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Abstract. This paper presents an algebraic wavenumber identification method to identify wavenumbers 
under stochastic conditions. Stochastic condition results from the introduction of small perturbation which is 
referred to the uncertainty of measurements points’ coordinates caused by the operation faults or problems 
with experimental errors. The proposed method is compared with two popular alternatives, namely: 
inhomogeneous wave correlation method and inverse convolution method which are both capable of 
extracting the bending wavenumbers of a meta-structure. A good performance is observed for the 
identification of complex wavenumbers in presence of uncertainty. In addition, the proposed method needs 
to solve a linear problem, reducing the computational cost compared to the inhomogeneous wave 
correlation method.   

1 Introduction 

Complex structures, such as composite structures, meta-
structures, or viscoelastic structures are of great interest 
in aerospace and civil engineering for their advantageous 
mechanical properties. For example, honeycomb 
sandwich composite structure displays low weight, high 
stiffness, and resistance to fatigue.  Meta-structures can 
be designed to produce bandgaps which leads to 
reducing structural vibration.  

The wave propagation characteristics of these 
structures can be analyzed by wavenumber identification 
as a function of frequency. The relationship between 
wavenumber and frequency is called the dispersion 
relation. In addition, the extracted wavenumber can be 
further used to estimate a structure’s mechanical 
parameters, damping loss factors, and damage detection 
[1-2].  

In the open literature, numerous inverse methods 
have been developed for wavenumber identification.  
These inverse methods are able to extract wavenumbers 
based on the frequency response of structures without 
prior knowledge of their mechanical properties. Such 
features make them more suited for industrial 
applications. According to the algorithmic principles, 
inverse methods can be divided into two families of 
methods: (i) nonlinear family methods and (ii) Prony 
linear family methods. In the nonlinear family methods, 
the Inhomogeneous Wave Correlation (IWC) [3-4] 
method and the McDaniel method [5-6] are often used.  
These two methods do not require periodic samples as 

input parameters and keep good robustness in stochastic 
conditions, but they require an expensive computational 
cost since they need to solve nonlinear issues. Moreover, 
the IWC is not able to provide accurate wavenumbers in 
the low frequency range due to the requirement of many 
wavelengths presented in the displacement field. 
Comparatively, linear Prony family methods, such as 
High Resolution Wavenumber Analysis (HRWA) [7] 
and INverse COnvolution MEthod (INCOME) [8], have 
the advantage of requiring a low computational cost and 
providing accurate wavenumbers in the wide frequency 
range, while they require that frequency response are 
measured by periodic sampling and they are sensitive to 
small perturbation of coordinates. The small perturbation 
problem is common in experiments and it leads to the 
mismatching problem between frequency response and 
each measuring point’s coordinate.  This problem could 
be caused by operation fault, grid distortion, or the 
problem of measuring equipment [9]. Unfortunately, 
there are few accessible papers addressing the problem 
of uncertainty propagation in the wavenumber 
identification process. For example, Lajili et al. [10] 
developed a stochastic wavenumber identification 
process by combing IWC-Variant (IWC-V) with Latin 
Hypercube Sampling (SHL) [11]. This method has been 
found to be robust to random variability of measurement 
points’ coordinates, but it still suffers from the problem 
of IWC. 

In order to overcome the aforementioned 
disadvantages of nonlinear family methods and linear 
Prony family methods, a new inverse method is 
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proposed called Algebraic Wavenumber Identification 
(AWI) method. This paper is organized as follows: a 
brief introduction is provided in Section 2. In Section 3, 
the theory of AWI is introduced when only one wave 
propagates in the medium. The comparison of AWI, 
INCOME, and IWC for bending wavenumber 
identification in a meta-structure in presence of 
uncertainty is presented in Section 4. Finally, some 
conclusions are provided in Section 5.  

2 Reminder of INCOME and IWC 
identification methods  

2.1 Inhomogeneous wave correlation method 

For the wavenumber identification of 1D structures, the 
Inhomogeneous Wave Correlation method compares the 
signal ( )nu x which is frequency response at nx point 

with the model of the inhomogeneous wave  

ˆ( , ) nikx
no x k e . The IWC function is defined as: 
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where symbol *  is the complex conjugation. For each 
frequency, the wavenumber k can be estimated by 
searching the maximum of function IWC.  

2.2 Inverse convolution method  

The 1D version of INCOME is developed based on the 
classic Prony method which fits a signal to a weighted 
summation of w  damped exponential model 

1
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least-squares method as follows: 
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where w is the number of waves and coefficients vector 
x  is the eigenvector associated to the smallest 
eigenvalue  .  The second step is that the propagation 

constants r  of 
1
( )( 1/ )

w

r rr
p X X


     can be 

estimated by finding the roots of characteristic 
polynomial and the final step is that the wavenumber is 
obtained by Bloch principle ln( ) /r rk i x   with 

sampling interval x . 

3 Algebraic wavenumber identification 
method 

In this section, the main formula of AWI is introduced. 
AWI firstly uses the algebraic derivative method and 
Laplace transform to build a linear differential equation 
in the wavenumber domain, then the operational calculus 
transform is applied to each signal function and finally, 
the wavenumber is identified through the least-squares 
method. In this section, one wave propagating in the 1D 
structure is considered and it can also be extended to 
multiple waves cases. 

A stochastic model of the 1D displacement field can 
be assumed when only one wave propagates in the 
medium as follows: 

                                 ( ) npx
nU x Ae                               (3) 

where A  is unknown amplitudes and p  is related to the 

unknown wavenumber k  ( p ik ). This paper aims to 

extract the wavenumber k . nx is the stochastic 

coordinate of the thn  measurement point and it can be 
obtained by introducing the random variable into each 
perfect measuring point’s coordinate nx . Thus, the 

coordinate of each measurement point can be expressed 
as: 

                                 (1 )n n nx x                                (4) 

where n  is the small perturbation ratio which is a 

random variable obeying the uniform distribution. In 
reality, the small perturbation ratio of each measurement 
point’s coordinate is unknown, therefore the 
corresponding displacement can be regarded as the 
displacement at the perfect coordinate.  

In the wavenumber domain, the Laplace transform of 
Eq. (3) is given by: 

                                 ( )
A

S k
k p




                                (5) 

A characteristic polynomial is defined as: 

                       ( ) (1) (0)k k p k                          (6) 

where (1) and (0) are coefficients of characteristic 

polynomial. Therefore, a differential equation can be 
established by taking the derivative of the product of Eq. 
(5) and Eq. (6) as: 

                        
 ( ) ( )

0
d S k k
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
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To eliminate derivation operation in the spatial 
domain, Eq. (7) is multiplied by 2k  and then operational 
calculus transform is applied to each of its terms. After 
arrangement, the following expression can be obtained: 
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The integral of each term in Eq. (8) can be calculated 
by the trapezoidal integration method. Eq. (8) holds for 
each measurement point, thus the coefficients (0)  and 

(1)  of the characteristic polynomial, Eq. (6), can be 

identified by the least-squares method and finally the 
wavenumber can be obtained by:  

                                   
(1)

(0)
k i


 


                               (9) 

  It is noted that the integrals operate like a low filter 
[12], reducing the influence of large measurement error 
on wavenumber extraction. On the other hand, AWI 
treats the displacement field as a continuous function, 
thus it is not limited to periodic sampling. 

4 Application of AWI to a 1D meta-
structure  

In this section a comparison is made between the three 
methods including AWI, INCOME and IWC. This was 
performed for bending wavenumber extraction in a 1D 
meta-structure which is a steel beam equipped with 
spatially distributed small-scale resonators.  

Fig. 1. shows the schematic representation of the 1D 
meta-structure. The steel beam has the dimension 
80 3 1 cm  . The mechanical properties of the steel host 

beam and resonators are listed in Table 1 and Table 2, 
respectively. The sampling interval is chosen as 1cm , 
resulting in 80 measurement points. The total mass of the 
resonators is 2% of the mass of the host steel beam. The 
small perturbation ratio is considered as 20% in this 
section. 
 

 

Fig. 1. Schematic representation of the resonator. 

Table 1. Characteristics of steel host beam  

Yang’s 
modulus 

Density Poisson ratio Damping 

210 GPa 7900 kg/  0.3 0.8% 

Fig. 2 shows the displacement at 400 Hz, from which 
the measurements’ error caused by small perturbation 
problem can be observed.  

Table 2. Characteristics of resonators 

Number Mass ratio Resonance 
frequency 

Damping 

20 2% 400 Hz 0.5% 

 

Fig. 2. Displacements at 400 Hz under small perturbation 
condition ( 20%n  ). Small perturbed samples ( ) and perfect 

samples (-- --). 

 
Fig. 3. The real part of wavenumbers obtained by INCOME (--
--), IWC (-- --) and AWI (-- --) under small perturbation 

condition ( 20%n  ). Numerical solution (reference)  ( ). 

 

Fig. 4. The imaginary part of wavenumbers obtained by 
INCOME (-- --), IWC (-- --) and AWI (-- --) under small 
perturbation condition ( 20%n  ). Numerical solution 

(reference)  ( ). 
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Fig. 3 and Fig. 4 are real part of wavenumbers and 
imaginary part of wavenumbers extracted by INCOME, 
IWC and AWI, respectively. From Figs. (2) to (4), three 
observations can be made: First, AWI is in very good 
agreement with numerical predictions. This can be 
explained by the fact that the introduction of multiple 
integrals in the framework of AWI yields some 
insensitivity to small perturbations. Second, INCOME is 
not able to provide the accurate wavenumber in this case. 
This sensitivity to errors is an intrinsic feature of Prony. 
Third, dispersion curve obtained by IWC shows big 
fluctuations between 200Hz and 800Hz. This is because 
the IWC requires that the displacement field contains 
many wavelengths, while the obtained frequency 
responses are not able to provide enough wavelengths in 
the range of frequencies considered in this case. In 
addition, as can be seen in Fig. 4, the band gap can be 
identified accurately by the result of AWI and it extends 
from 370 Hz to 430 Hz, however, it is hard to identify 
band gap from the result of IWC and INCOME in this 
case. 

The computational time is only dependent on the 
number of measurements. Thus, 10 groups of perfect 
measurements points from 10 to 100 are firstly obtained 
from wave shape and then the computational time is 
averaged on 30 frequency points for each group 
measurement point. Fig. 5 shows the comparison result 
of the computational time. This figure illustrates that 
INCOME and AWI have a clear reduction of 
computational time compared with IWC because they 
require solving a linear problem without a nonlinear 
iterative optimization process. Among them, the AWI is 
5 to 12 times faster than IWC. 

 
Fig. 5. Computational time between IWC, INCOME and AWI 
versus the number of measurement points. INCOME (-- --), 
IWC (-- --) and AWI (-- --). 

5 Conclusions 

In this work, an algebraic wavenumber identification 
method (AWI) to extract complex wavenumbers of 1D 
structure, in presence of uncertainty which is caused by 
the random variability of measurement points’ 
coordinates, was presented. This method basically 
overcomes the disadvantages of the two popular inverse 
methods IWC and INCOME. In order to validate the 
effectiveness of AWI, AWI was compared with IWC 

and INCOME in the case of a meta-structure. One can 
notice that the proposed method is not limited to periodic 
samples since the displacement field is treated as a 
continuous function instead of a collection of discrete 
signals. Furthermore, this method is not sensitive to 
small perturbations that may be caused by the random 
variability of geometric measurement points’ 
coordinates, because of the introduction of multiple 
integrals. Besides, AWI requires solving a linear 
problem, leading to a clear reduction of computation 
time compared with nonlinear family methods such as 
IWC.  
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