fixed compact neighborhood of T 2 . To fix this problem, following [NSZ14] (Section 6.3), we can introduce a smooth escape function g 0 . Recall that T is the trapped set for F = B + and let W 1 W 2 W 3 be subsets of i ‹ D i such that T ⊂ W 1 and such that W 3 is large enough so that M + (z) Op h (φ) = O(h ∞ ) L 2 →C ∞ for any smooth function φ such that supp(φ) ∩ W 3 = ∅. This is possible in virtue of the third point in Proposition 2.3. Concerning W 2 , it can be an arbitrarily small neighborhood of T . Then, one can construct g 0 such that (see Lemma 4.5 in [NSZ14]),

g 0 = 0 in W 1 g 0 • F -g 0 ≥ 0 in W 3 g 0 • F -g 0 ≥ 1 in W 3 \ W 2
Then, we set g = T log(1/h)g 0 for some T > 0 fixed and large enough, so that e ± Op h (g) are pseudodifferential operators and satisfies

e ± Op h (g) = O h -T C0 ; C 0 = ||g 0 || ∞ (Note that Op h (g) is a diagonal matrix-valued operator on L 2 (∂O) = L 2 (∂O i ))
, and in virtue of Egorov's theorem, the operator M + g := e -Op h (g) M + (z)e Op h g is O(h L ) for some L > 0, microlocally outside a neighborhood of T , which can be made as small as necessary if W 2 is small enough.

End of proof. We can now apply Proposition 2.1 and then, Proposition 2.2, to M (h) = M + g (z) for z ∈ D(0, Kh) with Im z ≥ -γh. To control the amplitude α h (z) of M + g (z), we simply need a bound in a small neighborhood of T in which M + g is not O(h L ). In virtue of Egorov's theorem, the amplitude of M + g is smaller than the amplitude of M + . We now claim that there exists τ > 0 such that the amplitude satisfies :

||α h (z)|| ∞ ≤ e -τ Im z h
In fact, as explained in [START_REF] Nonnenmacher | Spectral problems in open quantum chaos[END_REF] (Theorem 6), microlocally near the trapped set, it is possible to write

M + (z) = M + (0) Op h (a h,z ) + O(h 1-ε ) ; a h,z (ρ) = exp Å izt(ρ) h ã
where t(ρ) is the time needed for a ray emanating from ρ to hit another obstacle. This fact is a consequence of the microlocal analysis performed in [START_REF] Gérard | Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes[END_REF] (see Appendix II for the construction of a parametrix and III.2 for precise computations near the unique trapped ray for two obstacles, see also [START_REF] Stefanov | Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body[END_REF]). In particular, τ in the estimate above is a maximal return time for the billiard flow, in a small neighborhood of T . Now, let γ, δ be the constants given by Proposition 2.1, depending, in this context, on the dynamics of the billiard map. Let us introduce the following threshold

γ lim = 1 2τ γ δ so that z ∈ Ω(γ lim , K, h) =⇒ ||α h (z)|| ∞ ≤ e γ/2δ < e γ/δ
2 strictly speaking, ∂O is a not a disjoint union of intervals, but since we work with the relation B + , we can use microlocal cut-offs to restrict to the relevant part of the obstacles, which is included in a disjoint union of open intervals Proposition 2.2 now gives for z ∈ Ω(γ lim , K, h),

Id -M + g (z) -1 ≤ 2δ| log h|h -δ log A
where A := max(1, τ γ lim ) Indeed, A ≥ 1 and it allows to have ||α h (z)|| ∞ ≤ A for z ∈ Ω(γ lim , K, h). Going back to M + (z), we get that

Id -M + (z) -1 ≤ C| log h|h -δ log A-2C0T
where the extra h -2C0T comes from the norm of e ± Op h (g) . We conclude with Lemma 2.5 and the formula (2.18), using the estimates of Lemma 2.1 and 2.2. This gives for h small enough and z ∈ Ω(γ lim , K, h),

(2.23) ||R θ (z)|| L 2 →L 2 ≤ C| log h|h -1-2C0T -δ log A 2.3.
Proof in the case of scattering by a potential. The treatment of scattering by a potential is different and relies on a reduction to Poincaré sections of the Hamiltonian flow, under the assumption that the trapped set is totally disconnected.

2.3.1. Assumptions. We refer the reader to [NSZ11] (Section 2.1) for more general assumptions.

Here, we simply consider a smooth compactly supported potential V ∈ C ∞ c (R 2 ) and work with the semiclassical differential operator -h 2 ∆ + V . We fix an energy E 0 > 0 and consider

P h = -h 2 ∆ + V -E 0
We note p(x, ξ) = ξ 2 + V -E 0 and we assume that 0 is not a critical energy of p, that is

dp = 0 on p -1 (0)
Let's note H p the Hamiltonian vector field associated with p and Φ t = exp(tH p ) the corresponding Hamiltonian flow. The trapped set at energy 0 is the set

K 0 = {(x, ξ) ∈ p -1 (0), ∃R > 0, ∀t ∈ R, Φ t (x, ξ) ∈ B(0, R)}
It is a compact subset of p -1 (0). Here are the two crucial assumptions :

(i) Φ t is hyperbolic on K 0 ;

(ii) K 0 is topologically one dimensional.

The reduction of [NSZ11]

. We recall the main ingredients of the reduction to open quantum maps performed in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF]. The aim of the following lines is to explain their crucial Theorem 5. Let us note

R(η, M 0 , h) = {z ∈ C, | Re z| ≤ η, | Im z| ≤ M 0 h}
Here, M 0 is fixed (but large). As in the case of obstacle scattering, we fix once and for all the cut-off function χ ∈ C ∞ c (R 2 ) (with χ = 1 in a neighborhood of supp(V )) and we consider a complex scaled version of P (h), P θ (h) whose eigenvalues coincide with the resonances in R(η, M 0 , h) and such that χ(P θ -z) -1 χ = χ(P -z) -1 χ for z ∈ R(δ, M 0 , h). Note that the parameter θ chosen in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF] depends on h.

Here are now the crucial ingredients of the reduction.

• Poincaré sections. There exist finitely many smooth contractible hypersurfaces Σ i ⊂ p -1 (0), i = 1, . . . , J with smooth boundary and such that

∂Σ i ∩ K 0 = ∅ ; Σ i ∩ Σ k = ∅, k = i
H p is transversal to Σ i uniformly up to the boundary Moreover, for 1 ≤ i ≤ J and for every ρ ∈ K 0 , there exists t -(ρ) < 0 and i -(ρ) (resp. t + (ρ) > 0 and i + (ρ)) such that

Φ t±(ρ) (ρ) ∈ K 0 ∩ Σ i±(ρ) Σ ∩ {Φ t (ρ), t -(ρ) < t < t + (ρ), t ∈ R * } = ∅
where we note The maps t ± (ρ) are uniformly bounded on K 0 and can be smoothly extended in a neighborhood of K 0 . For convenience, it is also assumed that i + (ρ) = i for all ρ ∈ K 0 ∩ Σ i . This can be achieved by taking smaller and more Poincaré sections. Finally, there exist Σ i R 2 and symplectic diffeomorphisms

Σ = J i=1 Σ i
κ i : Σ i → Σ i
smooth up to the boundary.

• Poincaré return map. For 1 ≤ i, j ≤ J, the map ρ → Φ t+(ρ) (ρ), initially defined on K 0 , extends smoothly to a symplectic diffeomorphism

F ij : D ij → A ij by taking the intersection of the flow of a point ρ ∈ D ij with Σ i where D ij (resp. A ij ) is a neighborhood of {ρ ∈ T ∩ Σ j , i + (ρ) = i} (resp. {ρ ∈ T ∩ Σ i , i -(ρ) = j}) in Σ j (resp. Σ i ).
The map F ij is called the Poincaré return map. By writing it in the charts κ i and κ j , we can consider the following map between open sets of

T * R ‹ F ij = κ i • F ij • κ -1 j : ‹ D ij ⊂ Σ j → A ij ⊂ Σ i
Using the continuity of the flow, the same objects can be defined on energy shells p -1 (z) for z ∈ [-δ, δ] with δ small enough and we will note these objects

Σ (z) i , F (z) 
ij , etc. In fact, it is possible to use the same open sets Σ i and define,

‹ F (z) ij = κ i • F (z) ij • κ -1 j : ‹ D (z) ij ⊂ Σ j → A (z) ij ⊂ Σ i
The hyperbolicity of the flow implies the hyperbolicity of these open maps.

• Open quantum maps. The notion of open quantum hyperbolic map associated with F has been given in Definition 2.1. Since Σ j ⊂ T * R, we will simply say that it is an operator-

valued matrix T = (T ij ) 1≤i,j≤J : L 2 (R) J → L 2 (R) J with T ij ∈ I δ (R × R, Gr Ä ‹ F ij ä ).
In [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF], the authors construct a particular family of open quantum hyperbolic maps, called M(z), where M(z) is associated with ‹ F (Re z) . This family is first microlocally defined near the trapped set and satisfies uniformly in R(η, M 0 , h) and microlocally in a fixed neighborhood of the trapped set :

M ij (z) = M ij (Re z) Op h (a z ) + O(h log h) ; a z = exp i (Im z)t (z) + h
This particular family is built to solve a microlocal Grushin problem (see section 4 in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF]). • Escape functions. To perform a global study (i.e. no more microlocal) and to make the amplitude of M(z) very small outside a fixed neighborhood of the trapped set, the authors introduce an escape function for the flow

Φ t , denoted G 0 ∈ C ∞ c (T * R 2 ) (see Lemma 5.3 in [NSZ11]
, where it is chosen independent of the energy variable near Σ). Let us note

G = M h log(1/h)G 0 , g j = G| Σj • κ -1 j and g : J j=1 Σ j → R, ρ ∈ Σ j → g j (ρ)
g is an escape function for the map ‹ F . Each g j can be extended as an element of C ∞ c (R 2 ) (see equation 5.2 and below in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF]).

• Conjugated operators. As in the case of obstacle scattering, we can consider the operators

e ± Op h (G) : L 2 (R 2 ) → L 2 (R 2 ) ; e ± Op h (g) : L 2 (R) J → L 2 (R) J
Again, their norm is bounded by O(h -K G ) for some K G > 0 depending on G 0 and M . We now introduce the following conjugated operators :

P θ,G = e -Op h (G) P θ e Op h (G) ; M ij,g (z) = e -Op h (gi) M ij (z)e Op h (gj ) M g (z) = (M ij,g (z)) 1≤i,j≤J
The escape function G 0 is built so that M g (z) :

L 2 (R) J → L 2 (R) J is O(h K0
) for some (large) K 0 microlocally outside a small neighborhood of the trapped set T . In particular, M g (z) satisfies the assumptions of the propositions 2.1 and 2.2. • A finite dimensional space. For practical and technical reasons,3 the authors choose to work with a finite dimensional version of the open quantum map M g (z). To do so, they introduce finite rank projections

Π j : L 2 (R) → L 2 (R) and the finite dimensional subspace of L 2 (R) J H = Ran Π 1 × • • • × Ran Π J
The Π j 's are built so that the projector Π = Diag(Π 1 , . . . , Π J ) satisfies the very important relation

(2.24) ΠM(z)Π = M(z)Π + O(h K1 )
for some large K 1 (in particular K 1 K G so that the same relation holds after conjugation by e Op h g with K 1 replaced by K 1 -2K G ). We will note Π g = e -Op h (g) Πe Op h (g) .

• The Grushin problem. To obtain a global Grushin problem (see section 5 in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF]) the authors construct global operators R + (z) :

H 2 h (R 2 ) → H, R -(z) : H → H 2 h (R 2 ) which depend holomorphically on z ∈ R(η, M 0 , h). The Grushin problem concerns (2.25) P g (z) = Å P θ,G -z R -(z) R + (z) 0 ã : H 2 h (R 2 ) × H → L 2 (R 2 ) × H
The goal of such a Grushin problem is to transform the eigenvalue equation P θ,G u = zu into an equation on a simpler operator E ± (z). This transformation is possible when P g (z) is invertible. Indeed, in virtue of the so-called Schur complement formula, if P g (z) is invertible with inverse

E(z) = Å E(z) E + (z) E -(z) E ± (z) ã : L 2 (R 2 ) × H → H 2 h (R 2 ) × H, then P θ,G -z is invertible if and only if E ± (z
) is and we have

(P θ,G -z) -1 = E(z) -E + (z)E ± (z) -1 E -(z)
The authors prove the following result :

Theorem 4 ([NSZ11], Theorem 5). The Grushin problem (2.25) is invertible for all z ∈ R(η, M 0 , h).

If we note

E(z) = Å E(z) E + (z) E -(z) E ± (z) ã : L 2 (R 2 ) × H → H 2 h (R 2 ) × H the inverse of P g (z), then • 4 ||E||, ||E + ||, ||E -||, ||E ± || = O(h -1 ) uniformly in R(η, M 0 , h).
• The operator E ± (z) takes the form, for some L 2 > 0

E ± (z) = Id -M g (z, h) + O(h L2 ) ; M g (z, h) := Π g M g (z)Π g
Remark. As explained after Theorem 2 in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF], L 2 = c M for some c , where M is the one in the definition of the escape function G. In particular, M can be chosen arbitrarily large, independently of c , so that L 2 can be made as large as necessary.

2.3.3. End of proof. To rigorously apply Proposition 2.1 to M g (z), we fix η 0 ∈ [-η, η] for η small enough and consider z ∈ D(η 0 , Kh) for some fixed 0 > K < M 0 . For such z, M(z) is an open quantum map associated with the Poincaré return map between the Poincaré sections Σ(η 0 ) = 1≤j≤J Σ j (η 0 ) inside the energy shell p -1 (η 0 ). Since M g (z) satisfies the assumption of Proposition 2.1 for z ∈ D(η 0 , Kh) ∩ R(η, M 0 , h), it also satisfies its conclusion :

(2.26)

∃h 0 > 0, δ, γ > 0 ; ∀0 < h ≤ h 0 , ||M(z) N (h) g || L 2 →L 2 ≤ h γ ||α h (z)|| N (h) ∞
with N (h) ∼ δ| log h|. A priori, h 0 , δ, γ depend on η 0 . Nevertheless, as explained after Proposition 2.1, δ and γ depend only on the properties of the Poincaré return map F (η0) and h 0 depends on semi-norms of α h (z) = e i z h t (η 0 ) +

. As explained in Section 4.1.1 in [START_REF] Nonnenmacher | From open quantum systems to open quantum maps[END_REF], this dynamics depends continuously on η 0 in a neighborhood of 0 : that is, the departure sets, the arrival sets, the Poincaré maps and the return time function depend continuously on η 0 . As a consequence, we can find η and constants δ, γ, h 0 such that (2.26) holds for z ∈ Ω(η, γ, h) := {| Re z| ≤ η, -γh ≤ Im z ≤ 0}. From this, we see that for 0 < h ≤ h 0 and for z ∈ Ω(η, γ, h),

||M(z) N (h) g || L 2 →L 2 ≤ h γ e -N (h)τ Im z h ; τ = sup |η0|≤η ||t (η0) ∞ || ∞
From (2.24), we see that for N (h) ∼ δ| log h|,

M g (z) N (h) = Π g M N (h) g Π g + O((log h)h K1 )
so that we deduce that M g (z) satisfies also the conclusion of Proposition 2.1 and hence, of Proposition 2.2. As a direct consequence, we obtain that for h small enough, E ± (z) is invertible for all z ∈ Ω(η, γ, h) and it satisfies for some β > 0 :

||E ± (z) -1 || H→H ≤ h -β
We now conclude the proof as in the case of obstacle scattering, essentially replacing the formula (2.18) by the standard Schur complement formula for the Grushin problem above : E ± (z) is invertible if and only if P θ -z is and

(P θ,G -z) -1 = E(z) -E + (z)E ± (z) -1 E -(z)
Then, for h small enough and for z ∈ Ω(η, γ, h),

||(P θ,G -z) -1 || L 2 →H 2 h = O(h -1 ) + O(h -β-2 ) = O(h -β-2 ) which gives ||(P θ -z) -1 || L 2 →H 2 h = O(h -β-2-2K G )
where c 0 depends on G 0 .

Application to the local energy decay for the wave equation

We present an application of the resolvent estimate obtained in the case of obstacle scattering to the decay of the local energy for the wave equation outside the obstacles. In this note, we follow the main arguments of [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] to prove Theorem 3.

3.1. Resolvent estimates. Let us rewrite the resolvent estimate of Theorem 2 in term of λ : there exists γ > 0, λ 0 > 0 and β > 0 such that for any χ ∈ C ∞ c (R 2 ) equal to one in a neighborhood of O, there exists C χ > 0 such that for all λ ∈ C,

(3.1) |λ| ≥ λ 0 , Im λ ≥ -γ =⇒ ||χR(λ)χ|| L 2 →L 2 ≤ C χ |λ| β
Recalling that for f ∈ L 2 comp , with g = R(λ)f it holds that χg ∈ H 1 0 (Ω) and g satisfies -∆g+λ 2 g = f , it is not hard to see that the above estimate implies that

(3.2) ||χR(λ)χ|| L 2 →H 1 0 ≤ C χ |λ| β+1
for |λ| ≥ λ 0 and Im λ ≥ -γ (see for instance the proof of Proposition 2.5 in [START_REF] Burq | On nonlinear Schrödinger equations in exterior domains[END_REF]). This gives resolvent estimates for large λ. We will also need to control the resolvent for small λ, in angular neighborhoods of the logarithmic singularity at 0. For this purpose, we state a consequence of a result proved in [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] (Appendix B.2) :

Lemma 3.1. For ε > 0, let S ε = {λ ∈ C * , |λ| ≤ ε, arg λ ∈ [-π/4, 5π/4]}.
There exists ε 0 > 0 such that there is no resonance in S ε0 and for any χ ∈ C ∞ c (R 2 ) equal to one in a neighborhood of O, there exists C χ > 0 such that for all λ ∈ S ε0 , (3.3) ||χR(λ)χ|| L 2 →H 1 0 ≤ C χ Finally, we also mention the following result, proved in [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] (Appendix B.1), which will be used below : Lemma 3.2. There are no real resonances (that is with arg(z) = 0 or π). 

A = Å 0 Id ∆ 0 ã with domain D(A) = (H ∩ H 2 (Ω)) ⊕ H 1 0 (Ω).
A is maximal dissipative, so that Hille-Yosida theory allows to define the propagator e tA and for (u 0 , u 1 ) ∈ H, the first component u(t) of t → e tA (u 0 , u 1 ) is the unique solution of the following Cauchy problem

   ∂ 2 t u -∆u = 0 u| t=0 = u 0 ∂ t u| t=0 = u 1
Note also that since A is maximal dissipative, for ξ with Re(ξ) > 0, A -ξ is invertible and

(3.4) ||(A -ξ) -1 || H→H ≤ | Re ξ| -1
The global energy of the solution is defined as

E(t) = 1 2 ||(u(t), ∂ t u(t))|| 2 H = 1 2 Ω |∇u(t)| 2 + |∂ t u(t)| 2
It is conserved. If K R 2 , we also define the local energy in K as

E K (t) = 1 2 K∩Ω |∇u(t)| 2 + |∂ t u(t)| 2 Note that, by Poincaré inequality, if B ⊂ Ω is bounded and if χ ∈ C ∞ c (R 2 ) is equal to one in a neighborhood of O and is supported in B, then for f ∈ H(Ω), ||χf || H ∼ ||χf || H 1 (B) ∼ ||χf || L 2 (B) + ||∇(χf )|| L 2 (B) If χ ∈ C ∞ c (R 2
) is equal to one in a neighborhood of O, by abuse we note χ the bounded operator of (u, v) ∈ H → (χu, χv) ∈ H.

A short computation shows that for λ ∈ C, (u 0 , u 1 ) ∈ D(A) and (v 0 , v 1 ) ∈ H,

(A + iλ) Å u 0 u 1 ã = Å v 0 v 1 ã ⇐⇒ ß (-∆ -λ 2 )u 0 = iλv 0 -v 1 u 1 = v 0 -iλu 0
This relation and the remark above for bounded sets B show that for any χ ∈ C ∞ c (R 2 ), the cut-off resolvent χ(A + iλ) -1 χ, well defined for Im λ > 0 extends to the logarithmic cover Λ of C and we have for λ ∈ Λ We deduce that χ(A + iλ) -1 χ has no real resonance and satisfies the following resolvent estimates, for some constant C χ ,

(3.5) χ(A + iλ) -1 χ = Å iλχR(λ)χ -χR(λ)χ χ 2 + λ 2 χR(λ)χ iλχR(λ)χ
λ ∈ S ε0 =⇒ χ(A + iλ) -1 χ H→H ≤ C χ (3.6) |λ| ≥ λ 0 , Im λ ≥ -γ =⇒ χ(A + iλ) -1 χ H→H ≤ C χ |λ| β+2 (3.7)
3.3. Proof of the local energy decay. Let us fix R > 0 such that O B(0, R). We want to estimate the local energy in B(0, R) for solutions with initial data supported in B(0, R), and sufficiently regular, that is in D(A k ) for a sufficiently large k. As we will see, the decay will hold for data in D(A k ) with k ≥ β + 4, where β is the one appearing in (3.7). For this purpose, let us

fix χ ∈ C ∞ c (R 2 ) such that χ = 1 in B(0, R). Let U 0 ∈ D(A k ) with supp(U 0 )
B(0, R). We want to estimate the energy of χe tA U 0 , or equivalently, we want to control χe tA U 0 H . Let us write U

= (I -A) k U 0 ∈ H, so that ||U 0 || D(A k ) = ||U || H .
It is clear that we have supp(U ) ⊂ B(0, R), so that U = χU . With this notation, we want to show that there exists C R > 0 such that for all t ≥ 1,

I(t) := χe tA (I -A) -k χU H ≤ C t ||U || H
The starting point of the proof is the following formula :

Lemma 3.3. Assume that k ≥ 2. For t ≥ 0 and for U ∈ H, we have

(3.8) e tA (I -A) -k U = -1 2π λ∈ i 2 +R e -itλ 1 (1 + iλ) k (A + iλ) -1 U dλ
Proof. First remark that the integral I(t) in the right hand side is absolutely convergent in virtue of (3.4) and since k ≥ 2. Differentiating the right hand side with respect to t, we find that

(∂ t -A)I(t) = -1 2π λ∈ i 2 +R e -itλ 1 (1 + iλ) k (-iλ -A)(A + iλ) -1 U dλ = 1 2π λ∈ i 2 +R e -itλ 1 (1 + iλ) k U dλ = 0
(To see that the last integral is equal to zero, one can for instance perform a contour deformation from Im(λ) = 1/2 to Im(λ) = -ρ and let ρ tend to +∞. ) Finally, we need to check that I(0) = (Id -A) -k U . We have

I(0) = -1 2π λ∈ i 2 +R 1 (1 + iλ) k (A + iλ) -1 U dλ
We perform a contour deformation. Let r > 1 and let Γ r be rectangle joining the points i/2 + r, r(1 + i), r(i -1), i/2 -r. We also note γ

r = Γ r \ [-r + i/2, r + i/2]. The function g k : z → -(1 + iz) -k (iz Id +A) -1 U is meromorphic in Im z > 0, with a unique pole at z = i. As a consequence, we find that 1 2iπ Γr g k (z)dz = Res z=i g k = -1 i k (k -1)! ∂ k-1 z ((iz Id +A) -1 )U | z=i = i(Id -A) -k U
Hence, we have

I(0) = lim r→+∞ -i 2iπ i/2+r i/2-r g k (λ)dλ = lim r→+∞ -i Ç i(Id -A) -k U - γr g k (z)dz å = (Id -A) -k U
Indeed, it is not hard to see that the contribution on γ r tends to 0 as r → +∞.

End of proof of Theorem 3. The proof relies on a contour deformation below the real axis in the integral of (3.8) where the cut-off χ is inserted, but we need to get around the logaritmic singularity at 0 : it is possible due to (3.6).

We fix t > 0. In the estimates below, the constants denoted by C (or C k ) do not depend on t. We know that the map λ → χ(A + iλ) -1 χU is meromorphic in C \ iR -, with no poles in {Im λ > 0} ∪ S ε0 ∪ {Im λ ≥ -γ, |λ| ≥ λ 0 }. By taking ε 0 smaller if necessary, we may assume that 2 -1/2 ε 0 ≤ γ. Let K be the union of the rectangles K + and K -where Since there is only a finite number of resonance in K and since there are no resonances on K ∩ {Im λ = 0}, we can find δ > 0 such that there is no resonance in K ∩ {Im λ ≥ -δ} and since this region is compact, we can find C such that for λ

K ± = {λ ∈ C, Re λ ∈ [±2 -1/2 ε 0 , ±λ 0 ], Im λ ∈ [-2 -1/2 ε 0 , 0]} γ + r l r l + r l - r γ - r C ε γ - ε γ + ε
∈ K ∩ {Im λ ≥ -δ}, ||χ(A + iλ) -1 χ|| H→H ≤ C Let's note z + (resp. z -) the unique point in {|z| = ε 0 } ∩ {Im z = -δ} ∩ {± Re z > 0}.
Fix r 1 and 0 < ε < ε 0 and let's note z ± ε the point of the segment [0, z ± ] with norm ε and let's introduce the following paths, oriented from the left point to the right point :

γ + r = [z + , r -iδ] ; γ - r = [-r -iδ, z -] γ + ε = [z + ε , z + ] ; γ + ε = [z -, z - ε ] l + r = [r -iδ, r + i/2] ; l - r = [-r -iδ, -r + i/2] l r = [-r + i/2, r + i/2]
and C ε be the arc of the circle {|z| = ε} from z - ε to z + ε . (See Figure 8). With f k (z) = -1 2π e -itz (1+iz) -k χ(A+iz) -1 χU , we have χe tA (Id -A) -k χU = lim r→+∞ lr f k (z)dz and since f k (z) is holomorphic in a neighborhood of the compact set surrounded by the above contours, we have The case of γ - ε is treated similarly. On γ ± r , the following holds :

||χ(A + iλ) -1 χ|| H→H ≤ C|λ| β+2
Indeed, this is true for |λ| ≥ λ 0 and there is no resonance on γ ± r . As a consequence, for λ = -iδ +ξ, |ξ| ≥ Re(z + ), we have ||χe -itλ (1 + iλ) -k (A + iλ) -1 χ|| H→H ≤ Ce -tδ |ξ| β+2-k Hence, we assume here that k ≥ β + 4 so that We review the most important notions of semiclassical analysis needed in this note. .

A.1. Pseudodifferential operators and Weyl quantization. We recall some basic notions and properties of the Weyl quantization on R n . We refer the reader to [START_REF] Zworski | Semiclassical Analysis[END_REF] for the proofs of the statements and further considerations on semiclassical analysis and quantizations. We start by defining classes of h-dependent symbols.

Definition A.1. Let 0 ≤ δ ≤ 1 2 . We say that an h-dependent family a := (a(•; h)) 0<h 1 is in the class S δ (T * R n ) (or simply S δ if there is no ambiguity) if for every α ∈ N 2n , there exists C α > 0 such that :

∀0 < h ≤ 1, sup (x,ξ)∈R n |∂ α a(x, ξ; h)| ≤ C α h -δ|α|
In this paper, we will mostly be concerned with δ < 1/2. We will also use the notation S 0 + = δ>0 S δ . We write a = O(h N ) S δ to mean that for every α ∈ N 2n , there exists C α,N such that ∀0 < h ≤ 1, sup For a given symbol a ∈ S δ (T * R n ), we say that a has a compact essential support if there exists a compact set K such :

∀χ ∈ C ∞ c (R n ), supp χ ∩ K = ∅ =⇒ χa = O(h ∞
) S(T * R n ) (here S stands for the Schwartz space). We note ess supp a ⊂ K and say that a belongs to the class S comp δ (T * R n ). The essential support of a is then the intersection of all such compact K's. In particular, the class S comp δ contains all the symbols in S δ supported in a h-independent compact set and these symbols correspond, modulo O(h ∞ ) S(T * R) , to all symbols of S comp δ . For this reason, we will adopt the following notation : for an open set Ω ⊂ R n , a ∈ S comp δ (Ω) ⇐⇒ ess supp a Ω. For a symbol a ∈ S δ (T * R n ), we will quantize it using Weyl's quantization procedure. It is written as :

(Op h (a)u)(x) = (a W (x, hD x )u)(x) = 1 (2πh) n We say that a family u = u(h) ∈ D (R n ) is h-tempered if for every χ ∈ C ∞ c (R n ), there exist C > 0 and N ∈ N such that ||χu|| H -N h ≤ Ch -N . For a h-tempered family u, we say that a point ρ ∈ T * R n does not belong to the wavefront set of u if there exists a ∈ S comp (T * R n ) such that a(ρ) = 0 and Op h (a)u = O(h ∞ ) S . We note WF h (u) the wavefront set of u.

  Spectral gap and resolvent estimates. Let (O j ) 1≤j≤J be open, strictly convex obstacles in R 2 having smooth boundary and satisfying the Ikawa condition of no-eclipse: fori = j = k, O i does not intersect the convex hull of O j ∪ O k . Let O = J j=1 O j ; Ω = R 2 \ O.

Figure 1 .

 1 Figure 1. Scattering by three obstacles in the plane

Figure 2 .

 2 Figure 2. A schematic example with J = 3 in a case where D ii = ∅ for i = 1, 2, 3.

( a )

 a The notations used to define the billiard map and the shadow map.(b) The billiard map.B + ij (yj, ηj) = (yi, ηi).(c) The shadow map. B - ij (yj, ηj) = (yi, ηi). (d) These maps are open. In this figure, the point (yj, ηj) has no image.

Figure 4 .

 4 Figure 4. Description of billiard map and the shadow map.

Figure 7 .

 7 Figure 7. Schematic representation of Poincaré sections for the flow Φ t on an energy shell. The energy shell has dimension 3, so that the Poincaré section are 2-dimensional.

3. 2 .

 2 The wave equation generator. Let H be the Hilbert spaceH(Ω) ⊕ L 2 (Ω), where H is the completion of C ∞ c (Ω) with respect to the norm ||f || H = ||∇f || L 2 (Ω)5 and let A be the operator

ã5

  This choice of Hilbert space makes the wave propagator unitary on H, since the energy of a solution of the wave equation is its norm in H; see[START_REF] Taylor | Partial Differential Equations II: Qualitative Studies of Linear Equations[END_REF], Chapter 9, Section 4

Figure 8 .

 8 Figure 8. The contour used to deform the integral. z -(resp. z + ) is the blue (resp. red) point on the figure.

e

  Note thatC ε ∪ γ + ε ∪ γ - ε ⊂ S ε0. As a consequence, we have Cε f k (z)dz H ≤ C k ε||U || H → ε→0 0 and, with θ = arg z + , ts sin θ ||U || H ds ≤ C k ||U || H t| sin θ| e tε sin θ -e tε0 sin θ ≤ C k t ||U || H

r

  Re(z + ) e -tδ |ξ| β+2-k ||U || H dξ ≤ Ce -tδ +∞ Re(z + ) |ξ| -2 ||U || H dξ ≤ Ce -tδ ||U || HFinally, we treat the vertical segments l ± r .l ± r f k (z)dz H ≤ C sup y∈[-δ,1/2]

  (x,ξ)∈R n |∂ α a(x, ξ; h)| ≤ C α,N h -δ|α| h N If a = O(h N ) S δ for all N ∈ N, we'll write a = O(h ∞ ) S δ .

  (y)e i (x-y)•ξ h dydξ We will note Ψ δ (R n ) the corresponding classes of pseudodifferential operators. By definition, the wavefront set of A = Op h (a) is WF h (A) = ess supp a.

  For y ∈ [-δ, 1/2], we have||f k (±r + iy)|| H ≤ Ce ty r -k ||χ(A + i(r + iy)) -1 χ|| H→H × ||U || H ≤ Ce t/2 r -k ||χ(A + i(r + iy)) -1 χ|| H→H × ||U || HUsing (3.7), we find that for y ∈ [-δ, 1/2], ||χ(A + i(r + iy)) -1 χ|| H→H ≤ Cr β+2 . As a consequence, one finds that for y ∈ [-δ, 1/2],||f k (±r + iy)|| H ≤ Ce t/2 r β+2-k ||U || H ≤ Ce t/2 r -2 ||U || H Ce -tδ + C k ε + Ce t/2 r -2By letting ε tending to 0 and r to +∞, we conclude that ||χe tA (Id -A) -k χU || H ≤

	As a consequence,						
	lr	f k (z)dz	H	≤	Å C k t	+ ã	||U || H
						Å C k t	+ Ce -tδ	ã	||U || H ≤	C k t	||U || H
	which gives the required result.					

||f k (±r + iy)|| H Appendix A. Tools of semiclassical analysis

We use notations similar to the ones in[START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] but beware that we do not use the exact same conventions.

Mainly, to ensure the existence of determinants without discussion

the norms are associated with the spaces mentionned above. For instance, ||E -|| H→H 2 h (R 2 ) .

We say that a family of operators B = B(h) :

The wavefront set of B, denoted WF h (B) is defined as

The Calderon-Vaillancourt Theorem asserts that pseudodifferential in Ψ δ are bounded on L 2 and as a consequence of the sharp Gärding inequality (see [START_REF] Zworski | Semiclassical Analysis[END_REF], Theorem 4.32), we also have a precise estimate of L 2 norms of pseudodifferential operator, Proposition A.1. Assume that a ∈ S δ (R 2n ). Then, there exists C a depending on a finite number of semi-norms of a such that :

We recall that the Weyl quantizations of real symbols are self-adjoint in L 2 . The composition of two pseudodifferential operators in Ψ δ is still a pseudodifferential operator. More precisely (see [START_REF] Zworski | Semiclassical Analysis[END_REF], Theorem 4.11 and 4.18 D) is a Fourier multiplier acting on functions on R 4n and, writing ρ i = (x i , ξ i ),

A.2. Fourier Integral Operators. We review some aspects of the theory of Fourier integral operators. We follow [START_REF] Zworski | Semiclassical Analysis[END_REF], Chapter 11 and [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF]. We refer the reader to [START_REF] Guillemin | Semiclassical Analysis[END_REF] for further details or to [START_REF] Alexandrova | Semi-classical wavefront set and fourier integral operators[END_REF]. Finally, we will give the precise definition needed to understand the definition 2.1.

A.2.1. Local symplectomorphisms and their quantization. Let us note K the set of symplectomorphisms κ : T * R n → T * R n such that the following holds : there exist continuous and piecewise smooth families of smooth functions (κ t ) t∈[0,1] , (q t ) t∈[0,1] such that : [START_REF] Zworski | Semiclassical Analysis[END_REF], Lemma 11.4, which asserts that local symplectomorphisms can be seen as elements of K, as soon as we have some geometric freedom.

Lemma A.1. Let U 0 , U 1 be open and precompact subsets of T * R n . Assume that κ : U 0 → U 1 is a local symplectomorphism that extends to V 0 U 0 an open star-shaped set. Then, there exists κ ∈ K such that κ| U0 = κ.

If κ ∈ K and if (q t ) denotes the family of smooth functions associated with κ in its definition, we note Q(t) = Op h (q t ). It is a continuous and piecewise smooth family of operators. Then the Cauchy problem (A.1)

is globally well-posed.

From now on, we restrict to the case n = 1. Following [NSZ14], Definition 3.9, we adopt the definition : Definition A.2. Let κ ∈ K and let us note C = Gr (κ) = {(x, ξ, y, -η), (x, ξ) = κ(y, η)} the twisted graph of κ. Fix δ ∈ [0, 1/2). We say that U ∈ I δ (R × R; C) if there exists a ∈ S δ (T * R) and a path (κ t ) from Id to κ satisfying the above assumptions such that U = Op h (a)U (1), where t → U (t) is the solution of the Cauchy problem (A.1).

The class

It is a standard result, known as Egorov's theorem (see [START_REF] Zworski | Semiclassical Analysis[END_REF], Theorem 11.1) that if U (t) solves the Cauchy problem (A.1) and if a ∈ S δ , then

Remark. Applying Egorov's theorem and Beals's theorem, it is possible to show that if (κ t ) is a closed path from Id to Id, and U (t) solves (A.1), then U (1) ∈ Ψ 0 (R n ). In other words,

But the other inclusion is trivial. Hence, this in an equality :

The notation I(R × R, C) comes from the fact that the Schwartz kernels of such operators are Lagrangian distributions associated to C, and in particular have wavefront sets included in C. As a consequence, if

We also recall that the composition of two Fourier integral operators is still a Fourier integral operator : if κ 1 , κ 2 ∈ K and

Quantization of open symplectic maps. As in Section 2, we consider a symplectic map F which is the union of local open symplectic

are open sets. We keep the same notations. In particular, T is the trapped set and the full arrival (resp. departure) set is A (resp. ‹ D). We fix a compact set W ⊂ Ã containing some neighborhood of T . Our definition will depend on W and, is not, in some sense, canonical. Following [START_REF] Nonnenmacher | Fractal weyl law for open quantum chaotic maps[END_REF] (Section 3.4.2), we now focus on the definition of the elements of I δ (Y × Y ; Gr(F ) ). An element

• Fix some small ε > 0 and two open covers of U j , U j ⊂ L l=1 Ω l , Ω l Ω l , with Ω l starshaped and having diameter smaller than ε. We note L the sets of indices l such that Ω l ⊂ ‹ D ij ⊂ U j and we require (this is possible if ε is small enough)

• Introduce a smooth partition of unity associated to the cover (Ω l ), (χ l ) 1≤l≤L ∈ C ∞ c (Ω l , [0, 1]), supp χ l ⊂ Ω l , l χ l = 1 in a neighborhood of U j .

• For each l ∈ L, we denote F l the restriction to Ω l of F ij . By Lemma A.1, there exists κ l ∈ K which coincides with F l on Ω l . • We consider T l = Op h (α l )U l (1) where U l (t) is the solution of the Cauchy problem (A.1) associated to κ l and α

T R is a globally defined Fourier integral operator. We will note

) such that Ψ i ≡ 1 on π(U i ) and Ψ j ≡ 1 on π(U j )(here, π : (x, ξ) ∈ T * Y • → x ∈ Y • is the natural projection) and we adopt the following definitions : Definition A.3. We say that T : D (Y j ) → C ∞ (Y i ) is a Fourier integral operator in the class I δ (Y i × Y j , Gr(F ij ) ) if there exists T R ∈ I δ (R × R, Gr(F ij ) ) as constructed above such that

For U j ⊂ U j and U i = F (U j ) ⊂ U i , we say that T (or T R ) is microlocally unitary in U i × U j if T T * = Id microlocally in U i and T * T = Id microlocally in U j .