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Abstract. In finite volume schemes with MUSCL interpolation of scalar variables at the faces
of control volumes, a slope limiting function is used in order to prevent non-physical oscillations
of the solution. More particularly, these functions are designed to ensure a certain monotonicity
criterion at each face of the control volume, criterion which then ensures a stability property of
the scheme. For vectorial variables, these slope limiting functions are generally applied compo-
nentwise, but this may result in a frame-dependance, as well as a loss of accuracy due to false
detection of extrema. In this paper, a new vectorial interpolation method is introduced, which
is frame-invariant, second-order accurate and stable in a sense that will be defined.

1 INTRODUCTION

CEDRE software is a numerical code developed by the french institute ONERA to solve
multi-physics problems in energetics [1]. Like other CFD codes, it solves hyperbolic systems of
conservation equations, which, by focusing only on the convective part, read:

∂Q

∂t
+∇ · f(Q,λ) = 0, (1)

where Q represents the vector of conserved variables, λ is the velocity vector field, and f the phys-
ical flux. In CEDRE, the spatial discretization relies on a finite volume cell-centered framework
on general unstructured meshes [2], which allows us to write the semi-discretized formulation of
equation (1) on a multi-dimensional domain:

∂Qi

∂t
= − 1

|Ki|
∑

j∈V(i)

|Sij |Φ
(
Qn

ij ,Q
n
ji,nij ,λij

)
, (2)
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where Ki denotes a cell of the mesh, Sij the face between cells Ki and Kj . Notation |.| denote
either the length, area or volume measure, depending on the dimension of the object. V(i) is
the face neighborhood of the cell Ki, Φ is the numerical flux and nij is a face normal vector
pointing from cell Ki to cell Kj . Lastly, Qn

ij represents a set of interpolated values at the face
center Mij of face Sij . With a first order scheme, these interpolated values are equal to the
numerical variables Qi which represents the mean value of Q over the cell Ki, located at the
cell centroid Bi. To reach a higher order of spatial accuracy, CEDRE code relies on a MUSCL
approach, on which we will be focusing in this article.

As it is well known by Godunov’s theorem [3], no linear reconstruction can be both high-
order accurate and ensure the monotony of the scheme, that is why Van-Leer introduced the
MUSCL approach [4–8]. This method consists in evaluating the gradient of the variable, which
is then limited by a limitation function [9, 10] in order to ensure the scheme stability. For
a one dimensional scheme, this stability is reached through a TVD property as introduced
by Harten [11], but in higher dimension, it is known that the TVD property is incompatible
with high order accuracy [12]. Since then, many other have studied this issue [13–15] in order
to develop a MUSCL method on multi-dimensional meshes. These multi-dimensional MUSCL
methods can be grouped in two categories: monoslope methods, in which a single limited gradient
is computed for the entire cell [16], and multislope methods, in which a limited directional
gradient is computed for each face [17]. The method that we will study here is of multislope
type, and has been introduced by Le Touze [18].

As far as the authors know, while the limitation framework has already been well studied
for scalar variables, such as temperature or pressure, limitation methods of vectorial variables
such as velocity have received far less attention than their scalar counterpart. On a software
such as CEDRE, vectorial limitation was obtained until now by limiting vectors componentwise,
but this kind of procedure turns out to be frame-dependant, and a loss of accuracy can also be
observed. For the vectorial limitation problem, one can divide solutions found in the literature
in three major methods. The first one has been introduced by Luttwak and Falcovitz for a
monoslope framework [19–21]. As the stability of a scalar variable is usually defined through
a maximum principle, the authors defined vectorial variable stability by using the convex hull
of vectors from cell neighborhood, and called it VIP (Vector Image Polygon / Polyhedron). A
VIP method consists in the computation of a vector at the time step n + 1, followed by its
projection on the VIP set if it doesn’t already lie into it. With this process, a vector will satisfy
a maximum principle componentwise, whatever basis we choose, which is the natural extension
of the scalar maximum principle to vector variables. The second method has been developped by
Maire et al. [22,23]. It consists in computing a local basis for vectors to be reconstructed. Then
vectors are projected onto this basis, and the vector reconstruction is computed componentwise
in this basis. The last method has been developped by Zeng and Scovazzi [24]. It consists in
determining an axis on which the vector field will be projected in order to get scalar variables.
Then, a simple scalar limiter is computed, in order to get the general vectorial limiter.

The VIP method has the advantage to present the most accurate extension of the scalar
maximum principle to the vectorial case. However, its algorithmic cost seems to be important
and even prohibitive on large-scale simulations, as we have to compute intersection of vectors
with a convex hull for each reconstructed variables. On the other hand, projection methods
seems to have a lower computation cost, but the choice of the axis or basis of projection remains
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arbitrary, and the vectorial aspect of the variable is dropped by these methods. For all these
reasons, we propose a new vectorial limitation method in the context of multislope MUSCL
methods. In section 2, we will quickly detail the multislope scalar MUSCL scheme, and we will
develop a new way of limiting vectors variables in section 3. Nevertheless, we will only focus
here on final results. Intermediate demonstrations and numerical tests will be presented in a
forthcoming paper.

2 SCALAR MULTISLOPE MUSCL SCHEME

2.1 General reconstruction

Figure 1: Multislope MUSCL method.

The numerical scheme introduced by Le Touze and al. [18] consists in the computation of
various geometrical parameters for each face of each cell of the mesh. All these parameters
are illustrated in Figure 1. Along the axis BiMij , for a d-dimensional mesh, we determine
d forward cells (K+

ij,k)1≤k≤d and d backward cells (K−ij,k)1≤k≤d. From the intersection of the

line (or plane in dimension 3) drawn by the forward cells centroids (B+
ij,k)1≤k≤d and the axis

BiMij , we define the forward point H+
ij . By a similar way, we define the backward point H−ij .

Then, by giving each scalar value (U+
ij,k)1≤k≤d of the forward cells a weight (β+ij,k)1≤k≤d, one can

determine an interpolated value at the forward point: UH+
ij

=
∑d

k=1 β
+
ijk
U+
ijk

. Similarly, one can

write UH−
ij

=
∑d

k=1 β
−
ijk
U−ijk . Hence, along the axis BiMij , a scalar monodimensional framework

has been created. Thus, we can define the forward and backward slopes, as well as their ratio:

p+ij =
UH+

ij
− Ui

‖BiH
+
ij‖

, p−ij =
Ui − UH−

ij

‖BiH
−
ij‖

, rij =
p−ij

p+ij
. (3)

This gives us the reconstructed scalar value at Mij :

Uij = Ui + ‖BiMij‖ϕij(rij)p
+
ij , (4)
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where ϕ denotes the limiting function, ensuring a L∞ stability property under a CFL condition
with a second order accuracy where the solution is smooth. One of the drawback of this method
is that the ratio rij can’t be used directly in a vectorial framework, as slopes will also be vectors.
One way to use it is to define complex slopes in the complex plane spanned by the slopes
vectors. But actually, we will follow another approach that simplifies the stability proof, even in
the scalar case, and thereafter makes the vectorial extension more natural. To do so, we recast
the reconstruction (4) so that the slope ratio rij disappears.

2.2 Limitation function

We will focus here on the limitation function. We consider here a special case of equation
(1), that is the scalar advection equation, as it is easier to study its behaviour and its stability.
This equation reads:

∂u

∂t
+∇ · (λu) = 0, (5)

where u is the advected scalar. In the scalar case, the limitation function is shaped in order to
achieve a second order accuracy on smooth area, and to limit the solution around discontinuities.
Particularly, the limitation part of the limiter is designed so that the discretized scalar advection
scheme with an explicit euler scheme as time-discretization, namely

Un+1
i = Ui −

∆t

|Ki|
∑

j∈V(i)

|Sij |Φ(Uij , Uji,nij ,λij), (6)

achieve a maximum principle under a CFL condition, where U denotes here the discrete scalar
solution of equation (5). From [18], the conditions on the shape of the limiting function read as
follows:

0 ≤ ϕ(rij) ≤ min(η+ij , rijη
−
ij), (7)

where η+ij and η−ij are geometrical parameters: η+ij =
‖BiH

+
ij‖

‖BiMij‖ , and η−ij =
‖BiH

−
ij‖

‖BiMij‖ . The second-

order accuracy is reached with another inequality:

min(1, r) ≤ ϕ(r) ≤ max(1, r). (8)

This inequality means that the reconstructed scalar should be a convex combination of forward
and backward slopes, which can be written as a κ-scheme [10,25]

Uij = Ui + ‖BiMij‖
(

1 + κ

2
p+ij +

1− κ
2

p−ij

)
, (9)

where κ is a real parameter between −1 and 1. Taking now into account the monotonicity
constraints, it means that κ can no longer be a constant but must depend on the specific slopes
for the current face, which leads to write:

Uij = Ui + ‖BiMij‖
(

1 + κij
2

p+ij +
1− κij

2
p−ij

)
, (10)

where κij = κ(p+ij , p
−
ij) = κ(rij) is the local value accounting for both second-order accuracy

and monotonicity constraints (see Figure 2). This formulation of the reconstructed scalar is
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far more convenient as the former one (4) for a vectorial framework as it doesn’t use directly
the slope ratio rij . This is why we will use it to define our vectorial method in section 3. To
get a limited reconstruction, κij will therefore be defined as a function, whose maximum and
minimum admissible values depend on the limitation inequalities (7). One can easily rewrite
them as an inequality on the reconstructed variable:

min(Ui, UH+
ij

) ≤ Uij ≤ max(Ui, UH+
ij

)

min(Ui, UH−
ij

) ≤ Uf
ij ≤ max(Ui, UH−

ij
)

(11)

where we have defined Uf
ij = 2Ui − Uij . If the scheme were monodimensional along the axis

BiMij , and if the variable U had been supposed linear on the cell (Mij ,M
f
ij) (in blue in Figure

1), then Uf
ij would have been the real reconstructed value at Mf

ij . For an unstructured mesh,

the point Mf
ij doesn’t play any role and is not explicitely defined but one can still define the

hypothetical value of the discrete solution at this point, that’s why we call it the fictitious
reconstruction. One can see from (11) that even if this value doesn’t need to be computed
in practice, we still need to define it in order to establish the scheme stability property as
inequalities on both Uij and Uf

ij are required.

Figure 2: Combination of the second-order zone in green and the monotonicity constraints in red to get
the stability zone for the limiter, and equivalence in terms of κ values.

3 VECTORIAL MULTISLOPE MUSCL SCHEME

3.1 Stability formula

The vectorial MUSCL scheme derives naturally from the stability formula of the vectorial
version of the fully discretised scheme (6):

Vn+1
i = Vn

i −
∆t

|Ki|
∑

j∈V(i)

|Sij |Φ(Vij ,Vij), (12)
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which is the discrete formulation of the vectorial advection equation:

∂v

∂t
+ (λ · ∇)v = 0, (13)

where v is the exact vectorial solution of (13), and V represents its vectorial discrete solution.
In order to get the stability formula, one has to make some assumption on the numerical flux
function Φ. We will firstly assume that it is consistent:

∀V ∈ Rd, Φij(V,V) = (λ · nij)Vij . (14)

Secondly, we assume that there exists two scalar parameters Aij and Bij such that

Aij(Vij −Vi) = Φij(Vij ,Vi)− Φij(Vi,Vi),

Bij(Vji −Vi) = Φij(Vij ,Vji)− Φij(Vij ,Vi).
(15)

One can notice that if the numerical flux is the classical upwind numerical flux:

Φij(U,V) = max(λ · nij , 0)U + min(λ · nij , 0)V, ∀U,V ∈ Rd, (16)

then these scalar parameters Aij and Bij exist and are equal to:

Aij = max(λ · nij , 0), Bij = min(λ · nij , 0). (17)

If we introduce the fictitious vectorial reconstruction Vf
ij = 2Vi−Vij , and two other parameters:

ν+ij = ∆t
|Sij |
|Ki|

Aij , ν−ij = −∆t
|Sij |
|Ki|

Bij , (18)

we get:

Vn+1
i = Vi

1−
∑

j∈V(i)

(
ν−ij + ν+ij

)+
∑

j∈V(i)

ν−ijVji +
∑

j∈V(i)

ν+ijV
f
ij . (19)

In order to get a convex combination, we have to assume that the numerical flux is monotonous:

Aij ≥ 0, Bij ≤ 0, (20)

which means that the coefficients ν+ij and ν−ij are both positive. From this point, one can define
the following CFL condtition

1−
∑

j∈V(i)

(
ν−ij + ν+ij

)
≥ 0, (21)

which ensures that the formula (19) is a convex combination of Vi, Vji and Vf
ij . In order to get

the vectorial scheme stability, we still have to choose the way we will limit the reconstruction
Vij and its fictitious counterpart Vf

ij in the same time.
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3.2 Monotonicity criterion

From the formula (19), one can observe that with the right choice of limitation for the
reconstruction Vij , we can get almost any kind of control over Vn+1

i . In the scalar case, a
monotonicity criterion is applied on the reconstructed variable in order that Un+1

i achieve a
maximum principle. On the vectorial case, the control we want over Vn+1

i should ideally be the
vectorial extension of this maximum principle. This vectorial extension corresponds in fact to
the VIP area from Luttwak and Falcovitz [19–21], that is the convex hull of vectors from a given
cell neighborhood. Hence, if we write our reconstruction under a κ-scheme form:

Vij = Vi + ‖BiMij‖
(

1 + κij
2

p+
ij +

1− κij
2

p−ij

)
, (22)

we only have to find an interval I = [κ−, κ+] such that for any value of κij within I, we have

that both Vij and its associated fictitious Vf
ij = 2Vi − Vij lie into the convex hull of the

neighborhood vectors. Nevertheless, this is the best method only from a theoretical point of
view. Indeed, as already explained in the introduction, the algorithmic cost of both the convex
hull construction and the ”lying in the Convex Hull” test may be prohibitive in practice. For this
reason, we introduce here an alternative method to the convex hull. This alternative limitation
takes the form of a truncated circular sector area around each reconstructed vector Vij and

its associated fictitious reconstruction Vf
ij (see Figure 3). This method ensures some kind of

control over the norm and the direction of Vn+1
i as illustrated in Figure 4. To summarize, this

area is constructed as follows:

1. Vij and its fictitious counterpart have both to satisfy an upper bound on their norm:

‖Vij‖ ≤ max(‖VH+
ij
‖, ‖V̄i‖), ‖Vf

ij‖ ≤ max(‖VH−
ij
‖, ‖V̄i‖). (23)

This condition ensures that the vector norm ‖Vn+1
i ‖ is bounded. It is theoretically possible

to build a stable numerical scheme only with this condition in the sense that the norm
won’t tend toward infinity. But this stability area is much bigger than the well designed
convex hull previously mentionned. Especially, if all vectors point roughly to the same
direction, we can assume that Vn+1

i should also point to this direction. With only the
norm condition, such a control on the vector direction can not be guaranteed. That’s why
we introduce the next condition.

2. Vij has to lie in an angular sector defined by Vi and VH+
ij

on the one hand, and its

fictitious counterpart Vf
ij has to lie on the angular sector defined by Vi and VH−

ij
on

the other hand. This condition ensures that Vij and its associated fictitious Vf
ij won’t

oscillate, which implies an angular stability for Vn+1
i . We have to notice that this condition

can occur only for two dimensional vectors. Indeed, in a three dimensional framework,
Vij won’t automatically lie in the same plane defined Vi and VH+

ij
. A similar problematic

occurs for the fictitious reconstruction. It means that the angular sector has to be redefined
for vector of dimension 3, which won’t be done here.
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3. Both previous conditions are enough to ensure a vectorial stability. But if all vectors are
colinear, the current limitation won’t tend toward the scalar case limitation, as in the
scalar case, a lower bound is also required on the reconstruction Uij as shown in formula
(11). If we impose a lower bound on the vectors norm:

‖Vij‖ ≥ min(‖VH+
ij
‖, ‖V̄i‖), ‖Vf

ij‖ ≥ min(‖VH−
ij
‖, ‖V̄i‖), (24)

the scheme won’t be satisfying because it will prevent to use an admissible reconstruction
for smooth vector fields. This is why we decided not to impose a minimum constraint on
the norm, but to truncate the angular sector defined by the two previous bounds. For
the angular sector defined for Vij , we draw the line going from min(‖Vi‖, ‖VH+

ij
‖) Vi
‖Vi‖ to

min(‖Vi‖, ‖VH+
ij
‖)

V
H+

ij

‖V
H+

ij
‖ . A similar line is drawn for the angular sector associated with

the fictitious reconstruction Vf
ij .

Figure 3: Shape of the vectorial stability area. Red dashed line represents the truncated circular sector.
Green lines represent the set of all second-order accurate reconstructions. If Vij and Vf

ij lie both on

the green line and within the red area, then the reconstruction is admissible. Here, Vf
ij lies outside the

truncated circular sector. The reconstruction Vij is thus not accepted.

Hence, the reconstruction and limitation process is as follows:

1. We compute the two limit values κ− and κ+ such that Vij lies on the boundary of its
truncated circular sector. It means that for any value κ lying inside the interval I =
[κ−, κ+], the reconstructed vector Vij assiociated with κ will lie inside its stability area.

2. We compute the two limit values κf− and κf+ such that Vf
ij lies on the boundary of its

truncated circular sector. It means that for any value κ lying inside the interval If =
[κf−, κ

f
+], the fictitious reconstructed vector Vf

ij associated with κ will lie inside its stability
area.
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Figure 4: Bounds on Vn+1
i . In grey is represented the convex hull of vectors from a given neighborhood.

Red dashed line represents the norm maximum principle. Purple dashed line represents the angular
bound. Left figure represents a case where vectors from the neighborhood point roughly in the same
direction. Here, an angular bound seems to be required. Right figure represents a case where cell Ki is
a convergence or divergence point, and therefore no angular bound holds for Vn+1

i .

3. We compute the intersection of the two previous intervals, I ∩ If . If this intersection is
empty, then it means that we are on a kind of vectorial extremum. As in the scalar case,
a vectorial extremum means that the method degenerates at first order, and Vij = Vi.

4. If I ∩ If is not empty, we choose by any kind of way a value κ included in I ∩ If . One can
for instance choose the closest value to a unique κ0 previously chosen, or we can choose the
value which maximizes or minimizes the norm ‖Vi−Vij‖ on the interval I ∩ If . One can
also choose for example the mean value of I ∩ If . Different choices of κ = f(I ∩ If ) imply
different kinds of limitation functions, and eventually different interpolation schemes.

4 CONCLUSION

In this paper, we have presented a new way of limiting vectors in the framework of multislope
MUSCL schemes for finite volume methods. This limiting method consists in requiring that the
reconstruction vector and its fictitious counterpart lie in a truncated circular sector, which
ensures a control over the norm and the direction of Vn+1

i . Nevertheless, we didn’t presented
detailed calculus, and extension of the angular bound to three-dimensional vectors has not been
presented here. Moreover, results for this method are only theoretical so far, as no numerical
tests have been presented in this paper. All these aspects will be addressed in a forthcoming
paper.
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