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. The case of linear hyperbolic wave-like systems, including the elastodynamic problem and the Maxwell equations in 3D, is then illustrated in detail. A numerical example is worked out on the case of the wave equation.

INTRODUCTION

Port-Hamiltonian systems (pHs) have been extended to distributed parameter systems in van der [START_REF] Van Der Schaft | Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF], and since then are an active field of research, see [START_REF] Rashad | Twenty years of distributed port-hamiltonian systems: a literature review[END_REF] for an overview. One important topic is the structure-preserving discretization of such dynamical systems. One of the interesting and promising methods is the Partitioned Finite Element Method (PFEM), see [START_REF] Cardoso-Ribeiro | A partitioned finite element method for power-preserving discretization of open systems of conservation laws[END_REF], which can be seen as an extension of the classical Mixed Finite Element Method to systems with boundary control and observation. In the case of uniform boundary control, one of the variables to integrate by part was chosen accordingly, and the resulting finite-dimensional system was a pH-ODE, i.e. an explicit system. In the case of nonuniform or mixed boundary control, whatever the choice of partition, the obtained system was a pH-DAE, i.e. an implicit system, see [START_REF] Brugnoli | Partitioned finite element method for structured discretization with mixed boundary conditions[END_REF]. Though a rich theory for such systems is available, see e.g. van der Schaft (2013); [START_REF] Beattie | Linear port-Hamiltonian descriptor systems[END_REF] and references therein, from the numerical point of view it can prove more appealing to deal with explicit ODEs than with implicit DAEs (see e.g. [START_REF] Serhani | Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization[END_REF]; [START_REF] Brugnoli | A port-Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization[END_REF] for the example of the heat equation, or [START_REF] Haine | Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation[END_REF] for the case of the nonlinear incompressible Navier-Stokes equation in 2D). The explicit formulation removes the need to impose the boundary conditions strongly. This is of particular interest for some finite element families, for which it is highly non trivial, for example the Argyris or Bell H 2 conforming finite elements. Recently, in [START_REF] Thoma | Explicit port-Hamiltonian FEM-models for linear mechanical systems with non-uniform boundary conditions[END_REF], a new version of PFEM has been introduced for mixed boundary control on the example of linear elastodynamics, which gives rise to a pH-ODE: the method is based on the so-called Hellinger-Reissner principle, see [START_REF] Arnold | Mixed finite element methods for elliptic problems[END_REF] for an original presentation of the idea, and [START_REF] Lu | Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries[END_REF] for a more recent comparison of different methods. Moreover, an accurate presentation of the strong or weak imposition of Dirichlet boundary conditions can be found in [START_REF] Benner | Time-dependent Dirichlet conditions in finite element discretizations[END_REF].

The goal of this contribution is to provide a detailed general formulation of the Hellinger-Reissner principle on linear distributed pHs first, in § 2. Then, a variety of practical examples stemming from engineering applications are considered in § 3: the wave equation, elastodynamics, and Maxwell's equations in 3D. Finally, § 4 is devoted to numerical considerations: the test case on the wave equation, together with a discussion on the pros and cons of the approach from the numerical point of view.

WEAK IMPOSITION OF MIXED BOUNDARY

CONDITIONS: A GENERAL RESULT

Preliminaries

Suppose that Ω ⊂ R d with d = {1, 2, 3} is a bounded connected set and that its boundary ∂Ω is divided into a partition of two subsets that satisfy ∂Ω = Σ 1 ∪ Σ 2 and Σ 1 ∩ Σ 2 = ∅. Each Σ i is associated to a specific kind of boundary conditions, given by a boundary trace operator γ i .

Let us introduce an abstract functional framework. Given a differential operator L : L 2 (Ω, A) → L 2 (Ω, B), where L 2 (Ω, A), resp. L 2 (Ω, B), is the space of square integrable functions from Ω to the space A, resp. B. The space A indicates either a scalar, a vector, a tensor field or a Cartesian product of those and analogously for B.

In particular in the following we will use the following notation for the space of d-dimensional vectors and d × d symmetric matrices

V := R d , S := R d×d sym .
The operator L, being unbounded, has domain

D(L) = {u ∈ L 2 (Ω, A)| Lu ∈ L 2 (Ω, B)}. Furthermore, we denote by L † , defined on D(L † ) = {u ∈ L 2 (Ω, B)| L † u ∈ L 2 (Ω, A
)}, a formal adjoint operator of L with respect to the γ i operators, for i ∈ {1, 2}, and the partition of ∂Ω, i.e. an operator satisfying

⟨Le 1 , e 2 ⟩ L 2 (Ω,B) = e 1 , L † e 2 L 2 (Ω,A) , ∀e i ∈ Ker γ Σi i ,
where γ Σi i is the restriction of the operator γ i to Σ i . The first assumption introduces the abstract integration by parts formula of fundamental importance. Assumption 1. The operators L and L † are assumed to satisfy the following integration by parts formula

⟨Le 1 , e 2 ⟩ L 2 (Ω,B) -e 1 , L † e 2 L 2 (Ω,A) = ⟨γ 1 e 1 |γ 2 e 2 ⟩ V ∂ ,V ′ ∂ , (1) where 
⟨• |•⟩ V ∂ ,V ′
∂ denotes the duality product between the boundary space V ∂ and its dual V ′ ∂ .

This assumption essentially says that L * , the adjoint of

L| γ Σ 1 1
, can be continuously extended to D(L † ) by the sum of a differential operator, namely L † , and a boundary term (this relies on the decomposition L = A + BG in boundary control systems theory (Tucsnak and Weiss, 2009, Chapter 10)). In practice, it is derived from the celebrated Stokes divergence theorem.

The integration by parts formula (1) is valid ∀e 1 ∈ D(L), ∀e 2 ∈ D(L † ) with the domain of L † given by

D(L † ) = {u ∈ L 2 (Ω, B)| L † u ∈ L 2 (Ω, A)}.
This integration by parts formula is verified for all the subsequent examples.

As an example, one may consider the gradient operator grad :

L 2 (Ω) → L 2 (Ω, V), with domain D(grad) = H 1 (Ω) := {u ∈ L 2 (Ω)| grad u ∈ L 2 (Ω, V)}.
(2) Operators γ i are then the well-known Dirichlet trace γ 0 u = u| ∂Ω (3) and normal trace operator on vector fields u

γ n u = u • n| ∂Ω . (4) The formal adjoint is L † = -div with domain D(div) = H div (Ω) := {u ∈ L 2 (Ω, V)| div u ∈ L 2 (Ω)}, (5) 
and ( 1) is nothing but Green's formula

Ω grad u • v = - Ω u div v + ⟨γ 0 u |γ n v⟩ H 1 2 (∂Ω),H -1 2 (∂Ω)
.

(6)

Boundary control operator and functional spaces

Since mixed boundary control systems are considered, an important operator has already appeared in the definition of the formal adjoint, namely the boundary control operator

G u = γ Σ1 1 0 0 γ Σ2 2 ∈ L(D(L) × D(L † ), U 1 × U 2 ) (7)
where U i , i ∈ {1, 2} are the control spaces and L(X, Y ) denotes the set of bounded linear operators from X to Y .

A natural but difficult question concerns the close relation between V ∂ , V ′ ∂ and the boundary control spaces U i . Since G u is diagonal, it is tempting to consider a splitting by a simple cartesian product such as

U 1 × U 2 = H 1 2 (Σ 1 ) × H -1 2 (Σ 2 ).
However, care must be taken, keeping our goal in mind.

On the one hand, if the objective is to prove the wellposedness of solution, then compatibility relations at the interface(s) Σ 1 ∩Σ 2 must be fulfilled by the controls u 1 and u 2 , and the restriction to the range of γ Σi i is not sufficient in general; however, we do not go further in this direction. The interested reader may consult [START_REF] Nguyen | Boundary stabilization of the navier-stokes equations in the case of mixed boundary conditions[END_REF] for a complete characterization of these spaces in the case of the Navier-Stokes equations.

On the other hand, it can be sufficient to consider the above splitting for finite element conformity considerations, as in the present work, since obviously the range of the restriction γ Σi i contains the suitable spaces U i for (possible) well-posedness. In other words, if the boundary control system is well-posed for control spaces U i , it is true that U i ⊂ Range(γ Σi i ). This implies the following splitting of boundary duality product

⟨γ 1 e 1 |γ 2 e 2 ⟩ V ∂ ,V ′ ∂ =⟨γ Σ1 1 e 1 |γ Σ1 2 e 2 ⟩ V ∂,1 ,V ′ ∂,1 + ⟨γ Σ2 1 e 1 |γ Σ2 2 e 2 ⟩ V ∂,2 ,V ′ ∂,2 , =⟨u 1 |y 1 ⟩ V ∂,1 ,V ′ ∂,1 + ⟨y 2 |u 2 ⟩ V ∂,2 ,V ′ ∂,2 , =⟨u 1 |y 1 ⟩ U1,Y1 + ⟨y 2 |u 2 ⟩ Y2,U2 . (8) 
The input and output functional spaces are defined according with the splitting of the boundary duality pairing

U 1 ⊂ V ∂,1 := Range(γ Σ1 1 ), U 2 ⊂ V ′ ∂,2 := Range(γ Σ2 2 ), Y 1 ⊃ V ′ ∂,1 , Y 2 ⊃ V ∂,2 .
Care must be taken that there is no inclusion relation between

V ∂ := V ∂,1 × V ∂,2 and U = U 1 × U 2 , nor between V ∂ and Y = Y 1 × Y 2 .
At the discrete level, this means that finite element conformity relies on V ∂,1 and V ∂,2 separately (the most regular boundary spaces), while the compatibility condition needed for well-posedness is postponed to suitable choices of a couple of controls

(u 1 , u 2 ) ∈ V ∂,1 × V ′ ∂,2 in practice.
Remark 1. From now on, we take for granted that compatibility conditions are met, and will not discriminate between ⟨

• |•⟩ U1,Y1 and ⟨• |•⟩ V ∂,1 ,V ′ ∂,1 , and similarly for ⟨• |•⟩ Y2,U2 and ⟨• |•⟩ V ∂,2 ,V ′ ∂,2 .
Consequently, in what follows, L 2 inner-product over the domain will be denoted by ⟨•, •⟩ Ω , i.e. the specification of the nature of the variables is dropped for notational simplicity. And the notation for the boundary duality products will be simplified as

⟨• |•⟩ ∂Ω , ⟨• |•⟩ Σ1 , and ⟨• |•⟩ Σ2 .
In the duality pairing the superscript Σ i , i = {1, 2} for the boundary operator γ Σi j , j = {1, 2} will be omitted, as the integration domain is already clear from the previous convention.

Hence, for our main concern, the abstract integration by parts formula (1) of Assumption 1 can be usefully rewritten as

⟨Le 1 , e 2 ⟩ Ω -⟨γ 1 e 1 |γ 2 e 2 ⟩ Σ1 = e 1 , L † e 2 Ω +⟨γ 1 e 1 |γ 2 e 2 ⟩ Σ2 .
(9) Coming back to our example with L = grad, we would take

V ∂,i = H 1 2 (Σ i ), i ∈ {1, 2}, allowing to rewrite Green's formula as Ω grad u • v -⟨γ 0 u |γ n v⟩ H 1 2 (Σ1),H -1 2 (Σ1) = - Ω u div v + ⟨γ 0 u |γ n v⟩ H 1 2 (Σ2),H -1 2 (Σ2)
.

Abstract linear port-Hamiltonian systems

Several linear port-Hamiltonian systems, in particular wave-like hyperbolic systems can then be expressed by means of the abstract dynamical systems

Q 1 0 0 Q 2 ∂ ∂t e 1 e 2 = 0 -L † L 0 e 1 e 2 ,
in terms of the efforts (or co-energy) variables, with Hamiltonian

H = 1 2 ⟨e 1 , Q 1 e 1 ⟩ L 2 (Ω,A) + 1 2 ⟨e 2 , Q 2 e 2 ⟩ L 2 (Ω,B) .
The operators Q 1 , Q 2 are bounded algebraic operators, symmetric and positive definite. The boundary conditions are expressed by means of boundary control inputs using G u defined by ( 7)

u 1 u 2 = G u e 1 e 2 . ( 10 
)
The collocated outputs are then expressed via

y 1 y 2 = 0 γ Σ1 2 γ Σ2 1 0 e 1 e 2 = G y e 1 e 2 ,
where

G y ∈ L(D(L) × D(L † ), Y 1 × Y 2 ).
Remark 2. The theoretical construction of G y starting from the operators L and G u is far to be trivial, see [START_REF] Brugnoli | Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: an analytical viewpoint[END_REF], but easily identifiable as soon as the Green's formula associated to L, γ 1 and γ 2 is known. For our example L = grad with Dirichlet and normal traces, it directly leads to

G y = 0 γ Σ1 n γ Σ2 0 0 ,
i.e. observation on Σ 1 is given by the normal trace while observation on Σ 2 is given by the Dirichlet trace.

Thanks to the integration by parts formula (9), it is immediate to verify that

Ḣ = ⟨u 1 |y 1 ⟩ U1,Y1 + ⟨y 2 |u 2 ⟩ Y2,U2 . (11) 

Weak formulation and generalized Hellinger-Reissner principle

We first introduce a classical weak formulation of the problem, obtained by taking the inner product with the test functions

v 1 , v 2 ⟨v 1 , Q 1 ∂ t e 1 ⟩ Ω = -v 1 , L † e 2 Ω , ⟨v 2 , Q 2 ∂ t e 2 ⟩ Ω = + ⟨v 2 , Le 1 ⟩ Ω . (12) 
A completely analogous formulation is obtained by summing a zero contribution term to both lines of the system.

In particular from Eq. ( 10), it holds

u 1 -γ Σ1 1 e 1 = 0, u 2 -γ Σ2 2 e 2 = 0.
Taking the duality product of these expressions with the test functions v 1 , v 2 leads to a modified weak formulation

⟨v 1 , Q 1 ∂ t e 1 ⟩ Ω = -v 1 , L † e 2 Ω + ⟨γ 1 v 1 |u 2 -γ 2 e 2 ⟩ Σ2 , ⟨v 2 , Q 2 ∂ t e 2 ⟩ Ω = + ⟨v 2 , Le 1 ⟩ Ω + ⟨u 1 -γ 1 e 1 |γ 2 v 2 ⟩ Σ1 .
Now the system can be put into weak form by performing an integration by parts on either line of the system.

2.4.1. Integration by parts of the L † operator From the integration by parts formula (9), if the first line is integrated by parts, the first weak formulation is obtained:

find e 1 ∈ D(L), e 2 ∈ D(L † ) such that ⟨v 1 , Q 1 ∂ t e 1 ⟩ Ω = -⟨Lv 1 , e 2 ⟩ Ω + ⟨γ 1 v 1 |γ 2 e 2 ⟩ Σ1 + ⟨γ 1 v 1 |u 2 ⟩ Σ2 , ⟨v 2 , Q 2 ∂ t e 2 ⟩ Ω = + ⟨v 2 , Le 1 ⟩ Ω -⟨γ 1 e 1 |γ 2 v 2 ⟩ Σ1 + ⟨u 1 |γ 2 v 2 ⟩ Σ1 . ( 13 
)
∀v 1 ∈ D(L), ∀v 2 ∈ D(L † ).
The test functions do not carry any information concerning the boundary conditions as those are incorporated in a completely weak manner. The bilinear form

j L,Σ1 ((v 1 , v 2 ), (e 1 , e 2 )) = -⟨Lv 1 , e 2 ⟩ Ω + ⟨γ 1 v 1 |γ 2 e 2 ⟩ Σ1 + ⟨v 2 , Le 1 ⟩ Ω -⟨γ 1 e 1 |γ 2 v 2 ⟩ Σ1 , (14) 
is skew symmetric.

2.4.2. Integration by parts of the L operator If the second line is integrated by parts, the second weak formulation is obtained:

find e 1 ∈ D(L), e 2 ∈ D(L † ) such that ⟨v 1 , Q 1 ∂ t e 1 ⟩ Ω = -v 1 , L † e 2 Ω -⟨γ 1 v 1 |γ 2 e 2 ⟩ Σ2 + ⟨γ 1 v 1 |u 2 ⟩ Σ2 , ⟨v 2 , Q 2 ∂ t e 2 ⟩ Ω = + L † v 2 , e 1 Ω + ⟨γ 1 e 1 |γ 2 v 2 ⟩ Σ2 + ⟨u 1 |γ 2 v 2 ⟩ Σ1 , (15) ∀v 1 ∈ D(L), ∀v 2 ∈ D(L † ). The bilinear form j L † ,Σ2 ((v 1 , v 2 ), (e 1 , e 2 )) = -v 1 , L † e 2 Ω -⟨γ 1 v 1 |γ 2 e 2 ⟩ Σ2 + L † v 2 , e 1 Ω + ⟨γ 1 e 1 |γ 2 v 2 ⟩ Σ2 , (16) 
is clearly skew symmetric. Remark 3. Since v 1 , e 1 ∈ D(L) and v 2 , e 2 ∈ D(L † ), by using the integration by parts (9) on the appropriate line of the bilinear forms j L,Σ1 or j L † ,Σ2 , we obtain that j L,Σ1 = j L † ,Σ2 .

Remark 4. In the mixed finite element method, the variable that is not subject to differentiation can be chosen less regular, i.e. L 2 . Here however, since both the bilinear forms ( 14) and ( 16) contain a boundary duality product, all the variables need to be regular enough. This consideration leads to the weak formulations ( 13), ( 15) where v 1 , e 1 ∈ D(L) and v 2 , e 2 ∈ D(L † ).

2.4.3. Links with Lagrange multipliers Let us consider the case of the boundary condition on Σ 1 imposed by the Lagrange multiplier method. The idea is to extend the system by an extra variable λ, namely the Lagrange multiplier associated to the constraint u 1γ Σ1 1 e 1 = 0. Using integration by parts (1) on the first line of ( 12), we get the extended system in weak form: find [START_REF] Brugnoli | Partitioned finite element method for structured discretization with mixed boundary conditions[END_REF], it has been shown that λ = y 1 := γ Σ1 2 e 2 in this case. Hence, assuming v λ = γ 2 v 2 and substituting the third line in the second one leads to (13).

e 1 ∈ D(L), e 2 ∈ D(L † ), λ ∈ γ Σ1 1 (D(L)) such that ⟨v 1 , Q 1 ∂ t e 1 ⟩ Ω = -⟨Lv 1 , e 2 ⟩ Ω + ⟨γ 1 v 1 |λ⟩ Σ1 + ⟨γ 1 v 1 |u 2 ⟩ Σ2 , ⟨v 2 , Q 2 ∂ t e 2 ⟩ Ω = + ⟨v 2 , Le 1 ⟩ Ω , 0 = ⟨u 1 -γ 1 e 1 |v λ ⟩ Σ1 ,
The same holds true in the other way: imposing the boundary condition on Σ 2 leads to λ := γ Σ2 1 e 1 . Then integrating by part the second line in ( 12) and substituting the constraint in the first one leads to (15), assuming v λ = γ 1 v 1 .

Finite-dimensional systems

Introducing the finite element expansion for the test functions efforts and control inputs

v i = Ni m=1 ϕ m i (x)v m i , e i = Ni m=1 ϕ m i (x)e m i (t), x ∈ Ω, u i = N i,∂ m=1 ψ m i (s i )u m i (t), s i ∈ Σ i i = {1, 2},
the following finite-dimensional system is obtained from the weak formulation ( 13)

M 1 0 0 M 2 ė1 ė2 = 0 -D ⊤ L D L 0 e 1 e 2 + 0 B 2 B 1 0 u 1 u 2 .
(17) The mass matrix is constructed via

[M i ] mn = ⟨ϕ m i , Q i ϕ n i ⟩ Ω , the differentiation matrix is given by [D L ] mn = ⟨ϕ m 2 , Lϕ n 1 ⟩ Ω -⟨γ 1 ϕ n 1 |γ 2 ϕ m 2 ⟩ Σ1 , the control matrices are computed via [B 1 ] mn = ⟨ψ n 1 |γ 2 ϕ m 2 ⟩ Σ1 , [B 2 ] mn = ⟨γ 1 ϕ m 1 |ψ n 2 ⟩ Σ2 .
Symmetrically, starting from the weak formulation (15), the following system is readily obtained

M 1 0 0 M 2 ė1 ė2 = 0 -D L † D ⊤ L † 0 e 1 e 2 + 0 B 2 B 1 0 u 1 u 2 , ( 18 
) where the differentiation matrix D L † now reads [D L † ] mn = ϕ m 1 , L † ϕ n 2 Ω + ⟨γ 1 ϕ m 1 |γ 2 ϕ n 2 ⟩ Σ2 .
It is worth noting that D L is exactly the discretization of the left-hand side of (9), while D L † corresponds to its right-hand side. In particular, for conforming discrete spaces span(ϕ 1 1 , . . . , ϕ N1

1 ) = V L ⊂ D(L), span(ϕ 1 2 , . . . , ϕ N2 2 ) = V L † ⊂ D(L †
), the Stokes theorem (9) leads to the algebraic identity

D ⊤ L = D L † .
3. SOME ENGINEERING EXAMPLES

Wave equation

The wave equation in an bounded domain Ω ⊂ R d is described by the following system

κ -1 0 0 ρ ∂ ∂t p u = 0 div grad 0 p u , ( 19 
)
where the unknowns are the pressure scalar field p : Ω × (0, t end ) → R and the velocity vector field u : Ω × (0, t end ) → V. The physical parameters are the bulk modulus κ : Ω → R and the mass density ρ : Ω → R. These parameters are considered time independent. For this model the L operator and its adjoint L † corresponds to the gradient and minus the vector divergence respectively L = grad, L † =div, with domains given by Eqs. ( 2) and ( 5) respectively. The integration by parts formula (6) then holds, with the trace operator γ 1 given by the Dirichlet trace (3) and γ 2 represented by the normal trace (4).

Elastodynamics

The linear elastodynamics problem in Ω ⊂ R d is expressed by the following system

ρ 0 0 C ∂ ∂t u Σ = 0 Div Grad 0 u Σ .
The unknowns are the velocity field u : Ω × (0, t end ) → V and the symmetric stress tensor Σ : Ω × (0, t end ) → S. The physical parameters correspond to the density ρ : Ω → R and the compliance fourth order tensor C : Ω → L(S). The operator L and its adjoint with respect to G u are given by L = Grad, L † = -Div, where Grad u = 1 2 (∇u + ∇ ⊤ u) is the symmetric gradient of vector fields and Div Σ =

d i=1 ∂ xi [Σ] ij
is the columnwise divergence of tensor fields. The operators domains are given by

D(Grad) = H Grad (Ω, V), D(Div) = H Div (Ω, S)
, where the following Sobolev spaces have been introduced

H Grad (Ω, V) := {u ∈ L 2 (Ω, V)| Grad u ∈ L 2 (Ω, S)}, H Div (Ω, S) := {Σ ∈ L 2 (Ω, S)| Div Σ ∈ L 2 (Ω, V)}.
The following integration by parts formula then holds ⟨Grad u, Σ⟩ Ω + ⟨u, Div Σ⟩ Ω = ⟨γ 1 u |γ 2 Σ⟩ ∂Ω , where the trace operators corresponds to the vector Dirichlet trace and to the normal trace of tensors

γ 1 u = u| ∂Ω , γ 2 Σ = Σ • n.
The boundary duality product involve the spaces

V ∂ = H 1/2 (∂Ω, V) := tr H Grad (Ω, V), V ′ ∂ = H -1/2 (∂Ω, V)
, where H 1/2 (∂Ω, V) corresponds to the range of the trace operator and H -1/2 (∂Ω, V) is its topological dual.

NUMERICAL RESULTS AND DISCUSSION

An eigenvalue problem for the 2D wave equation

We consider an eigenvalue problem for the wave equation ( 19) with unitary physical parameters, κ = 1, ρ = 1, in a two-dimensional rectangular domain 

Ω = {(x, y) ∈ [0, π] × [0, π]},
ω ex = n 2 + m 2 , ∀n ∈ N 0 , ∀m ∈ N >0
where j = √ -1 is the imaginary unit. For the discretization, the gradgrad formulation is considered. The weak imposition of the boundary conditions is compared against a standard strong imposition of the Dirichlet boundary condition. The finite-dimensional system ( 17) is employed for the former approach, leading to the following eigenproblem

jω i M p 0 0 M u ψ i p ψ i u = 0 -D ⊤ grad D grad 0 ψ i p ψ i u . (20) 
For the strong imposition case, the following system is obtained instead

jω i M p 0 0 M u ψ i p ψ i u = 0 -([K grad ] Σ1 ) ⊤ [K grad ] Σ1 0 
ψ i p ψ i u , (21) 
where K grad is computed as [K grad ] mn = ⟨ϕ m 2 , grad ϕ n 1 ⟩ Ω . The notation [K grad ] Σ1 indicates that the columns of matrix K grad corresponding to the degrees of freedom on Σ 1 are replaced by the corresponding columns of the identity matrix 1 . This ensures the correct handling of the boundary conditions. Systems (20), ( 21) are compactly rewritten as

jω i Mψ i = J weak ψ i , jω i Mψ i = J strong ψ i ,
for System (20), for System (21). For what concerns the choice of the finite element spaces, Continous Galerkin of degree r are employed for the pressure p h ∈ CG r , while Raviart-Thomas of degree r are used for the velocity u h ∈ RT r . A precise description of the Continuous Galerkin and Raviart-Thomas finite element spaces can be found in [START_REF] Brenner | The mathematical theory of finite element methods[END_REF] and [START_REF] Boffi | Mixed finite element methods and applications[END_REF] respectively. It is worth recalling that the scalar field space CG r is continuous across elements, whereas the space RT r represents vector fields that have continuous normal component across elements. These two spaces form a de Rham subcomplex CG r grad ---→ RT r . This means that they preserve the cohomology associated to the de Rham complex. This is a core property that is 1 The interested reader may consult https://www. firedrakeproject.org/boundary_conditions.html for a detailed explanation Remark 5. The weak formulations ( 13), ( 15) are quite restrictive for the choice of finite elements, since both spaces need to be conforming with respect to the L and L † operators. In particular it becomes more difficult to select finite element spaces that form a de Rham subcomplex. For example, the div-div discretization of the wave equation RT r and DG r-1 elements can be used, whereas the weak imposition of the boundary conditions demands the employment of RT r and CG r finite elements.

Discussion

The finite element library Firedrake (see [START_REF] Rathgeber | Firedrake: automating the finite element method by composing abstractions[END_REF]) was used to generate the finite element matrices. For the discretization 5 elements per side are used N el x = 5, N el y = 5. This means that the mesh consists of 50 triangles. To compute the eigenvalues, the Krylov-Schur solver from the SLEPc library [START_REF] Hernandez | Slepc: A scalable and flexible toolkit for the solution of eigenvalue problems[END_REF] is employed. A shift and invert spectral transform is used to look for the eigenvalues in the lowest part of the spectrum. The results for the weak and strong impositions of the eigenvalues are reported in Figs. 1 and 2 respectively. Symbol + denotes the exact eigenvalues, whereas the colored triangles represent the numerical solution for different values of the polynomial degree, r = {1, 2, 3, 4}. It can be immediately noticed that the weak imposition of the boundary condition leads to poorer results compared to the strong one. For the highest degree r = 4 approximately 20 eigenvalues are correctly computed in the case of weak boundary conditions, while more than the double are correctly computed by the strong imposition of the boundary conditions. So even if this approach allows obtaining explicit pH systems, it does not perform as well as the canonical strong imposition of the essential Dirichlet condition. Another point that deserves a deeper analysis is the appearance of zero eigenvalues in the spectrum when considering eigenproblems of pH systems. This is related to the fact that the Dirichlet condition is imposed on the time derivative of the original field. To this end consider the canonical form of the wave equation as a second order system in time and space κ -1 ∂ tt wdiv(ρ -1 grad w) = 0. System ( 19) is obtained by introducing the following variables p = ∂ t w, u = ρ -1 grad w. Setting to zero the p variable leads to jω i ψ i w | Σ1 = 0, leading to additional zeros in the spectrum.

The Maxwell equations in 3D can also be treated, see [START_REF] Haine | Structureperserving discretization of Maxwell's equations as a port-Hamiltonian system[END_REF].

CONCLUSION

In this paper, the approach proposed on an example in [START_REF] Thoma | Explicit port-Hamiltonian FEM-models for linear mechanical systems with non-uniform boundary conditions[END_REF] has been extended to the general case of abstract linear pH systems. The formulation incorporates a boundary duality pairing into the interconnection operator to accommodate for mixed boundary conditions. It has been shown that this lead to two completely equivalent weak formulations and corresponding finite-dimensional systems. Moreover, the Hellinger-Reissner principle can be equivalently obtained by considering the reduction of the constraint associated with a Lagrange multiplier method, assuming a suitable choice of the multiplier discrete basis. This approach allows avoiding the need to deal with differential algebraic systems, but exhibits some serious drawbacks. First of all the choice of the finite elements is restricted to more regular elements. These may not satisfy de Rham subcomplex property (cf. Rmk. 5). Furthermore, the results for the considered test case show that the approach performs rather poorly compared to the standard strong imposition. Future developments will consider different strategies to impose the boundary conditions in a weak manner and extend those to the case of elasticity problems.

  together with the boundary partition Σ 1 = {x = 0 ∪ x = π}, Σ 2 = {y = 0 ∪ y = π}. This means that Dirichlet homogeneous boundary conditions are imposed on the left and right sides p| x=0 = 0, p| x=π = 0, whereas Neumann boundary conditions are imposed on the lower and upper sides u • n| y=0 = 0, u • n| y=π = 0. For this problem the analytical eigenvalues take the form λ ex = ±jω ex ,
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 1 Figure 1. Eigenvalues computed via weak imposition of the boundary conditions fundamental for the stability and consistency of mixed finite elements Arnold et al. (2006).Remark 5. The weak formulations (13), (15) are quite restrictive for the choice of finite elements, since both spaces need to be conforming with respect to the L and L † operators. In particular it becomes more difficult to select finite element spaces that form a de Rham subcomplex. For example, the div-div discretization of the wave equation RT r and DG r-1 elements can be used, whereas the weak imposition of the boundary conditions demands the employment of RT r and CG r finite elements.
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 2 Figure 2. Eigenvalues computed via strong imposition of the boundary conditions
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