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PERMUTATION-INVARIANT LOG-EUCLIDEAN GEOMETRIES
ON FULL-RANK CORRELATION MATRICES ∗

YANN THANWERDAS†

Abstract. There is a growing interest in defining specific tools on correlation matrices which
depart from those suited to SPD matrices. Several geometries have been defined on the open elliptope
of full-rank correlation matrices: some are permutation-invariant, some others are log-Euclidean, i.e.
diffeomorphic to a Euclidean space. In this work, we merge these two properties by defining the
families of off-log metrics and log-scaled metrics. Firstly, we prove that the recently introduced
off-log bijection is a diffeomorphism, allowing to pullback (permutation-invariant) inner products.
We introduce the “cor-inverse” involution on the open elliptope which can be seen as analogous to
the inversion of SPD matrices. We show that off-log metrics are not inverse-consistent. That is why
secondly, we define the log-scaling diffeomorphism between the open elliptope and the vector space
of symmetric matrices with null row sums. This map is based on the congruence action of positive
diagonal matrices on SPD matrices, more precisely on the existence and uniqueness of a “scaling”,
i.e. an SPD matrix with unit row sums within an orbit. Thanks to this multiplicative approach,
log-scaled metrics are inverse-consistent. We provide the main Riemannian operations in closed form
for the two families modulo the computation of the respective bijections.

Key words. SPD matrices, elliptope, correlation matrices, log-Euclidean metric, permutation-
invariant, cor-inversion, off-log metric, log-scaled metric, quotient-affine metric
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1. Introduction. In many domains such as Diffusion Tensor Imaging, Brain-
Computer Interfaces, brain connectomes or radar signals, the data are time series
which are often represented by their covariance matrices. They encode the dependence
between the variables and the scale of intensity of these variables. Many Riemannian
geometries were proposed to compute with covariance matrices with more natural
tools that the Euclidean ones. The use of the affine-invariant metric was shown to
outperform many results based on Euclidean metrics such as fiber reconstruction in
DTI [29], movement classification in BCI [5] or detection of brain functional connec-
tivity [35]. Shortly after, the log-Euclidean metric [4, 12] was shown to be a more
efficient alternative to the affine-invariant metric with similar results. The Bures-
Wasserstein metric was also proposed to deal with low-rank matrices since the two
previous ones are only defined on the space Sym+(n) of Symmetric Positive Definite
(SPD) matrices. All these metrics belong to the wide families of kernel metrics [15]
and O(n)-invariant metrics [33]. Non O(n)-invariant metrics were also proposed such
as the Cholesky [36, 14], log-Euclidean-Cholesky [23] and log-Cholesky [24] metrics.

In the previously cited domains and in other ones such as phylogenetic trees [13]
or Gaussian graphical networks [22, 11], another possible and natural choice to repre-
sent the data is the correlation matrix instead of the covariance matrix. However, the
geometries of correlation matrices have been much less studied. Hence they are often
considered as covariance matrices on which one can use the classical tools. Neverthe-
less, these tools are not adapted to correlation matrices, at least the O(n)-invariant
ones. Indeed, firstly, the manifold of full-rank correlation matrices is not stable by the
congruence action of the orthogonal group so this action has no sense for them. Sec-
ondly, it is not a totally geodesic submanifold for neither of the noted O(n)-invariant
metrics on SPD matrices, except the Euclidean metric. This motivates the study of
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2 Y. THANWERDAS

intrinsic geometries of correlation matrices. Such geometries could also have a great
impact on applications with covariance matrices since they would provide product
metrics with one part on diagonal matrices and the other part on correlation matri-
ces. It would thus allow to decouple the scale of the variables from the dependence
between the variables.

Among the geometries proposed on correlation matrices, one involves a surjection
from a product of spheres [30, 19]. It is an orbit space [1], this construction is quite
analogous to the Bures-Wasserstein geometry of covariance matrices. However, to our
knowledge, it has not been precisely described yet. A metric space structure called the
Hilbert geometry relies on the convexity of the set [27]. Among the Riemannian struc-
tures, the recently introduced quotient-affine metric is obtained by taking the quotient
of the affine-invariant metric under the congruence action of positive diagonal matri-
ces ? : (∆,Σ) ∈ Diag+(n)× Sym+(n) 7−→ ∆Σ∆ ∈ Sym+(n) [9, 32]. Indeed, full-rank
correlation matrices can be seen as the orbits of this action so the space Cor+(n) of
such matrices is the quotient manifold Sym+(n)/Diag+(n) and any invariant metric
on Sym+(n) ' Cor+(n) × Diag+(n) descends to a Riemannian metric on Cor+(n).
These constructions have the common property to be invariant under permutations.
It means that the statistical analysis is invariant under reordering the variables, which
can be a relevant hypothesis when the order is arbitrary. When the order of the vari-
ables is meaningfully chosen depending on the application (e.g. for auto-correlation
matrices), other Riemannian metrics that are not permutation-invariant can be con-
sidered. The metrics proposed in [34] provide a Hadamard structure or even a vector
space structure, which are very convenient for computing with correlation matrices.

Given this short survey on geometries of correlation matrices, there is an obvious
gap to fill in: no permutation-invariant log-Euclidean metrics have been derived yet
on the space Cor+(n) of full-rank correlation matrices. By log-Euclidean, we mean
the pullback of an inner product on a vector space V by a diffeomorphism referred
to as a logarithm and denoted Log : Cor+(n) −→ V. In this work, we propose
two approaches to define such a diffeomorphism. The first one is based on a recent
bijective parametrization of full-rank correlation matrices by the space LT0(n) of lower
triangular matrices with null diagonal introduced by Archakov and Hansen [3]. The
second one is entirely new. We rephrase their framework to present the two approaches
in a similar way to facilitate the comparison between them and the comprehension
of the second one by analogy with the first one. These two methods are respectively
summarized in Tables 1.1 and 1.2 and explained below.

1.1. Results and organization of the paper. In the remainder of this section,
we introduce the necessary notations. We also define a natural involution on the open
elliptope called the cor-inversion, which allows to define a notion of inverse-consistency
for Riemannian metrics.

In [3], Archakov and Hansen show the claim in Table 1.1, that is for all symmetric
matrix S, there exists a unique diagonal matrix D = D(S) such that exp(D + S) is
a full-rank correlation matrix. Thus it defines a surjective map π : S ∈ Sym(n) 7−→
exp ◦(D(S) + S) ∈ Cor+(n) which is equivariant under permutations, and a bijective
map L ∈ LT0(n) 7−→ π(L + L>) ∈ Cor+(n). We astutely replace the space LT0(n)
by the space V = Hol(n) of symmetric matrices with null diagonal (which is of same
dimension) so that the restriction Exp = π|V : V −→ Cor+(n) is also equivariant under

permutations. Note that Hol(n) is actually the tangent space of Cor+(n). Moreover,
we trivially observe that π is invariant by the additive action of a diagonal matrix.
Our contribution is to show that the bijection Exp is a smooth diffeomorphism, to
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Additive approach: off-log diffeomorphism

Action + :

ß
Diag(n)× Sym(n) −→ Sym(n)

(D,S) 7−→ D + S

Claim
∀S ∈ Sym(n),∃!D := D(S) ∈ Diag(n) :

exp(D + S) ∈ Cor+(n)
Status Claim proved by Archakov and Hansen [3]

Diagram Cor+(n)
Log=Off ◦ log

��

Hol(n)
� � //

Exp

??

Sym(n)
D //

exp ◦ (D+IdSym(n))

OO

Diag(n)

Outline
Section 2.1. Definition of D
Section 2.2. Definition of pullback metrics

Table 1.1: Additive approach to define permutation-invariant log-Euclidean metrics
on Cor+(n), based on [3].

Multiplicative approach: cor-exp diffeomorphism

Action ? :

ß
Diag+(n)× Sym+(n) −→ Sym+(n)

(∆,Σ) 7−→ ∆Σ∆

Claim
∀Σ ∈ Sym+(n),∃! ∆ := D?(Σ) ∈ Diag+(n) :

log(∆ ? Σ) ∈ V?
Status Claim proved for V? = Row0(n) in Section 3

Diagram Cor+(n) �
�

//

Log?

!!

Sym+(n)
D?
//

log ◦ (D?? IdSym+(n))

��

Diag+(n)

V?
Exp?=Cor ◦ exp

aa

Outline
Section 3. Def. of D? (choice of appropriate V?)
Section 4. Definition of pullback metrics

Table 1.2: Multiplicative approach to define permutation-invariant log-Euclidean met-
rics on Cor+(n). This is new. The vector space V? is stable by permutations and
satisfies Sym(n) = V? ⊕Diag(n).

define by pullback the family of off-log metrics and to provide all the Riemannian
operations in closed form modulo the computation of D. This additive approach is
summarized in Table 1.1 and exposed in Section 2.

Our second approach consists in inverting the roles played by the vector spa-
ces Sym(n) = V ⊕ Diag(n) and the manifolds Sym+(n) = Cor+(n) × Diag+(n), as
well as the matrix exponential and the matrix logarithm, and especially to replace
the additive action of Diag(n) on Sym(n) by the congruence action ? : (∆,Σ) ∈
Diag+(n)× Sym+(n) 7−→ ∆Σ∆ ∈ Sym+(n). In this work, we find a vector space V?
such that for all Σ ∈ Sym+(n), there exists a unique ∆ = D?(Σ) ∈ Diag+(n) such
that log(∆Σ∆) ∈ V?. This allows to define the surjective map π? : Σ ∈ Sym+(n) 7−→
log(D?(Σ) ? Σ) ∈ V? and the bijective map Log? = π|Cor+(n) : Cor+(n) −→ V? which
are equivariant under permutations. This multiplicative approach is summarized in
Table 1.2 and exposed in Section 3. One major advantage of this multiplicative
approach is that it intrinsically respects the structure of correlation matrices since
Cor+(n) = Sym+(n)/Diag+(n), contrarily to the additive approach. The main con-
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sequence is the compatibility with the inversion, i.e. π?(C−1) = −π?(C) for all
C ∈ Cor+(n).

More precisely, we try to prove the claim with V? = Hol(n) and V? = Row0(n),
that are the vector spaces of symmetric matrices respectively with null diagonal and
null row sums. With the first choice, we only manage to prove the existence. We
actually prove that the uniqueness would imply the uniqueness of the Riemannian
logarithm at identity of the quotient-affine metric mentioned above, which is an open
problem. This is a secondary contribution that relates two problems on full-rank
correlation matrices. In contrast, we prove the claim with V? = Row0(n). Indeed,
we show that exp(Row0(n)) = Row+

1 (n), where Row+
1 (n) is the submanifold of SPD

matrices with unit row sums. This reduces our question to the famous problem of
scaling an SPD matrix to prescribed row sums by congruence of a positive diagonal
matrix: for all SPD matrix Σ, does there exist a positive diagonal matrix ∆ = D?(Σ)
such that ∆Σ∆ ∈ Row+

1 (n). The answer is yes [26, 18] so the claim is true.
In Section 4, similarly to the additive approach, we prove that the bijection Log?

is a smooth diffeomorphism and we define by pushforward the family of log-scaled
metrics. Contrarily to off-log metrics, they are inverse-consistent. We provide all
the Riemannian operations in closed form modulo the computation of D?, that is the
computation of the scaling of an SPD matrix. We conclude in Section 5.

1.2. Notations.

1.2.1. Matrices. Tables 1.3 and 1.4 summarize our notations for matrix spaces.
We also use the following constant and linear operators on vectors and matrices:

· 1 ∈ Rn is the vector with all entries equal to 1;
· diag : Rn −→ Diag(n) makes a diagonal matrix from a vector;
· sum : Rn −→ R computes the sum of the entries of a vector;
· Diag : Mat(n) −→ Diag(n) extracts the diagonal matrix from a matrix;
· Off : Mat(n) −→ ker Diag substracts the diagonal matrix from a matrix;
· Sum : Mat(n) −→ R computes the sum of entries of a matrix;
· • : Mat(n)×Mat(n) −→ Mat(n) computes the Schur (entry-wise) product of

matrices.

Squared of size n Mat(n) = {M = [Mij ]16i,j6n|Mij ∈ R}
Skew-symmetric Skew(n) = {Y ∈ Mat(n)|Y > = −Y }
Symmetric Sym(n) = {X ∈ Mat(n)|X> = X}
Diagonal Diag(n) = {Diag(X)|X ∈ Mat(n)}
Symmetric hollow (null diagonal) Hol(n) = {X ∈ Sym(n)|Diag(X) = 0}
Symmetric null-row-sum Row0(n) = {X ∈ Sym(n)|X1 = 0}

Table 1.3: Matrix vector spaces

Invertible GL(n) = {A ∈ Mat(n)|det(A) 6= 0}
Orthogonal O(n) = {A ∈ GL(n)|AA> = In}
Symmetric Positive Definite Sym+(n) = {AA>|A ∈ GL(n)}
Positive diagonal Diag+(n) = Sym+(n) ∩Diag(n)

Full-rank correlation Cor+(n) = {C ∈ Sym+(n)|Diag(C) = In}
SPD unit-row-sum Row+

1 (n) = {Σ ∈ Sym+(n)|Σ1 = 1}

Table 1.4: Matrix manifolds
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We recall the definition of the congruence action ? : (A,M) ∈ GL(n)×Mat(n) 7−→
AMA> ∈ Mat(n). Since the permutation group S(n) is a subgroup of the orthogonal
group via the canonical injection σ ∈ S(n) ↪→ Pσ = [δi,σ(j)]16i,j6n ∈ O(n), the

permutation action (σ,M) ∈ S(n) ×Mat(n) 7−→ σ ·M = PσMP>σ ∈ Mat(n) is the
congruence action of the subgroup S(n).

We recall the definition of the matrix exponential map exp : M ∈ Mat(n) −→∑+∞
k=0

1
k!M

k ∈ GL(n) which is a smooth map. Its restriction to symmetric matrices

is a smooth diffeomorphism onto SPD matrices, exp : Sym(n) −→ Sym+(n). The
symmetric matrix logarithm is its smooth inverse, log : Sym+(n) −→ Sym(n). The
computation of exp, log and their differentials is particularly simple modulo eigenvalue
decomposition. Given Σ = PDP> ∈ Sym+(n), X = Q∆Q>, Y ∈ Sym(n) where
P,Q ∈ O(n), D ∈ Diag+(n) and ∆ ∈ Diag(n):

exp(X) = Q exp(∆)Q>,(1.1)

log(Σ) = P log(D)P>,(1.2)

dX exp(Y ) = Q
Ä
[exp[1](δi, δj)]16i,j6n • (Q>Y Q)

ä
Q>,(1.3)

dΣ log(Y ) = P
Ä
[log[1](di, dj)]16i,j6n • (P>Y P )

ä
P>,(1.4)

where f [1](x, y) =

®
f(x)−f(y)

x−y if x 6= y

f ′(x) if x = y
is the first divided difference of f ∈

{exp, log} [7]. In other words, the maps exp, log, d exp, d log are O(n)-equivariant,
and therefore S(n)-equivariant.

1.2.2. Correlation matrices. The manifold of full-rank correlation matrices is
called the open elliptope. It it relatively open in Sym(n), i.e. open in In + Hol(n).

We introduce the following smooth submersion from SPD matrices to full-rank
correlation matrices, Cor : Σ ∈ Sym+(n) 7−→ Diag(Σ)−1/2 Σ Diag(Σ)−1/2 ∈ Cor+(n).
Given Σ ∈ Sym+(n), X ∈ Sym(n), denoting ∆ = Diag(Σ)−1/2, its differential is:

(1.5) dΣCor(X) = ∆

ï
X − 1

2
(∆2Diag(X)Σ + ΣDiag(X)∆2)

ò
∆.

We introduce a notation for equicorrelation matrices C(ρ) = (1− ρ)In + ρ11> ∈
Cor+(n) where ρ ∈ (− 1

n−1 , 1). Given a correlation matrix C ∈ Cor+(n), there exist
partitions of n, i.e. sets I = {i1, ..., ip} satisfying i1, ..., ip > 1 and i1 + · · · + ip =
n, partitioning the matrix C into equicorrelation diagonal blocks and constant off-
diagonal blocks. The signature of C is the maximum IC of such sets I with respect
to the natural order on partitions of n. We say that C is a block equicorrelation
matrix of signature IC (see Table 1.5). For example, an equicorrelation matrix is a
block equicorrelation matrix with signature {n}. The maps introduced in this paper
preserve the signature.

C(ρ) =

à
1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ . . . ρ 1

í à
C(ρ1) ρ1211

> · · · ρ1p11
>

ρ1211
> C(ρ2)

. . .
...

...
. . .

. . . ρp−1,p11
>

ρ1p11
> · · · ρp−1,p11

> C(ρp)

í
Table 1.5: Equicorrelation and block equicorrelation matrices
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The elliptope is stable by the permutation action, it is not stable by the con-
gruence action of the orthogonal group O(n). It is not stable by inversion either.
However, the correlation matrix of its inverse, namely Cor(C−1), contains the same
information as the partial correlation matrix defined below.

Definition 1.1 (Cor-inversion, partial correlation matrix).
· The cor-inversion is the smooth involution I : C ∈ Cor+(n) 7−→ Cor(C−1) ∈

Cor+(n).
· The partial correlation matrix of an SPD matrix Σ ∈ Sym+(n) is the matrix

Γ ∈ Sym(n) defined by Γ = In−Off(I(C)) = 2In−I(C), where C = Cor(Σ).

The bijective parametrization C 7−→ Γ is used in the theory of stationary sto-
chastic processes where the (potentially infinite and complex) matrices are Toeplitz.
The set of partial correlation coefficients (along with the common variance) is consid-
ered as an alternative “represention of the second-order statistics” [8, Section II.B.5]
of the process with respect to the traditional “auto-correlation” (or auto-covariance)
function. This characterization is used in signal processing, especially in radar sig-
nal processing where the manifold of SPD Toeplitz is traditionally endowed with the
Poincaré polydisk geometry [6]. In Gaussian graphical networks, the partial correla-
tion between two variables indicates the correlation between them conditionally to the
other variables. Thus the partial correlations are the weights of the arrows in the net-
work [22, 20, 11]. This approach is applied in many domains such as genomics [10, 28]
or brain connectomics [25]. Hence the importance of partial correlations confirms that
the cor-inversion is a relevant concept.

We consider the cor-inversion as analogous to the matrix inversion for SPD matri-
ces inv : Sym+(n) −→ Sym+(n). The cor-inversion commutes with permutations on
full-rank correlation matrices as well as the inversion commutes with the congruence
by O(n) on SPD matrices. Moreover, for all signature I, the space of block equicor-
relation matrices of signature I is stable by the cor-inversion. In addition, in relation
to the problem of this paper, we have the following result.

Theorem 1.2 (Compatibility between the multiplicative approach and the cor-
inversion). Let V? be a vector space stable by permutations and such that Sym(n) =
V?⊕Diag(n). We assume that the claim in Table 1.1 is true, i.e. for all C ∈ Cor+(n),
there exists a unique ∆ ∈ Diag+(n) such that log(∆C∆) ∈ V?. This defines the
inverse bijections Log? : C ∈ Cor+(n) 7−→ log(∆C∆) ∈ V? and Exp? = Cor ◦ exp :
V? −→ Cor+(n). Then we automatically have Log?(I(C)) = −Log?(C), i.e. the
following diagram commutes.

(1.6) Cor+(n)
I //

Log?

��

Cor+(n)

Log?

��

V? −Id
// V?

Proof. Note that for all Σ ∈ Sym+(n), we have Cor(Σ−1) = Cor(Cor(Σ)−1).
Indeed, if Σ = DCD with C = Cor(Σ) ∈ Cor+(n), then we have Cor(Σ−1) =
Cor(D−1C−1D−1) = Cor(C−1). Therefore, for all X ∈ V? we have Exp?(−X) =
Cor(exp(−X)) = Cor(exp(X)−1) = Cor(Exp?(X)−1) = I(Exp?(X)). Thus with
C = Exp?(X), we have Log?(I(X)) = −Log?(C).

Otherwise said, the multiplicative approach is automatically compatible with the
cor-inversion. This is due to the use of the congruence action of positive diagonal
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matrices on SPD matrices instead of the additive action of diagonal matrices on
symmetric matrices. Indeed, the former is intrinsically related to the definition of a
correlation matrix. On the contrary, we can expect that the bijections built via the
additive approach are not compatible with the cor-inversion in general.

Thus, if one finds a vector space V? satisfying the claim and if the bijections are
smooth, the log-Euclidean metrics defined by pullback will automatically be inverse-
consistent. This is quite satisfying for log-Euclidean metrics on full-rank correlation
matrices in analogy with SPD matrices.

2. Permutation-invariant log-Euclidean metrics via the off-log diffeo-
morphism. In this section, we rephrase the framework of [3] (Section 2.1) to ease
the comprehension of the next sections by analogy. In Section 2.2, we prove that
the bijection they define, that we call the off-log bijection and that we denote Log :
Cor+(n) −→ Hol(n), is actually a diffeomorphism. It allows to pullback inner prod-
ucts on full-rank correlation matrices. Since the off-log diffeomorphism is equivariant
under permutations, we give a characterization of permutation-invariant inner prod-
ucts on Hol(n) so that their pullbacks provide permutation-invariant log-Euclidean
metrics on Cor+(n). Then, we detail the Riemannian operations of these metrics.
We prove that, as expected, the log-Euclidean metrics such defined are not inverse-
consistent with respect to the cor-inversion. In Section 2.3, we simply recall the
algorithm of [3] to compute the inverse diffeomorphism Exp = Log−1, the speed of
convergence and the complexity.

2.1. The off-log bijection. Theorem 2.1 states that the claim in Table 1.1 is
true. It allows to define the off-log bijection Log : Cor+(n) −→ Hol(n). Theorem 2.2
states some interesting properties of the off-log bijection. These results are due to
Archakov and Hansen [3].

Theorem 2.1 (Definition of D). [3] For all S ∈ Sym(n), there exists a unique
D ∈ Diag(n) such that exp(D + S) ∈ Cor+(n). This allows to define:

· the surjective map D : S ∈ Sym(n) 7−→ D ∈ Diag(n),
· the surjective map π : S ∈ Sym(n) 7−→ exp(D(S) + S) ∈ Cor+(n) which is

invariant under the additive group action + : Diag(n)×Sym(n) −→ Sym(n),
· the bijective map Exp = π|Hol(n) : Hol(n) −→ Cor+(n) (note that π = Exp ◦

Off),
· the smooth bijective inverse map Log = Exp−1 = Off ◦ log : Cor+(n) −→

Hol(n) that we call the off-log bijection.

Theorem 2.2 (Properties of the off-log bijection). [3]
1. (Equivariance) Log and Exp are equivariant under permutations.

2. (Equicorrelation matrix) Log(C(ρ)) = 1
n ln
Ä

1+(n−1)ρ
1−ρ

ä
(11> − In) for all ρ ∈

(− 1
n−1 , 1). In dimension n = 2, Log(C(ρ)) =

[ 0 F (ρ)
F (ρ) 0

]
where F (ρ) =

1
2 log( 1+ρ

1−ρ ) ∈ R is the Fisher transformation of the correlation coefficient

ρ ∈ (−1, 1).
3. (Block equicorrelation matrix) If C is a block equicorrelation matrix of sig-

nature I = {i1, ..., ip}, then Log(C) is a block symmetric hollow matrix of
signature I with multiples of 1ij1

>
ij
− Iij on diagonal blocks and multiples of

1ij1
>
ik

on off-diagonal blocks.

4. (Generalization) For all ∆ ∈ Diag+(n), for all S ∈ Sym(n), there exists a
unique D ∈ Diag(n) such that Diag(exp(D + S)) = ∆.

Note that Theorem 2.1 is a particular case of Theorem 2.2 item 4 with ∆ = In.
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The result in dimension 2 was stated as a motivation in [3] to use the map Log =
Off◦log in higher dimensions since it gives in dimension 2 a well known transformation
of the correlation coefficient. Interestingly, the same coefficient appears in dimension
2 for the quotient-affine metric [32].

By analogy with the symmetric matrix logarithm log : Sym+(n) −→ Sym(n)
satisfying log(Σ−1) = − log(Σ), one could expect that the off-log bijection Log :
Cor+(n) −→ Hol(n) “commutes with inversion”, i.e. satisfies Log(I(C)) = −Log(C).
We show that it is not the case as we argued in the introduction.

Theorem 2.3 (Incompatibility between cor-inversion and off-log bijection). Let
n > 3. There exists C ∈ Cor+(n), such that Log(I(C)) 6= −Log(C). Otherwise said,
the following diagram does not commute.

(2.1) Cor+(n)
I //

Log

��

Cor+(n)

Log

��

Hol(n)
−Id

// Hol(n)

Proof. It is easy to see it numerically. For a formal proof, one can look for a
matrix C ∈ Cor+(3) such that log(C) and log(I(C)) are easy to compute manually.

We propose the following example with x = 1√
7
: C =

[
1 x −x
x 1 0
−x 0 1

]
= PDP> with P =

1
2

ï
0
√

2
√

2√
2 1 −1√
2 −1 1

ò
and D = diag(1, 1 +

√
2√
7
, 1−

√
2√
7
). Then I(C) =

ï
1 −a a
−a 1 −a2
a −a2 1

ò
= Q∆Q>

with a = x√
1−x2

= 1√
6
, Q = 1√

14

ï
0
√

6 2
√

2√
7 −2

√
3√

7 2 −
√

3

ò
and ∆ = 1

6diag(5, 10, 3). Thus:

[Log(C) + Log(I(C))]12 = [log(C) + log(I(C))]12

= [P log(D)P> +Q log(∆)P>]12

=

3∑
k=1

(ln(Dkk)P1kP2k + ln(∆kk)Q1kQ2k)

=
1

2
√

2
ln

Ç√
7 +
√

2√
7−
√

2

å
+

√
6

7
ln

Å
3

10

ã
> 0.

For n > 4, it suffices to take the block diagonal matrix Diag(C, In−3).

This incompatibility is one of the justifications of the multiplicative approach
that we present in Section 3. Still, this bijection Log : Cor+(n) −→ Hol(n) remains
a very nice tool that allows to define permutation-invariant log-Euclidean metrics on
full-rank correlation matrices. Let us show this.

2.2. Permutation-invariant pullback metrics via the off-log diffeomor-
phism. This section is part of our contributions. We prove that the off-log bijection
Log : Cor+(n) −→ Hol(n) is actually a diffeomorphism (Section 2.2.1). Then we
characterize all permutation-invariant inner products on Hol(n) (Section 2.2.2) and
we pull them back to permutation-invariant log-Euclidean metrics on Cor+(n) (Sec-
tion 2.2.3).

2.2.1. The off-log bijection is a diffeomorphism.

Theorem 2.4 (Log = Off ◦ log is a diffeomorphism). The off-log bijection Log :
Cor+(n) −→ Hol(n) is a smooth diffeomorphism. We give the differentials of Log and
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Exp in function of the differentials of the symmetric matrix logarithm and exponential
maps log and exp. For all C ∈ Cor+(n) and S,X, Y ∈ Hol(n):

dCLog(X) = Off(dC log(X)),(2.2)

dSExp(Y ) = dlog(Exp(S)) exp(Y −Diag(Exp(S)Y )).(2.3)

Proof. It suffices to show that D is smooth. We use the implicit function theorem
with the smooth map Φ : (S,D) ∈ Hol(n) × Diag(n) 7−→ Diag(exp(D + S)) − In ∈
Diag(n) which is such that D = D(S) if and only if Φ(S,D) = 0. We want to show
that for (S,D) ∈ Φ−1(0), the differential of ΦS : D ∈ Diag(n) 7−→ Φ(S,D) ∈ Diag(n)
is invertible. We introduce the intermediate smooth map ϕS : D ∈ Diag(n) 7−→
D − log Diag exp(D + S) ∈ Diag(n) as in [3] so that ΦS(D) = exp(D − ϕS(D))− In.
It is proved in the Appendix of [3] that for all D ∈ Diag(n), the linear map dDϕS :
Diag(n) −→ Diag(n) has its eigenvalues in [0, 1) ⊂ R. For all (S,D) ∈ Φ−1(0) and all
∆ ∈ Diag(n), we have:

dDΦS(∆) = exp(D − ϕS(D))︸ ︷︷ ︸
In

(∆− dDϕS(∆))

= (Id− dDϕS)(∆).

Therefore, the linear map dDΦS = Id − dDϕS has its eigenvalues in (0, 1] so it
is invertible. Hence, the implicit function D : Sym(n) −→ Diag(n) is smooth so
π = exp ◦ (D + IdSym(n)) : Sym(n) −→ Cor+(n) is smooth. Then Exp = π|Hol(n) :

Hol(n) −→ Cor+(n) is smooth and Log is a smooth diffeomorphism.
Since Log = Off ◦ log and Off is linear, the differential of Log is clear. Let us

compute the differential of f , D and Exp. Let S ∈ Sym(n), C = Exp(S) ∈ Cor+(n),
D,∆ ∈ Diag(n), X ∈ Hol(n) and Y = dCLog(X) ∈ Hol(n).

d(S,D)Φ(Y,∆) = Diag(exp(D + S)(∆ + Y ))

= Diag(exp(D + S))∆ + Diag(exp(D + S)Y ),

d(S,D(S))Φ(Y,∆) = ∆ + Diag(CY ),

d(S,D(S))Φ(Y, dSD(Y ))︸ ︷︷ ︸
=dS(Φ◦(Id,D))(Y )=0

= dSD(Y ) + Diag(CY ),

dSD(Y ) = −Diag(CY ) = −Diag(Exp(S)Y ),

dSExp(Y ) = dD(S)+S exp(dSD(Y ) + Y )

= dlog(C) exp(Y −Diag(Exp(S)Y )).

2.2.2. Permutation-invariant inner products on Hol(n). The characteriza-
tion of permutation-invariant inner products on Hol(n) can be found in [31, Example
3.8].

Theorem 2.5 (Permutation-invariant inner products on Hol(n)). [31] For n >
4, permutation-invariant inner products on Hol(n) are the symmetric bilinear forms
associated to the following positive definite quadratic forms defined for X ∈ Hol(n):

(2.4) q(X) = α tr(X2) + β Sum(X2) + γ Sum(X)
2

with α > 0, 2α + (n − 2)β > 0 and α + (n − 1)(β + nγ) > 0. For n = 3, the
permutation-invariant inner products have the same form with α = 0, i.e. q(X) =
β Sum(X2) + γ Sum(X)2 with β > 0 and β + 3γ > 0. For n = 2, they have the same
form with α = β = 0, i.e. q(X) = γ Sum(X)2 with γ > 0.
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2.2.3. Pullback metrics via the off-log diffeomorphism.

Definition 2.6 (Off-log metrics). An off-log metric on Cor+(n) is the pullback
metric of a permutation-invariant inner product characterized by a quadratic form q
as in Theorem 2.5. For all C ∈ Cor+(n) and X ∈ TCCor+(n) = Hol(n), it writes
gC(X,X) = q(dCLog(X)) where dCLog(X) = Off(dC log(X)).

Theorem 2.7 (Riemannian operations of off-log metrics). We consider an off-
log metric characterized by the quadratic form q. Let C,C ′, C1, ..., Ck ∈ Cor+(n),
X ∈ Hol(n). The Riemannian operations of this metric are summarized in Table 2.1.

Exponential map ExpC(X) = Exp(Log(C) + dCLog(X)))
Logarithm map LogC(C ′) = dLog(C)Exp(Log(C ′)− Log(C))

Geodesic γ(t) = Exp((1− t)Log(C) + tLog(C ′))
Squared distance d(C,C ′)2 = q(Log(C ′)− Log(C))

Fréchet mean C̄ = Exp( 1
k

∑k
i=1 Log(Ci))

Curvature R = 0
Parallel transport ΠC→C′X = (dC′Log)−1(dCLog(X))

Table 2.1: Riemannian operations of off-log metrics

Beware that the Riemannian exponential and logarithm maps only coincide with
the diffeomorphisms Exp : Hol(n) −→ Cor+(n) and Log : Cor+(n) −→ Hol(n) at
C = In introduced in Theorem 2.1. They differ from the symmetric matrix diffeo-
morphisms exp : Sym(n) −→ Sym+(n) and log : Sym+(n) −→ Sym(n).

Therefore, the off-log diffeomorphism provides a closed-form distance between
two full-rank correlation matrices (modulo the computation of a symmetric matrix
logarithm, i.e. modulo an eigenvalue decomposition). Moreover, all the other Rie-
mannian operations can be computed in closed form modulo the computation of Exp,
i.e. the computation of D. We recall that Archakov and Hansen [3] proved that
D(S) for S ∈ Sym(n) can be computed in logarithmic time complexity by defining
the following sequence: D0 = 0 and Dk+1 = ϕS(Dk) where ϕS : D ∈ Diag(n) 7−→
D − log(Diag(exp(D + S))) ∈ Diag(n) is a contractant map.

In this section, we recalled the main facts on the off-log parametrization intro-
duced in [3] and we transformed it as a geometric tool to introduce log-Euclidean
metrics on full-rank correlation matrices. We also formalized this tool in terms of
invariance under a group action and we showed that off-log metrics are not inverse-
consistent. In the next sections, we rely on this formalization to introduce the fam-
ily of log-scaled metrics which are permutation-invariant, log-Euclidean and inverse-
consistent.

3. The log-scaling bijection. In this section, we examine two versions of the
following conjecture: for all Σ ∈ Sym+(n), there exists a unique ∆ ∈ Diag+(n) such
that log(∆Σ∆) ∈ V?. This conjecture depends on V?, which is a vector space stable
by permutations satisfying Sym(n) = V? ⊕ Diag(n). In Section 3.1, we relate the
conjecture with V? = Hol(n) to the problem of the quotient-affine logarithm [9, 32].
We prove the existence and we explain why the uniqueness remains difficult to prove.
In Section 3.2, we explain why V? = Row0(n) is a good candidate for the conjecture
to be true and in Section 3.3, we prove the conjecture thanks to a result known as
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the existence and uniqueness of the scaling of SPD matrices [26, 18]. In Section 3.4,
we give the properties of our new Euclideanization called the log-scaling bijection.

3.1. Is the conjecture true with V? = Hol(n)?. Before relating the conjecture
with V? = Hol(n) to the problem of existence and uniqueness of the Riemannian
logarithm at In of the quotient-affine metric, we recall the conjecture and the definition
of the quotient-affine metric.

Conjecture 3.1 (The result is true with V? = Hol(n)). For all Σ ∈ Sym+(n),
there exists a unique matrix ∆ ∈ Diag+(n) such that log(∆Σ∆) ∈ Hol(n).

Definition 3.2 (Quotient-affine metric). The quotient-affine metric on Cor+(n)
is the quotient metric of the affine-invariant metric on Sym+(n) by the congru-

ence action of Diag+(n) [9]. At In, the horizontal space is HQA
In

= Hol(n), the

quotient-affine metric writes gQA
In

(X,X) = tr(X2) and the exponential map writes

ExpQA
In

(X) = Cor(exp(X)) for all X ∈ Hol(n) [32].

Theorem 3.3 (Existence and equivalence of conjectures). We define the smooth
map f : ∆ ∈ Diag+(n) 7−→ dAI(In,∆C∆)2 = tr(log(∆C∆)2). It gives the affine-
invariant squared distance between In and all points of the fiber Cor−1(C) = {∆C∆ ∈
Sym+(n)|∆ ∈ Diag+(n)}.

1. The smooth map f has a global minimizer.
2. For all Σ ∈ Sym+(n), there exists ∆ ∈ Diag+(n) such that log(∆Σ∆) ∈

Hol(n).
3. The following conjectures are equivalent for all C ∈ Cor+(n).

(i) There exists a unique ∆ ∈ Diag+(n) such that log(∆C∆) ∈ Hol(n)
(Conjecture 3.1).

(ii) There exists a unique X ∈ Hol(n) such that ExpQA
In

(X) = C.
(iii) There exists a unique local minimizer of the smooth map f , which is

actually the global minimizer ensured by statement 1.
4. The previous conjectures imply the uniqueness of the quotient-affine logarithm

at In.

Proof. 1. The smooth map f has a global minimizer because it is coercive
[32, cf. HAL version].

2. Hence, there exists ∆ ∈ Diag+(n) such that f(∆) = min f . In other words,
∆C∆ is “in optimal position” to In [16, Definition 2.3]. Thus [16, Theorem

2.4], the geodesic from In to ∆C∆ is horizontal, i.e. LogAI
In (∆C∆) ∈ HQA

In
,

i.e. log(∆C∆) = Hol(n). For Σ = Diag(Σ)1/2 C Diag(Σ)1/2, it suffices to
take ∆Diag(Σ)−1/2 ∈ Diag+(n).

3. Since ExpQA
In

= Cor◦exp, we clearly have (i)⇐⇒ (ii) because X = log(∆C∆)

and ∆ = Diag(exp(X))1/2. To prove (i) ⇐⇒ (iii), let us compute the differ-
ential and the Hessian of f . Let ∆ ∈ Diag+(n) and D,D′ ∈ Diag(n). We
denote E = D∆−1 ∈ Diag(n) and A = ∆C∆ = PBP> ∈ Sym+(n) with
P ∈ O(n) and B ∈ Diag+(n).

d∆f(D) = 2 tr(log(∆C∆) d∆C∆ log((DC∆ + ∆CD)))

= 2 tr(log(A) dA log(EA+AE>))

= 2 tr(log(B) dB log(P>EPB +BP>E>P ))

= 2 tr(log(B)B−1(P>EPB +BP>E>P ))

= 4 tr(log(A)E) = 4 tr(log(∆C∆)D∆−1),
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d∆f = 0⇐⇒ Diag(log(∆C∆)) = 0⇐⇒ log(∆C∆) ∈ Hol(n),

H∆f(D,D′) = 4 tr(dA log(EA+AE>)D′∆−1 − log(A)D′∆−1D∆−1)

= 4 tr(2∆−2DD′ −Diag(log(∆C∆))∆−2DD′),

H∆f(D,D) = 4 tr((2In −Diag(log(∆C∆)))∆−2D2).

Hence, if ∆ ∈ Diag+(n) is such that log(∆C∆) ∈ Hol(n), then the Hessian
of f at ∆ is positive definite so f has a local minimum at ∆. Thus, if
proposition (iii) is true, then ∆ has to be the global minimizer so it is unique.
Conversely, if f has a local minimum at ∆ ∈ Diag+(n), then d∆f = 0 so
log(∆C∆) ∈ Hol(n). Thus, if proposition (i) is true, then ∆ is unique.
Therefore, assertions (i) and (iii) are equivalent.

4. A quotient-affine logarithm of C ∈ Cor+(n) at In is a tangent vector X ∈
Hol(n) of minimal length such that ExpQA

In
(X) = Cor(exp(X)) = C. Other-

wise said, it is a tangent vector X = log(∆C∆) where ∆ minimizes f(∆) =
tr(X2) = ‖X‖2. Thus the uniqueness in the conjectures of statement 3 imply
the uniqueness of the quotient-affine logarithm at In.

Otherwise said, Conjecture 3.1 is stronger than the conjecture stating the unique-
ness of the quotient-affine logarithm at In. On the one hand, this could provide a new
path to prove the latter. However, Conjecture 3.1 seems difficult to prove because the
manifold exp(Hol(n)) is hard to describe in terms of properties on the coefficients of
the matrices. Thus it is difficult to determine whether its intersection with the fiber
Diag+(n)?Σ = Cor−1(Cor(Σ)) is reduced to one point or not. On the other hand, this
could also help to show that Conjecture 3.1 is false. Indeed, the quotient-affine metric
has both positive and negative curvature so the quotient-affine logarithm might not
be unique. Hence, this seems to be a difficult problem.

3.2. Why V? = Row0(n) seems to be a better choice. Nevertheless, another
interesting decomposition of symmetric matrices where each subspace is stable by
permutations is given by Sym(n) = Row0(n) ⊕ Diag(n), where Row0(n) = {S ∈
Sym(n)|S1 = 0} is the vector space of symmetric matrices with null row sum. That
is why we propose to examine V? = Row0(n). In the following theorem, we show that
exp(Row0(n)) has a nice form.

Theorem 3.4 (exp : Row0(n) −→ Row+
1 (n) is a smooth diffeomorphism). The

symmetric matrix logarithm is a smooth diffeomorphism from Row+
1 (n) = {Σ ∈

Sym+(n)|Σ1 = 1} onto Row0(n) = {S ∈ Sym(n)|S1 = 0}.
Proof. It is clear that exp(Row0(n)) ⊂ Row+

1 (n) since if S ∈ Row0(n), then
exp(S)1 =

∑∞
k=0

1
k!S

k1 = 1. Conversely, let Σ ∈ Row+
1 (n). Then the Lagrange

polynomial P (X) =
∑
λ∈eig(Σ) log(λ)

∏
µ∈eig(Σ),µ6=λ

X+1−µ
λ−µ satisfies P (Σ−In) = log Σ.

Since 1 ∈ eig(Σ), P (0) = log(1)+
∑
λ6=1 log(λ) 1−1

λ−1

∏
µ6=λ,1

1−µ
λ−µ = 0. Hence log(Σ)1 =

P (Σ − In)1 = P (0)1 = 0. So log(Row+
1 (n)) ⊂ Row0(n). Finally, Row+

1 (n) =
exp(Row0(n)) so log : Row+

1 (n) −→ Row0(n) is a smooth diffeomorphism.

Hence, the question becomes: for all Σ ∈ Sym+(n), does there exist a unique
∆ ∈ Diag+(n) such that ∆Σ∆ ∈ Row+

1 (n)? The answer is yes [26, 18], let us explain
why.

3.3. The conjecture is true with V? = Row0(n). We recall that we denote
? : Diag+(n) × Sym+(n) −→ Sym+(n) the congruence action of positive diagonal
matrices on SPD matrices.
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Theorem 3.5 (Definition of D?). For all Σ ∈ Sym+(n), there exists a unique
∆ ∈ Diag+(n) such that ∆Σ∆ ∈ Row+

1 (n) [26, 18] or equivalently log(∆Σ∆) ∈
Row0(n) by Theorem 3.4. This allows to define:

· the surjective map D? : Σ ∈ Sym+(n) 7−→ ∆ ∈ Diag+(n),
· the surjective map π? : Σ ∈ Sym+(n) 7−→ log(D?(Σ) ?Σ) ∈ Row0(n) which is

invariant under the congruence group action of Diag+(n) on Sym+(n),
· the bijective map Log? = π?|Cor+(n)

: Cor+(n) −→ Row0(n) that we call the

log-scaling (note that π? = Log? ◦ Cor),
· the smooth bijective inverse map Exp? = (Log?)−1 = Cor◦exp : Row0(n) −→

Cor+(n).

Proof. The existence and uniqueness are due to [26], the uniqueness has been
proved differently later in [18].

· The map D? is surjective because D?(∆−2) = ∆ for all ∆ ∈ Diag+(n).
· The map π? is surjective because if S ∈ Row0(n), then π?(exp(S)) = S.
· The map Log? is surjective because Log?(Cor(exp(S))) = S and injective

because if C,C ′ ∈ Cor+(n) are such that Log?(C) = Log?(C ′), then D?(C) ?
C = D?(C ′) ? C ′ so C = Cor(D?(C) ? C) = Cor(D?(C ′) ? C ′) = C ′.
· We just showed that (Log?)−1 = Cor ◦ exp so Exp? = (Log?)−1 is bijective

and smooth.

3.4. Properties of the log-scaling bijection. Let us give properties of the
log-scaling bijection Log? that are analogous to the properties of off-log bijection Log
introduced in Section 2.

Theorem 3.6 (Properties of the log-scaling bijection).
1. (Equivariance) Log? and Exp? are equivariant under permutations.

2. (Equicorrelation) Log?(C(ρ)) = 1
n ln
Ä

1+(n−1)ρ
1−ρ

ä
(11> − nIn) for all ρ ∈

(− 1
n−1 , 1). In dimension n = 2, Log?(C(ρ)) =

Å
−F (ρ) F (ρ)
F (ρ) −F (ρ)

ã
where

F (ρ) = 1
2 log( 1+ρ

1−ρ ) ∈ R is the Fisher transformation of the correlation coeffi-

cient ρ ∈ (−1, 1).
3. (Block equicorrelation matrix) If C is a block equicorrelation matrix of signa-

ture I = {i1, ..., ip}, then Log?(C) is a block symmetric matrix with null row
sum of signature I with diagonal blocks of the form (αj − βj)Iij + βj1ij1

>
ij

and off-diagonal blocks of the form βjk1ij1
>
ik

.

4. (Generalization) For all x ∈ (R+)n, for all Σ ∈ Sym+(n), there exists a
unique ∆ ∈ Diag+(n) such that log(∆Σ∆)x = 0.

Proof. 1. This is clear.
2. Let C = C(ρ). The result is clear for ρ = 0 so we assume that ρ 6= 0. One

easily checks that ∆ =
√
aIn with a = 1

1+(n−1)ρ satisfies Σ := ∆C∆ = aC =

(a−b)In+b11> ∈ Row+
1 (n) with b = aρ = ρ

1+(n−1)ρ . Indeed, a+(n−1)b = 1.

Since log(Σ) is a polynomial in Σ, there exists (α, β) ∈ R2 such that log(Σ) =
(α− β)In + β11> and α+ (n− 1)β = 0. Moreover, eig(Σ) = {1; a− b} with

a−b 6= 1 and eig(log(Σ)) = {0;α−β} so α−β = ln(a−b) = − ln
Ä

1+(n−1)ρ
1−ρ

ä
.

Therefore, nβ = −(α− β) = ln
Ä

1+(n−1)ρ
1−ρ

ä
and:

Log?(C) = (α−β)In+β11> = β(11>−nIn) = 1
n ln
Ä

1+(n−1)ρ
1−ρ

ä
(11>−nIn).

3. If C is a block equicorrelation matrix of signature I = {i1, ..., ip}, it is clear
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that the matrix ∆ is a block diagonal matrix of signature I with scalar blocks
because the sums of all the rows belonging to the same interval [ij + 1; ij+1]
are equal. The matrix product preserves the signature and the form of the
blocks so the logarithm as well.

4. Similarly to Theorem 3.4, one can prove that given x ∈ (R+)n, the map
exp : {S ∈ Sym(n)|Sx = 0} −→ {Σ ∈ Sym+(n)|Σx = x} is a diffeomorphism.
We denote X = diag(x) ∈ Diag+(n). Therefore, for all ∆ ∈ Diag+(n),
log(∆Σ∆)x = 0 if and only if ∆Σ∆x = x if and only if X∆Σ∆X1 = X21

if and only if X∆ ∈ Diag+(n) scales Σ onto an SPD matrix with row sums
prescribed by X21. Thus the existence and uniqueness are ensured by [26].

The log-scaling bijection has an additional property: it is compatible with the
cor-inversion. It is a corollary of Theorem 1.2, the key reason being the use of the
congruence action of positive diagonal matrices instead of the additive action of di-
agonal matrices.

Theorem 3.7 (Compatibility between inversion and log-scaling bijection). For
all C ∈ Cor+(n), Log?(I(C)) = −Log?(C). Otherwise said, the following diagram
commutes.

(3.1) Cor+(n)
I //

Log?

��

Cor+(n)

Log?

��

Row0(n)
−Id
// Row0(n)

In this section, we proved the existence in the conjecture with V? = Hol(n)
and we proved the conjecture for V? = Row0(n). This provides a bijective map
Log? : Cor+(n) −→ Row0(n) called the log-scaling bijection.

4. Permutation-invariant log-Euclidean metrics via the log-scaling bi-
jection. In this section, we use the log-scaling bijection to define log-Euclidean met-
rics on Cor+(n). More precisely, in Section 4.1, we prove that the log-scaling bijection
is a diffeomorphism. In Section 4.2, we characterize all permutation-invariant inner
products on Row0(n). In Section 4.3, we define permutation-invariant log-Euclidean
metrics by pullback and we give their geometric properties.

4.1. The cor-exp bijection is a diffeomorphism.

Theorem 4.1 (Exp? = Cor ◦ exp is a diffeomorphism). The log-scaling bijection
Log? : Cor+(n) −→ Row0(n) is a smooth diffeomorphism. We give the differentials of
Log? and Exp? in function of the differentials of the symmetric matrix logarithm and
exponential maps log and exp. For all C ∈ Cor+(n), S, Y ∈ Row0(n) and X ∈ Hol(n)
such that Σ = D?(C) ? C = exp(S):

dSExp?(Y ) = ∆−1

ï
dS exp(Y ) −

1

2
(∆−2 Diag(dS exp(Y )) Σ + Σ Diag(dS exp(Y )) ∆−2)

ò
∆−1,

(4.1)

dCLog?(X) = dΣ log

Å
∆X∆ +

1

2
(X0Σ + ΣX0)

ã
,

(4.2)

where ∆ = Diag(Σ)1/2 and X0 = −2 diag((In + Σ)−1∆X∆1).

Proof. It suffices to show that D? is smooth. We apply the implicit function
theorem to the smooth function Φ? : (Σ,∆) ∈ Sym+(n)×Diag+(n) 7−→ ∆Σ∆1−1 ∈
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(R+)n which satisfies ∆ = D?(Σ) if and only if Φ?(Σ,∆) = 0. Let us prove that for
all (Σ,∆) ∈ (Φ?)−1(0), the differential of the partial function Φ?Σ : ∆ ∈ Diag+(n) 7−→
Φ?(Σ,∆) ∈ (R+)n is invertible. In the direction D ∈ T∆Diag+(n) = Diag(n):

d∆Φ?Σ(D) = DΣ∆1+ ∆ΣD1

= D∆−11+ ∆ΣD1

= ∆(∆−2 + Σ)D1.

Since ∆(∆−2 + Σ) ∈ GL(n), the differential is invertible so D? is smooth.
Since Exp? = Cor ◦ exp, we have dSExp?(Y ) = dΣCor(dS exp(Y )) with Σ =

exp(S). Using dΣCor(Z) = ∆−1
[
Z − 1

2 (∆−2Diag(Z)Σ + ΣDiag(Z)∆−2)
]

∆−1 with

∆ = Diag(Σ)1/2 and Z = dS exp(Y ) ∈ TΣRow+
1 (n) = Row0(n), we get the expected

result. Now we want to invert the relation X = dSExp?(Y ) to get Y = dΣLog?(X).
We use the intermediate matrices Σ ∈ Row+

1 (n) and Z ∈ Row0(n) and the relations
X = dΣCor(Z) and Y = dΣ log(Z).

∆X∆ = Z − 1

2
(∆−2Diag(Z)Σ + ΣDiag(Z)∆−2),

∆X∆1 = −1

2
(∆−2Diag(Z)Σ1 + ΣDiag(Z)∆−21)

= −1

2
(In + Σ)∆−2Diag(Z)1,

∆−2Diag(Z)1 = −2(In + Σ)−1∆X∆1,

∆−2Diag(Z) = X0,

Z = ∆X∆ +
1

2
(X0Σ + ΣX0),

which allows to conclude with dΣLog?(X) = Y = dΣ log(Z).

4.2. Permutation-invariant inner products on Row0(n).

Theorem 4.2 (Permutation-invariant inner products on Row0(n)). For n > 4,
permutation-invariant inner products on Row0(n) are the symmetric bilinear forms as-
sociated to the following positive definite quadratic forms q? defined for Y ∈ Row0(n):

(4.3) q?(Y ) = α tr(Y 2) + δ tr(Diag(Y )
2
) + ζ tr(Y )

2
,

with α > 0, nα + (n − 2)δ > 0 and nα + (n − 1)(δ + nζ) > 0. For n = 3, the
permutation-invariant inner products have the same form with α = 0. For n = 2,
they have the same form with α = δ = 0.

Proof. We rely on the characterization of permutation-invariant inner products

on Hol(n) and on the equivariant isomorphism Θ :

ß
Hol(n) −→ Row0(n)
X 7−→ Y = AXA>

with A = In − 1
n11

> found in [21], whose inverse isomorphism is given by X =
Θ−1(Y ) = Y − (µ1> + 1µ>) with µ = 1

2Diag(Y )1. Indeed, let q? : Row0(n) −→
R be a permutation-invariant quadratic form. Then q? is positive definite if and
only if q? ◦ Θ : Hol(n) −→ R is a permutation-invariant quadratic form on Hol(n).
Hence, by Theorem 2.5, q? is of the form q?(Y ) = α tr(Θ−1(Y )2)+β Sum(Θ−1(Y )2)+
γ Sum(Θ−1(Y ))2 with min(α, 2α + (n− 2)β, α + (n− 1)(β + nγ)) > 0. We compute
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X2 with X = Θ−1(Y ), and the three terms:

X2 = Y 2 +
1

2
tr(Y )(µ1> + 1µ>) + nµµ> + ‖µ‖211> − Y µ1> − 1µ>Y,

tr(X2) = tr(Y 2) +
1

2
tr(Y )2 +

n

2
tr(Diag(Y )2),

Sum(X2) =
n

2
tr(Y )2 +

n

4
tr(Y )2 +

n2

4
tr(Diag(Y )2),

Sum(X) = −n tr(Y ),

Sum(X)2 = n2tr(Y )2.

Hence g(Y, Y ) = α tr(Y 2) + δ tr(Diag(Y )2) + ζ tr(Y )2 with δ = n
2 (α + n

2β) and ζ =
α
2 + 3n

4 β + n2γ. The inverse relations between coefficients are β = 4
n2 δ − 2

nα and
γ = 1

n2 (ζ− 3
nδ+α). Thus 2α+(n−2)β = 4

n2 (nα+(n−2)δ) and α+(n−1)(β+nγ) =
1
n2 (nα+ (n− 1)(δ + nζ), which gives the expected positivity condition.

4.3. Pullback metrics via the log-scaling diffeomorphism.

Definition 4.3 (Log-scaled metrics). A log-scaled metric on Cor+(n) is the pull-
back metric of a permutation-invariant inner product characterized by a quadratic
form q? as in Theorem 4.2. For all C ∈ Cor+(n) and X ∈ TCCor+(n) = Hol(n), it
writes g?C(X,X) = q?(dCLog?(X)) where dCLog?(X) = dC log(X + 1

2 (X0C +CX0))
with X0 = −2diag((In + C)−1X1).

Theorem 4.4 (Riemannian operations of log-scaled metrics). We consider a log-
scaled metric characterized by the quadratic form q?. Let C,C ′, C1, ..., Cn ∈ Cor+(n),
X ∈ Row0(n). The Riemannian operations of this metric are summarized in Table
4.1. Moreover, the metric is permutation-invariant and inverse-consistent, i.e. it is
invariant under the pullback by the cor-inversion I : Cor+(n) −→ Cor+(n).

Exponential map Exp?C(X) = Exp?(Log?(C) + dCLog?(X)))
Logarithm map Log?C(C ′) = dLog?(C)Exp?(Log?(C ′)− Log?(C))

Geodesic γ?(t) = Exp?((1− t)Log?(C) + tLog?(C ′))
Squared distance d?(C,C ′)2 = q?(Log?(C ′)− Log?(C))

Fréchet mean C̄? = Exp?( 1
k

∑k
i=1 Log?(Ci))

Curvature R? = 0
Parallel transport Π?

C→C′X = (dC′Log?)−1(dCLog?(X))

Table 4.1: Riemannian operations of log-scaled metrics

Beware not to confuse the Riemannian maps Exp?C : TCCor+(n) = Hol(n) −→
Cor+(n) and Log?C : Cor+(n) −→ TCCor+(n) = Hol(n) with the diffeomorphisms
Exp? : Row0(n) −→ Cor+(n) and Log? : Cor+(n) −→ Row0(n).

As for the off-log metrics, all the Riemannian operations can be computed in
closed form modulo the computation of Log∗, i.e. the computation of D∗, i.e. the
computation of the scaling of an SPD matrix. Several algorithms exist to compute the
scaling of a matrix to prescribed row sums since it is an important research topic in
different scientific communities from linear algebra to probability theory. In general,
scaling a matrix Σ ∈ Mat(n) to µ ∈ Rn means finding positive diagonal matrices
D1, D2 ∈ Diag(n) such that D1ΣD21 = µ. The reader may refer to [18, 17, 2] for
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surveys on theoretical results and algorithms. The best method to compute the scaling
of an SPD matrix Σ ∈ Sym+(n) seems to be the one in [2] where the total complexity
is O(m+ n4/3) where m is the number of non-zero entries of Σ.

Since one motivation behind the off-log bijection in [3] was the closed form ex-
pression in dimension 2 (cf. Theorem 2.2, item 2), it seems important to note the
following result.

Theorem 4.5 (Coincidence of the metrics in dimension 2). In dimension 2, up
to a positive scaling factor, the quotient-affine metric, the off-log metric and the log-
scaled metric coincide. We recall that the Fisher transformation is the increasing map

F : ρ ∈ (−1, 1) 7−→ 1
2 ln( 1+ρ

1−ρ ) ∈ R+. Let C = C(ρ) and X =

Å
0 x
x 0

ã
with ρ ∈ (−1, 1)

and x ∈ R. Then:
1. (Metric) gC(X,X) = x2

(1−ρ2)2 (up to a scaling factor α > 0),

2. (Geodesic) γ(t) = C(ρ(t)) where ρ(t) = ρ1 cosh(λt)+sinh(λt)
ρ1 sinh(λt)+cosh(λt) with λ = F (ρ2) −

F (ρ1) is monotonic (increasing if ρ1 < ρ2, decreasing if ρ1 > ρ2, constant if
ρ1 = ρ2),

3. (Distance) d(C1, C2) = |λ| = |F (ρ2)− F (ρ1)| (up to a scaling factor
√
α).

Proof. It suffices to use the 2nd statement of Theorems 2.2 and 3.6 and the
formulae of distances of the off-log metric and the log-scaled metric. For the former,

d(C1, C2) = q(F (ρ2)

Å
0 1
1 0

ã
− F (ρ1)

Å
0 1
1 0

ã
) ∝ λ2 and similarly for the ladder. Up

to a multiplicative constant, these distances are equal to the quotient-affine distance
in dimension 2 [32]. Therefore, the Riemannian metrics coincide up to a constant and
the geodesics coincide. The formulae can be found in [34].

We showed in this section that the log-scaling bijection is a diffeomorphism.
Therefore it provides a family of permutation-invariant and inverse-consistent log-
Euclidean metrics by pulling back permutation-invariant inner products on Row0(n).
Thus, the Riemannian operations are trivial. As shown in Table 4.1, they are known
in closed form modulo the computation of Log? : Cor+(n) −→ Row0(n) or equiva-
lently the computation of D? : Sym+(n) −→ Diag+(n). This amounts to compute the
scaling of an SPD matrix so there exist very efficient methods to do it, for example
the one in [2].

5. Conclusion. We introduced two families of permutation-invariant log-Eucli-
dean metrics on full-rank correlation matrices. The first family was built via the
off-log diffeomorphism whose algebraic properties were introduced in [3]. The second
family was built via the log-scaling diffeomorphism thanks to the result on the scaling
of symmetric matrices [26]. In addition, the log-scaled metrics are inverse-consistent
contrarily to the off-log metrics. These metrics allow to compute with correlation
matrices very efficiently since they are flat and the main Riemannian operations are
known in closed form modulo the computation of the maps D and D?, which can be
done very efficiently.

These permutation-invariant log-Euclidean metrics fill a gap in the study of Rie-
mannian metrics on the open elliptope since they gather the invariance under per-
mutations satisfied by several existing structures [19, 27, 9, 32] and the log-Euclidean
geometry of some others [34]. More generally, we tried to introduce a comprehensive
formalism on full-rank correlation matrices in terms of stability under the action of
permutations and under the cor-inverse involution. This systematic approach allowed
to satisfy intrinsically the requirement of inverse-consistency in the construction of
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log-Euclidean metrics. We hope that this presentation will help to manipulate corre-
lation matrices as easily as we work with SPD matrices. This approach could also help
define appropriate geometries of block equi-correlation matrices of a given signature.
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[19] A. N. Kercheval, On Rebonato and Jäckel’s parametrization method for finding nearest cor-
relation matrices, International Journal of Pure and Applied Mathematics, 45 (2008),
pp. 383–390.

[20] D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques, Adap-
tive computation and machine learning, MIT Press, Cambridge, MA, 2009.

[21] H. Kurata and R. B. Bapat, Moore-Penrose inverse of a hollow symmetric matrix and a pre-
distance matrix, Special Matrices, 4 (2016), https://doi.org/doi:10.1515/spma-2016-0028,
https://doi.org/10.1515/spma-2016-0028.

[22] S. L. Lauritzen, Graphical Models, Oxford Statistical Science Series, Oxford University Press,
Oxford, New York, May 1996.

[23] P. Li, Q. Wang, H. Zeng, and L. Zhang, Local Log-Euclidean Multivariate Gaussian Descrip-
tor and Its Application to Image Classification, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39 (2017), pp. 803–817, https://doi.org/10.1109/TPAMI.2016.
2560816.

[24] Z. Lin, Riemannian Geometry of Symmetric Positive Definite Matrices via Cholesky Decom-
position, SIAM Journal on Matrix Analysis and Applications, 40 (2019), pp. 1353–1370,
https://doi.org/10.1137/18M1221084, https://epubs.siam.org/doi/10.1137/18M1221084.

[25] G. Marrelec, A. Krainik, H. Duffau, M. Pélégrini-Issac, S. Lehéricy, J. Doyon, and
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