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MULTIGRADED TOR AND LOCAL COHOMOLOGY

MARC CHARDIN AND RAFAEL HOLANDA

Abstract. Notions of Castelnuovo-Mumford regularity and of a∗ invariant were

extended from standard graded algebras to the toric setting.

We here focus our attention on the standard multigraded case, which corresponds

to a product of k projective spaces. A natural notion for a Zk-graded module is its

support : degrees in which it is not zero. A stabilized version of it is adding −Nk,

in order for the complement (vanishing region) to be stable by addition of Nk.

Cohomology of twists of a sheaf on a product of projective spaces, provided by a

graded module, are given by local cohomologies with respect the product B of the

ideals Bi generated by the k sets of variables.

Our results shed some light on a central issue, the relation between shifts in

graded free resolution and cohomology vanishing : it shows that stabilized support

of cohomology with respect to B corresponds to the union of stabilized supports for

cohomologies in the Bi’s, while shifts in (some of the) graded free resolutions are

inside the intersection of these stabilized supports. A one-to-one correspondence

between stabilized supports of Tor modules and of local cohomologies with respect

to the sum of the Bi’s is also established.

We then derive a consequence on linear resolutions for truncations of a graded

module.

1. Introduction

Let S be a commutative ring and R a finitely generated standard Zk-graded poly-

nomial extension. In other words R has k ≥ 1 finite sets of variables, the i-th set

having degree the i-th canonical generator of Zk.
A graded R-module M determines a quasi-coherent sheaf F on the scheme Proj(R)

which is the product (over the spectrum of S) of projective spaces (again over the

spectrum of S) corresponding to the k sets of variables. Any quasi-coherent sheaf

arises this way similarly as in the case of a single projective space. Sheaf cohomology

of twists of F could be given in terms of graded components of the local cohomology

of M with respect to the product B of the ideals B1, . . . , Bk generated by the k sets

of variables.
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In the case k = 1, the notion of Castelnuovo-Mumford regularity provides a key

relation between shifts in graded free resolutions of M and the degrees where local

(or sheaf) cohomologies vanish. This notion could also be defined by considering

truncations of the module (keeping only elements of degree at least some given integer)

and asking for generation in a single degree and maximal shifts at each step in a graded

resolution increasing at most by one.

In a series of works, first motivated by toric geometry (see [10]), the notion of

Castelnuovo-Mumford regularity was extended and studied for the multigraded set-

ting, in general requiring S to be a field and M to be finitely generated. Although

the properties do not extend perfectly, pretty sharp results have been obtained and

provide a more and more precise picture of the situation; in the standard multigraded

setting, see for instance [3] for a recent refinement and references to previous works.

Besides the notion of Castelnuovo-Mumford regularity, a variation of this notion

sometimes called the a∗-invariant could as well be defined both in terms of shifts in

graded free resolutions or in terms of local cohomology. It is bounded above by the

regularity and the difference is at most the number of variables; it gives a sharper

estimate of the regularity of the Hilbert function, but do not share all the nice features

of regularity.

In this text, we consider the natural extension of the notion of a∗-invariant by

considering the following notion already present in the work of Huy Tài Hà [8]:

CB(M)∗ := ∪i SuppZk(H i
B(M))∗

where the support of a graded module is the set of degrees for which the corresponding

component is not 0. The star of a set E ⊆ Zk, E∗ := {e−µ | µ ∈ Nk}, is the smallest

set containing E such that its complement is stable under the addition of any element

in Nk (see Lemma 3.4).

In order to understand cohomology with support in B, which could be hard to

determine even in very simple examples (Remark 3.12 presents one such case), one

available tool is a spectral sequence (see [9] or our construction in 3.2)⊕
1≤i1<···<ip≤k

Hp−q−1
Bi1

+···+Bip
(M)⇒ Hq

B(M).

It shows that CB(M) ⊆
⋃
i1,...,ip

CBi1
+···+Bip

(M). The cohomology with respect to the

sum of some Bj’s is much easier to analyze, as it is cohomology with support in ideals

generated by variables.

A first surprise was that in terms of supports, and after stabilization of the com-

plement by the star operation, the union of the supports on the right equals CB(M)∗.

More precisely, defining CI(M) similarly as above for any graded ideal I:
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Theorem 1.1. (Theorem 3.11) Let M be a graded R-module, then⋃
i

CBi
(M)∗ =

⋃
i1,...,ip

CBi1
+···+Bip

(M)∗ = CB(M)∗.

And also, explaining and completing the left equality:

CBi1
+···+Bip

(M)∗ ⊆ CBi1
(M)∗ ∩ · · · ∩ CBip

(M)∗.

Hence CB(M)∗ is fully determined by the supports of the cohomology with respect

to the Bi’s. This should help to determine CB(M)∗ much more easily.

The second important, although less surprising, fact is that the sets CBi1
+···+Bip

(M)∗

are fully determined by the support of corresponding Tor modules, and vice-versa, as

detailed in Theorem 3.8. This follows from the key case of m := B1 + · · ·+Bk:

Theorem 1.2. (Theorem 3.6) Let M be a graded R-module, then⋃
i

SuppZk(TorRi (M,S))∗ = (n1, . . . , nk) + Cm(M)∗.

These two results give a quite precise picture of the difference between the support

of Tor modules, that reflects shifts in free resolutions (see Lemma 3.5 and following

comments), and cohomology with respect to B, a central question in many recent

works on multigraded regularity :⋃
i

SuppZk(TorRi (M,S))∗ ⊆ (n1, . . . , nk) +
⋂
i

CBi
(M)∗ while CB(M)∗ =

⋃
i

CBi
(M)∗.

This also supports the idea, already developed in a work of the first named author

with Nicolas Botbol [2] : one should not restrict the attention to only the ideal B,

but consider as well cohomologies supported on other graded ideals that are naturally

linked to the study.

In our text, we do not ask the ring to satisfy any property (besides commutativity)

nor finiteness hypotheses for the module, in order to give as much flexibility in the

use as it could be. However, it is of course crucial to have in mind that the main

tool to be able to assert that CB(M)∗ 6= Zk, or to show that the modules TorRi (M,S)

have finite support, is to require S to be Noetherian and M to be finitely generated.

Whenever µ 6∈ CB(M)∗, we show that, in degrees slightly bigger then µ, the trun-

cation of the module is generated in a single degree and shifts have total degree

increasing at most by one at each step (hence the truncated module has a linear

resolution whenever the base ring is a field). We state this result in terms of the

regularity in R for the total degree grading (a Zk-graded module is also graded for

the Z-grading given by total degree):

Proposition 1.3. (Proposition 4.9) Let M be a graded R-module and µ 6∈ CB(M)∗.

Then for any t ∈ µ+ (n1 − 1, . . . , nk − 1) + Nk, Mt+Nk has a regularity |t|.
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2. Multigraded support

Let R be a commutative unitary ring and I = (f1, . . . , fs) a finitely generated ideal

of R. Given an R-module M , the Čech cohomology modules H i
I(M) of M supported

on I are the cohomologies of the Čech complex Č•f (M) of M with respect to the

finite tuple f = (f1, . . . , fs). These modules only depend upon M and the radical of

I, up to isomorphism; they coincide with the derived functors of H0
I (−) applied to

M whenever R is Noetherian, or I is generated by a regular sequence, or if R is a

polynomial ring over another ring and I is a monomial ideal – this will be the context

in use in most of this text.

We now setup notations for working in standard multigraded polynomial rings. Let

S be a commutative unitary ring, k ≥ 1 an integer and denote the standard Zk-graded

polynomial ring by R = S[X1,1, ..., X1,n1 , ..., Xk,1, ..., Xk,nk
]. For each set of variables

Xi = {Xi,1, . . . , Xi,ni
} write Bi for the ideal generated by this i-th set of variables,

B = B1∩ . . .∩Bk = B1 · · ·Bk and m = B1 + . . .+Bk. We write Zk = ⊕ki=1Zei, where

the i-th canonical generator of Zk corresponds to the degree of the set of variables

generating Bi. Unless another grading is specified, a graded R-module is a Zk-graded

R-module. The degree will be written deg and tdeg will denote the total degree, they

respectively belong to Zk and Z. Also N = Z≥0 and if G is an additive group and

E,F two subsets of G, E + F = {e + f | e ∈ E, f ∈ F}, −E := {−e | e ∈ E}
and E − F = E + (−F ); to simplify notations if e ∈ G, e + F := {e} + F . These

conventions and notations will be in use for all the text and we define

Definition 2.1. The support of a graded R-module M is

SuppZk(M) := {γ ∈ Zk : Mγ 6= 0}.

Also, given a homogeneous finitely generated ideal I, we set

Ci
I(M) := SuppZk(H i

I(M)) and CI(M) :=
⋃
i

Ci
I(M).

For a graded R-module M and for µ ∈ Zk we define the R-module M(−µ) as M

with grading defined by M(−µ)ν := Mµ−ν .

Lemma 2.2. If M is a graded R-module, then SuppZk(M(−µ)) = SuppZk(M) + µ.

Proof. Indeed ν ∈ SuppZk(M(−µ)) if and only if ν − µ ∈ SuppZk(M), equivalently

ν ∈ SuppZk(M) + µ. �
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Shifts appearing in local cohomology with respect to the sum of some of the Bi’s

will appear in many places, and we introduce the notation:

ai1,··· ,ip := −
p∑
j=1

nijeij ∈ Zk and a := a1,...,k = −(n1, . . . , nk).

Example 2.3. For 1 ≤ i1 < · · · < ip ≤ k, Ci
Bi1

+...+Bip
(R) = ∅ unless i = ni1 +· · ·+nip

and

Cni1
+···+nip

Bi1
+...+Bip

(R) = ai1,··· ,ip +
k∏
j=1

(−1)εjN,

with εj := 1 if j ∈ {i1, . . . , ip} and εj := 0 else.

In particular, Ci
m(R) = ∅ for i 6= n1 + · · ·+ nk and

Cm(R) = Cn1+···+nk
m (R) = a− Nk.

The following example illustrates supports.

Example 2.4. By taking k = 2 and n1 = 3 and n2 = 5 in Example 2.3, we have

the following regions Cm(R) = (−3,−5) − N2,CB1(R) = (−3, 0) + (−N) × N and

CB2(R) = (0,−5) + N× (−N).

As detailed in the work of Eisenbud, Mustata and Stillman [7] whenever the base

ring is a field, cohomology with respect to B of a graded R-module M is providing

the sheaf cohomology of the corresponding sheaf F on P := Pn1−1×· · ·×Pnk−1 (where

projective spaces and products are taken over the spectrum of S):

H i(P,F(µ)) ' H i+1
B (M)µ, ∀i > 0, ∀µ ∈ Zk,

and there is a natural short exact sequence of graded modules

0 // H0
B(M) // M // ⊕µH0(P,F(µ)) // H1

B(M) // 0.

The following result is essential as it shows that the regions where cohomology

vanishes that we will investigate are non trivial in many cases; recall also that, for a

same module, local cohomology is invariant under arbitrary base change.
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Theorem 2.5. Let M be a finitely generated graded R-module. If S is Noetherian,

(i) Supp(TorRi (M,S)) is a finite set, for every i,

(ii) there exists µ in Zk such that Cm(M) ⊆ µ− Nk,

(iii) there exists ν in Zk such that CB(M) ∩ (ν + Nk) = ∅.

Proof. For (i), recall that these Tor modules are finitely generated S-modules. Items

(ii) and (iii) follow from [2, Theorem 4.14] : for (ii) by Examples 2.3 and because any

finite union of shifts of −Nk is contained in µ − Nk for some µ, and for (ii) as there

exists ν ∈ regB(M) and, for any such ν, CB(M) ∩ (ν + Nk) = ∅. �

3. Tor and local cohomology modules

3.1. An auxiliary result. We first recall the following classical result that is a key

ingredient in our first main result.

Theorem 3.1. Let I be a homogeneous ideal generated by a regular sequence f of

length r and M a graded R-module. If F• is a graded free R-resolution of M , for any

p, there exists a degree zero graded isomorphism

Hp
I (M) ' Hr−p(H

r
I (F•)).

Proof. The second pages of the two spectral sequences from the double complex Č•f (F•)

are concentrated respectively on a line (as H i
I(F•) = 0 unless i = r) and on a column

(as localization is flat) and are isomorphic to the right and left hand sides of the

claimed isomorphism. �

As consequence of Theorem 3.1 and [1, Lemma 6.4.7] we obtain the following

spectral sequence.

Corollary 3.2. Let M be a graded R-module. There exists a spectral sequence of

graded modules, ⊕
1≤i1<···<ip≤k

Hp−q−1
Bi1

+···+Bip
(M)⇒ Hq

B(M).

Proof. Let F• be a graded free resolution of M and B = (f1, . . . , fs). The double

complex Č•f (F•)

0

��

0

��

0

��

· · · // C0f (F2) //

��

C0f (F1) //

��

C0f (F0) //

��

0

· · · // C1f (F2) //

��

C1f (F1) //

��

C1f (F0) //

��

0

...
...

...



MULTIGRADED TOR AND LOCAL COHOMOLOGY 7

yields two spectral sequences that converge to filtrations of the same graded module

H. Taking homologies in the horizontal direction first, we get a spectral sequence ′E

such that ′E0,−j
2 = Hj

B(M) and ′E−i,−j2 = 0 whenever i 6= 0; hence Hj
B(M) ' Hj for

all j ≥ 0. On the other hand, by [1, Lemma 6.4.7], the other spectral sequence E is

such that

E−i,−j2 = Hi

 ⊕
1≤i1<...<ip≤k

ni1
+...+nip=j+p−1

H
ni1

+...+nip

Bi1
+...+Bip

(F•)

 ' ⊕
1≤i1<...<ip≤k

H
p+(j−i)−1
Bi1

+...+Bip
(M)

and E−i,−j2 ⇒i H
i−j ' H i−j

B (M), whence the result. �

It is worth mentioning that the spectral sequence above has similarities with the

one of Lyubeznik’s [9], although it has second page terms on a diagonal equal to the

ones on a diagonal in the first page in Lyubeznik’s approach.

3.2. Stable sets. It is convenient to introduce a notation for multigraded support

of Tor modules, and for some shifts of these that are tightly connected to support of

local cohomology, as we will show.

Definition 3.3. Given a graded R-module M and i1, . . . , ip distinct elements in

{1, . . . , k}

Ti1,...,ipj (M) := SuppZk(TorRj (M,R/(Bi1 + · · ·+Bip))

and Ti1,...,ip(M) := ∪jTi1,...,ipj (M). Also,

T̂i1,...,ipj (M) := Ti1,...,ipj (M) + ai1,...,ip and T̂i1,...,ip(M) := Ti1,...,ip(M) + ai1,...,ip .

For simplicity,

Tj(M) := T1,...,k
j (M) = SuppZk(TorRj (M,S)) and T(M) := ∪jTj(M),

and similarly T̂j(M) := Tj(M) + a and T̂(M) := T(M) + a.

Lemma 3.4. Let E ⊂ Zk. The smallest set containing E such that its complement

is stable under the addition of Nk is E − Nk.

Proof. Let E∗ := E − Nk. If e 6∈ E∗, e + n is not in E∗ for all n ∈ Nk as otherwise

e+n = e′−n′ with e′ ∈ E and n′ ∈ Nk, the equality e = e′−n−n′ then contradicting

the fact that e 6∈ E∗. Now E∗ is minimal as for E ⊆ E ′ ⊆ E∗, with the complement

of E ′ stable, if e ∈ E∗ \E ′, then e+n ∈ E ⊆ E ′ for some n ∈ Nk, but also e+n /∈ E ′

due to the stability of the complement of E ′, thus a contradiction. �
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From now on, we denote by E∗ the set E − Nk as in the proof above.

Recall from [2, Lemma 3.12 i)] a link between Tor modules and graded free resolu-

tions :

Lemma 3.5. Let M be a graded R module such that tdeg(m) ≥ u for some u ∈ Z
and every m ∈ M . Then M admits a graded free R-resolution F• such that Fi is

generated by elements with degrees sitting in ∪p≤iTp(M).

Any minimal graded free resolution (no syzygy module has a superfluous generator)

satisfy this property. If S is Noetherian and M is finitely generated, minimal graded

free resolutions exist. Any element in Ti appear as a shift in Fi for any graded free

R-resolution F• of M . One can replace the union by the only set Ti if S is a field.

We first show that support of cohomology and support of Tor modules are in one

to one correspondence, if one considers the union of all in both cases and stabilize

the complement by addition of −Nk. The first and main case is the one relative to

the ideal m.

Theorem 3.6. Let M be a graded module. Then

Cm(M)∗ = T(M) + Cm(R) = T̂(M)∗.

Proof. Recall that Cm(R) = a−Nk, by Example 2.3. Thus T(M) +Cm(R) = T̂(M)−
Nk = T̂(M)∗.

We first assume that there exists u ∈ Z such that tdeg(m) ≥ u for any m ∈M and

let F• be a graded free R-resolution of M as in Lemma 3.5. Then,

H i
m(M) ' Hd−i(H

d
m(F•)),

for all i ≥ 0 by Theorem 3.1, where d := n1 + . . .+nk is the number of variables of R.

This shows that Ci
m(M) ⊆

⋃
p≤d−i Tp(M) + Cm(R), hence Cm(M) ⊆ T(M) + Cm(R)

and therefore Cm(M)∗ ⊆ T(M) + Cm(R).

To show the inverse inclusion, notice that for all µ 6∈ Cm(M)∗, (µ+Nk)∩Cm(M) =

∅. Write X for the tuple of all d variables and consider the first quadrant dou-

ble complex Č•X(K•(X;M)). It gives rise to a spectral sequence with first terms

Ki(X;Hj
m(M)) that abuts to TorRi−j(M,S). As shifts in Ki(X;Hj

m(M)) have all p-th

coordinates at most np for any p = 1, ..., k, in degree µ− a all terms are zero because

Ki(X;Hj
m(M))µ−a is a sum of copies of Hj

m(M) sitting in degrees µ+ δ for δ ∈ Nk. It

follows that µ− a 6∈ T(M), as claimed.

We now turn to the general case. Notice that for u ∈ Z, the submodule M [u] :=

{m ∈ M, tdeg(m) ≥ u} is such that M/M [u] = H0
m(M/M [u]). It follows that

H i
m(M [u])µ coincides with H i

m(M)µ for every i and µ of total degree at least u. On

the other hand, K•(X;M) and K•(X;M [u]) coincide in total degree at least u+ d.
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Hence Cm(M) coincides with Cm(M [u]) and T̂(M) coincides with T̂(M [u]) in total

degree at least u.

Since the sets Eu := {t ∈ Zk, t1 + · · · + tk < u} are stable under the addition of

−Nk, (A ∪ Eu)∗ = A∗ ∪ Eu for any set A ⊆ Zk.
It follows that

T̂(M)∗ = ∩u∈Z(T̂(M)∗ ∪ Eu) (since ∩u∈Z Eu = ∅)
= ∩u∈Z(T̂(M [u])∗ ∪ Eu) (as T̂(M [u]) = T̂(M) off Eu)

= ∩u∈Z(Cm(M [u])∗ ∪ Eu) (by the first part)

= ∩u∈Z(Cm(M)∗ ∪ Eu) (as Cm(M [u]) = Cm(M) off Eu)

= Cm(M)∗ (since ∩u∈Z Eu = ∅).

�

Lemma 3.7. Let M be a graded R-module and i1, . . . , ip be distinct elements in

{1, . . . , k}. Set T := S[Xi1 , . . . ,Xip ] and let ν ∈ ⊕q 6∈{i1,...,ip}Zeq. Then, for any j ≥ 0,

i) Hj
Bi1

+···+Bip
(M)∗,ν ' Hj

Bi1
+···+Bip

(M∗,ν) as graded T -modules;

ii) TorRj (M,R/Bi1 + · · ·+Bip)∗,ν ' TorTj (M∗,ν , S) as graded T -modules.

Proof. The variables in Xi1 , . . . ,Xip have degree zero in ⊕q 6∈{i1,...,ip}Zeq. �

A more general version of our first main result is directly derived from this lemma.

Theorem 3.8. Let M be a graded R-module and i1, . . . , ip be distinct elements in

{1, . . . , k}. Then

T̂i1,...,ip(M)−
p∑
j=1

eijN = CBi1
+···+Bip

(M)−
p∑
j=1

eijN.

As a consequence,

CBi1
+···+Bip

(M)∗ = T̂i1,...,ip(M)∗.

Proof. According to Lemma 3.7, the proof follows along the same lines as in the one

of Theorem 3.6. �

In order to compare support with respect to several cohomologies, the following

result is useful. Let E i1,...,ipj ⊂ Nk be the set of shifts in Kj(Xi1 , . . . ,Xip ;R).

Proposition 3.9. Let M be a graded R-module and i1, . . . , ip be distinct elements in

{1, . . . , k}. For any finitely generated graded ideal I ⊆
√
Bi1 + · · ·+Bip + annR(M),

T̂i1,...,ipj (M) ⊆
⋃

r≤(
∑p

l=1 nil
)−j

Cr
I(M) + E i1,...,ipj+r + ai1,...,ip

for all j ≥ 0.
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Proof. Let Č• be the Čech complex of R with respect to a finite generating set of I

and consider the double complex Č•(K•(Xi1 , . . . ,Xip ;M)). It gives rise to a spectral

sequence with first terms Ki(Xi1 , . . . ,Xip ;Hj
I (M)) that abuts to TorRi−j(M,R/Bi1 +

· · ·+Bip) since I ⊆
√
Bi1 + · · ·+Bis + annR(M).

Now,

Ti1,...,ipj (M) ⊆
⋃
l−r=j

Cr
I(M) + E i1,...,ipl =

⋃
r≤(

∑p
l=1 nil

)−j

Cr
I(M) + E i1,...,ipj+r

whence the result. �

Corollary 3.10. Let M be a graded R-module and i1, . . . , ip be distinct elements in

{1, . . . , k}. For any finitely generated graded ideal I ⊆ Bi1 + · · ·+Bip,

CBi1
+···+Bip

(M) ⊆ CI(M)−
p∑
j=1

eijN.

In particular, if p ≥ 1,

CBi1
+···+Bip

(M)∗ ⊆ CBi1
+···+Bip−1

(M)∗.

Proof. By taking union over j in Proposition 3.9 we obtain

T̂i1,...,ip(M) ⊆ CI(M)−
p∑
j=1

eijN.

The result follows from Theorem 3.8. �

Notice that this corollary implies that CBi
(M)∗ ⊆ CB(M)∗ for any i and

CBi1
+···+Bip

(M)∗ ⊆ CBi1
(M)∗ ∩ · · · ∩ CBip

(M)∗.

As a consequence, we deduce the following description of CB(M)∗. Notice that it

is needed to stabilize the complement by adding −Nk, see Example 2.4.

Theorem 3.11. Let M be a graded R-module. Then,⋃
i

CBi
(M)∗ =

⋃
i1,...,ip

CBi1
+···+Bip

(M)∗ = CB(M)∗.

Proof. First by Corollary 3.10,⋃
i

CBi
(M)∗ =

⋃
i1,...,ip

CBi1
+···+Bip

(M)∗ ⊆ CB(M)∗.

On the other hand, CB(M) ⊆
⋃
i1,...,ip

CBi1
+···+Bip

(M) by Corollary 3.2 or [2, Lemma

2.1]. �
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Remark 3.12. In the example of R := S[a, b, c, x, y, z] with S a field (k = 2, n1 =

n2 = 3) and M := R/(ax + by + cz), the sets CBi
(M) and Cm(M) are stable under

the addition of −N2 and independent of S, while CB(M) is not stable under the

addition of −N2 and depends upon the characteristic of S (two distinct characteristics

give rise to two distinct supports). It shows that the determination of CB(M) could

reserve some delicate points (for this example, we could only fully determine CB(M)

in characteristic zero or two).

By Theorem 3.8, the first equality in Theorem 3.11 follows from an inclusion of

support of Tor modules that could be proved directly, as we now show.

Proposition 3.13. Let M be a graded R-module and i1, . . . , ip, j1, . . . , jq be distinct

elements in {1, . . . , k}, then

Ti1,...,ip,j1,...,jqj (M) ⊆
⋃
l≤j

Ti1,...,ipj−l (M) + E j1,...,jql

for all j ≥ 0.

Proof. The double complexK•(Xj1 , . . . ,Xjq ;K•(Xi1 , . . . ,Xip ;M)) gives rise to a spec-

tral sequence with first terms

K•(Xj1 , . . . ,Xjq ; TorR• (M,R/Bi1 + . . .+Bip))

that abuts to a filtration of TorR• (M,R/Bi1 + . . .+Bip +Bj1 + . . .+Bjq). �

Corollary 3.14. Let M be a graded R-module and i1, . . . , ip, j1, . . . , jq be distinct

elements in {1, . . . , k}, then

T̂i1,...,ip,j1,...,jq(M)∗ ⊆ T̂i1,...,ip(M)∗.

4. Some consequences on the truncation of modules

We first recall two results in the classical case where R = S[X1, . . . , Xn] is a stan-

dard Z-graded polynomial ring and m = (X1, . . . , Xn).

Proposition 4.1. Let C• be a graded complex of R-modules such that Hp
m(Hi(C•)) = 0

for any i 6= 0 and p > i. Then,

reg(H0(C•)) ≤ max
i
{reg(Ci)− i}.

Proof. It follows along the same lines as for instance in the proof of [4, Lemma 2.2]

by consideration of the two spectral sequences from Č•X(C•) (the hypothesis Ci = 0

for i < 0 there is not used except to restrict the max to positive values of i). �

Lemma 4.2. Let M be a graded R module and t an integer.Then,
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(i) C0
m(Mt+N) = C0

m(M) ∩ (t+ N);

(ii) C1
m(Mt+N) = C1

m(M) ∪ {SuppZ(M/H0
m(M)) ∩ (t− 1− N)};

(iii) Cj
m(Mt+N) = Cj

m(M) for all j ≥ 2.

Proof. It directly derives from the exact sequence

0 // H0
m(Mt+N) // H0

m(M) // M/Mt+N // H1
m(Mt+N) // H1

m(M) // 0

and the isomorphisms Hj
m(Mt+N) ' Hj

m(M) for all j ≥ 2, that are in turn provided

by the short exact sequence

0 // Mt+N // M // M/Mt+N // 0

and the vanishing of H i
m(M/Mt+N) for i > 0. �

We now return to our general setting of a standard multigraded ring R.

Definition 4.3. Let Ei := {(q1, . . . , qk) ∈ Zk | qi ≥ 0} and

Ei1,...,ip := Ei1 ∩ · · · ∩ Eip .

Notice that E1,...,k = Nk. With these notations,

Proposition 4.4. Let M be a graded R-module, i ∈ {1, . . . , k} and t ∈ Zk. Then

(i) For µ ∈ t+ Nk,

Hj
Bi

(Mt+Nk)µ = Hj
Bi

(M)µ, ∀j.

(ii) For µ 6∈ t+ Nk,

(1) If µ 6∈ t+ E1,...,î,...,k, Hj
Bi

(Mt+Nk)µ = 0 for all j;

(2) If µ ∈ t+ E1,...,î,...,k, H0
Bi

(Mt+Nk)µ = 0, the sequence

0 // (M/H0
Bi

(M))µ // H1
Bi

(Mt+N)µ // H1
Bi

(M)µ // 0

is exact and Hj
Bi

(Mt+Nk) = Hj
Bi

(M) for all j ≥ 2.

Proof. According to Lemma 3.7 i), this follows from Lemma 4.2 applied to the ring

T = S[Xi]. �

Set 1 := (1, . . . , 1) =
∑k

i=1 ei ∈ Nk.

Corollary 4.5. Let M be a graded R-module and t ∈ Zk. Then,

Cm(Mt+Nk)∗ ⊆
⋂
i

(CBi
(M) ∩ (t+ Nk))∗ ∪ (t− 1− Ei).

Proof. By Proposition 4.4,

CBi
(Mt+Nk) ⊆ (CBi

(M) ∩ (t+ Nk)) ∪ (t+ (E1,...,î,...,k \ N
k)).

As (E1,...,î,...,k \ Nk)∗ = −Ei − 1, the conclusion follows from Corollary 3.10. �
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Proposition 4.6. Let M be a graded R-module ∆ := [0, n1−1]×· · ·× [0, nk−1] ⊆ Nk

and t ∈ Zk. Then

T(Mt+Nk) ⊆ (−a+ (CB(M)∗ ∩ (t+ Nk))) ∪ (t+ ∆).

In particular, T(Mt+Nk) ⊆ t+ ∆ if t 6∈ CB(M)∗.

Proof. First, T̂(Mt+Nk) ⊆ T̂(Mt+Nk)∗ = Cm(Mt+Nk)∗ by Theorem 3.6. By Theorem

3.11, CB(M)∗ = ∪iCBi
(M)∗, hence

T(Mt+Nk) + a ⊆ (CB(M) ∩ (t+ Nk))∗ ∪ (t− 1− Nk).

by Corollary 4.5. But T(Mt+Nk) ⊆ Supp(Mt+Nk) ⊆ t+ Nk and

(−a− 1− Nk) ∩ Nk = ∆.

If t 6∈ CB(M)∗, then CB(M)∗ ∩ (t+ Nk) = ∅ by Lemma 3.4. �

Every Zk-graded module M is also a Z-graded module, for the total degree grading,

and we set reg(M) for its Castelnuovo-Mumford regularity. For µ = (µ1, . . . , µk) ∈ Zk,
write µ+ := (max{µ1, 0}, . . . ,max{µk, 0}) and |µ| := µ1 + · · ·+ µk.

The next lemma follows from [6, the proof of 1.7]; it provides a criterion for the

truncation of a module Mt+Nk with t ∈ Zk to satisfy reg(M) = |t| (if the base ring

S is a field, usual terminology is that M is generated in degree |t| and has a linear

resolution).

Lemma 4.7. Let M be a graded R-module such that tdeg(m) ≥ u for some u ∈ Z
and every m ∈M . For t ∈ Zk, let

δi := sup
µ∈Ti(M)

{|(t− µ)+| − |t− µ|}.

Then reg(Mt+Nk) ≤ |t|+ maxi{δi − i}.
In particular, unless Mt+Nk = 0, if |(t−µ)+| ≤ |t−µ|+ i for any i and µ ∈ Ti(M),

reg(Mt+Nk) = |t|.

Proof. As noticed by Eisenbud, Erman and Schreyer, any truncation of R has a linear

resolution (given by the tensor product of some Eagon-Northcott complexes). As a

consequence, considering R with its standard Z-grading

reg(Rt+Nk) = indeg(Rt+Nk) = |t+|.

Hence reg(R(−µ)t+Nk) = |µ|+|(t−µ)+|. As tdeg(m) ≥ u for every m ∈M , M admits

a graded free R-resolution F• with Fi = ⊕jR(−ti,j) satisfying ti,j ∈ ∪p≤iTp(M), by

Lemma 3.5. The complex (F•)t+Nk resolves Mt+Nk and for the standard grading of R,

reg((Fi)t+Nk)− |t| = sup
j
{|ti,j|+ |(t− ti,j)+|} − |t| ≤ max

p≤i
{δp}.
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The conclusion follows by Proposition 4.1. �

Remark 4.8. To apply the above results in order to find t such that reg(Mt+Nk) = |t|,
it is useful to have in mind that :

(i) δi = 0 if and only if t ≥ µ (i.e. tj ≥ µj, ∀j) for every µ ∈ Ti,
(ii) one may replace M by M ′ such that Mµ+Nk = M ′

µ+Nk and choose t ∈ µ+ Nk,

(iii) for any µ ∈ Zk, N := M/Mµ+Nk satisfies N = H0
B(N) and therefore

H i
B(M)ν = H i

B(Mµ+Nk)ν , ∀ν ∈ µ+ Nk.

Proposition 4.9. Let M be a graded R-module and µ 6∈ CB(M)∗.

Then for any t ∈ µ+ (n1 − 1, . . . , nk − 1) + Nk, Mt+Nk has a regularity |t|.

Proof. It follows from Proposition 4.6 and Lemma 4.7, according to Remark 4.8. �

For M = R, reg(Rt+Nk) = |t| if and only if t ∈ Nk and CB(R)∗+(n1−1, . . . , nk−1) =

Zk \ Nk.
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