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In this paper we consider system of consumer-resource interactions and analyse transitions of interaction outcomes with an alternative approach by applying the Conley connection matrices and the properties of the monotonic flows in presence of multiple interior fixed points. Whenever interaction is mutualism or competitive, some matrices show that the interaction breaks down. In case interaction is competitive, the carrying simplex Σ of the system is convex in presence of multiple interior fixed points. In this study the outcomes of interactions depend on the movement of the system-flows around an equilibrium. This allows the partition of the phase plane into regions which (i) the facultative interactions occupy as amensalism, mutualism (or competition), predation, amensalism, (ii) the obligate-facultative interactions occupy as mutualism (competition), amensalism, and (iii) the obligate interactions occupy as space of extinction of both the species and mutualism (competition). The number of regions in case (i) is more than in case (ii) or (iii). In cases (i)-(iii), system is impermanent. We compare our results with those of four previous studies.

Introduction

The positive or negative effect of one population on the growth of another population is termed as beneficial or detrimental interaction. It depends upon population densities and enviromental conditions (i.e, the net balance of benefits and costs for each species) and/or species life cycle or population structure. Both positive interactions between two interacting species, are for mutualism, both negative for competition, one positive and one negative for a consumer-resource interaction, null and positive for commensalism, null and negative for amensalism, both null for neutralism. In nature, break down of mutualism to parasitism or shifts from mutualism to parasitism (either way), or to cooperation, or amensalism etc., are reported in the associations; plant-pollinator, epibiont-host, plant-fungus (mycorrhiza), mullerian mimics, whelks-lobstors, ants-aphids, rodents-seeds (details are given in [START_REF] Hernandez | The big ifs in the outcomes of species interactions: review and insights from the interaction function (IF) model[END_REF]). In associations of ants-aphids and rodents-seeds, each individual can be a mutualistic or a predator and thus two possible interactions occur simultaneously at any moment. Thus we need to study the partitoning of the phase plane into regions where mutualism (or competition) and predation (or other interaction) may stay simultaneously. This is what the present paper attempts to do. As cooperation or mutualism interaction among species are major sources of Earth's biodiversity, we consider first mutualism in consumer-resource (CR) interactions and study the situations of breakdown of mutualism. There are two types CR interactions, bi-directional and uni-directional. Species in consumer-resource interactions have both the positive and negative effects on the change of species populations. Consumption of resources or the acquisition of non-tropic services are positive effects, whereas the provisions of services that attract and reward the interacting species are negative effects. For bi-directional interactions, each species interacts both as a consumer and a resource. In uni-directional interactions one species functions as a consumer and other as a resource but neither act as both. Holland and DeAngelies [START_REF] Holland | A consumer-resource approach to the density-dependent population dynamics of mutualism[END_REF] explained in details and studied CR interactions with their formulation by the differential equations following Rosenzwiez-MacArthur model of predation. Both the bi-directional and uni-directional interactions admit interior fixed points, namely, one or two sinks, and one or two saddle points. Thus two species either coexist on a stable fixed point or switch to a next stable one. Both or one of the two apecies go to extinction, if the origin is stable or there exists one stable one-species fixed point, respectively. Interspecific interactions between two interacting species are of the forms [(+, +), (+, -), (+, 0), (-, -), (-, 0), (0, 0)] due to positive (0), negative (-) and neutral (0) effects of species on one another. The first sign represents the effects of species i on species j and the second sign is the effects of j on i. [START_REF] Holland | Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions[END_REF] and [START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF] studied possible outcomes of CR interactions by changing the parameters through numerical simulations. Hernandez (1988) analysed different types of interacton outcomes considering a nonlinear α function in LV system of equations and also with varying parameters numerically. Their studies for the outcome of signs (+, -, 0) of interactions are based on the effect of the interaction on densities of two-species fixed point compared to the equilibrium densities in the absence of interaction, i,e, the densities of the carrying capacities. If the equilibria for the carrying capacities are absent or do not exist (for example for obligatory interactions), then it is not clear how to compare and assign the sign of other fixed points.

In papers [START_REF] Lara | Dynamics of transitions in population interactions[END_REF][START_REF] Zhang | Mutualism or cooperation among competitors promotes coexistence and competitive ability[END_REF][START_REF] Zhang | Stability analysis of a two-species model with transitions between population interactions[END_REF], sign combinations are defined for an equilibrium as the slopes of the tangents to the two zero growth isoclines at that equilibrium. For example, any equilibrium will have the sign (+, +), if the slopes of the tangents to the isoclines are positive at that point. Let the general form of two interacting species be

x ′ i = x i f i (x 1 , x 2 ); x i ≥ 0, i = 1, 2, with f 1 , C 1 .
In this paper we consider an different approach by defining (++) to mean ∂f 1 /∂x 2 > 0 and ∂f 2 /∂x 1 > 0, in some region or entire region of the phase plane, that is species are in mutualistic relationship (they get benefits from each other). Similarly, ∂f 1 /∂x 2 < 0 and ∂f 2 /∂x 1 < 0 in some region or entire region of the phase plane imply that the species are in competition with sign (-, -), where consumer gets benifits at the cost of supply of the resource. Whenever, ∂f 1 /∂x 2 < (or <)0 and ∂f 2 /∂x 1 > (or <)0 in some region or entire region of the phase plane, they imply that the species are in like predator-prey interactions with outcome sign (-, +), or (-, +). Thus definition of our sign variation is different and more general (see Remark in section 2) with respect to the definitions of authors [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF][START_REF] Holland | Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions[END_REF][START_REF] Lara | Dynamics of transitions in population interactions[END_REF][START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF][START_REF] Zhang | Mutualism or cooperation among competitors promotes coexistence and competitive ability[END_REF][START_REF] Zhang | Stability analysis of a two-species model with transitions between population interactions[END_REF]. This depends on the partial derivatives of the interacting growth functions in some region or entire region of the phase plane but not with the equilibrium points compared to the densities of the carrying capacities or not on the signs of the slopes of the zero growth isoclines. Moreover, If the equilibria for the carrying capacities are absent or do not exist (for example for obligatory interactions), then the sign of ∂f i /∂x j , i ̸ = j can assign interaction outcome sign (-, +), (+, +), or (-, -). Suppose that e is an equilibrium and the eigenvalues of the matrix

A 1 = f 1x 1 (e) f 1x 2 (e) f 2x 1 (e) f 2x 2 (e)
have nonzero real parts, that is, e is hyperbolic. For the sign (-, 0) or (+, 0), an entry of A 1 is zero (for example in case one slope of the tangent to any isocline is zero), or for (0, 0), two entries of A 1 are zeros. We will not consider these cases, because if an entry of A 1 is zero then a small perturbation of the equations will make all of the entries nonzero without changing the index of the e by the Conley continuation theory. In the termonology of Hirsch [START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, I, Limit sets[END_REF][START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, II: Convergence almost everywhere[END_REF][START_REF] Hirsch | Systems of differential equations that are competitive or cooperative, III: competing Species[END_REF], ∂f i /∂x j ≥ 0(≤ 0), with i ̸ = j, in some or entire region of the phase plane, means system of two species is cooperative (competitive) and species generate monotonic flows in that region or entire region of the phase plane. Otherwise the flow is non-monotonic with opposite sign of ∂f 1 /∂x 2 and ∂f 2 /∂x 1 in some or entire region of the phase plane.

In studies [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF][START_REF] Holland | Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions[END_REF][START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF], where neutralism (0, 0) is due the choices of the parameter values such that the coordinates of an equilibrium are equal to the carrying capacities, those values of parameters give the values of ∂f i /∂x j = 0. This means, neutralism (0, 0) or commensalism (0, +) is included in the monotonic flow. So we will not mention those relationships seperately. We will mention (i) the association or region with the sign (-, 0), or (0, -) as amensalism. (Here overexploitation may be beneficial to one species and it attains its carrying capacity. The other species goes to extinction.), (ii) the association or region with sign (-, -), or (+, +) as competition or mutualism, and (iii) the association or region with sign (-, +), or (+, -) as predation or nonmonotonic region. Certain features (these are essential for our results) of the two dimentional competitive (cooperative) flow are as follows: (P1) If two solutions are ordered at time t 0 , they are ordered for t ≥ t 0 (t ≤ t 0 ). If two solutions are unordered at time t 0 , they are unordered for t ≤ t 0 (t ≥ t 0 ). In particular, noncritical orbits starting in the II and IV quadrant of the critical point e will remain there for the future (past) time and orbits will be always in I and III quadrants for the past (future) time with respect to the e, if they are there at time t 0 . That is, solutions cannot move from II quadrant to III quadrant or III to IV of an equilibrium. (P2) The stable manifold of a saddle point is connected to the origin (when it is repeller) and to the infinity. (P3) Two-species fixed points may be arranged so that each fixed point is connected to the preceding beginning and ending with an one-species fixed point. In section 2, we consider CR interactions and obtain the connection matrices for the feasible fixed points. We show that whenever interaction is mutualism (or competition) some matrix supports mutualism (or competition) and other matrices do not. In this paper the outcomes of interaction depend on the movement of the system-flow around an equilibrium. Thus we obtain partition of the phase plane into regions which (i) the facultative-facultative interactions occupy as amensalism, mutualism (or competition), predation, amensalism, (ii) the obligate-facultative interactions occupy as mutualism (competition), amensalism, and (iii) the obligate-obligate interactions occupy as the space of extinction for both the species and mutualism (competition). The number of partitioned regions in case (i) is more than the number of regions in case (ii) or (iii). In the cases (i), (ii) and (iii) system is impermanent (the proof is easy). In section 3, we verify our results with four more important studies and mention other results which are not given there. The paper may give new direction to understand transition outcomes between interacting species populations or between two ecosystems in a meta-ecosystem framework (see remark 2 and system (iv)). In final section 4, we discuss our results with the observation and prediction of Bronstein (1994).

Model

We consider the following system of density dependent bi-directional and unidirectional (when G 2 = 0) consumer-resource mutualisms between two species populations M 1 and M 2 , formulated and studied numerically by Holland and DeAngelies (2010).

M ′ i = M i [r i + c i F i (M 1 , M 2 ) -q i G i (M 1 , M 2 ) -d i M i ] ≡ M i f i (M 1 , M 2 ) (1)
where,

F i (M 1 , M 2 ) = α ij M j h j +M j , the consumer functional response and G i (M 1 , M 2 ) = β i M j e i +M i
), the resource supply function, α ij (resp.β i ) is the saturation level and h i (resp.e i ) is the half-saturation constant of resource consumption species j (resp.resouce supplied species i) in the consumer functional response (resp.resource supply function). The c i and q i are conversion rates for i, j, = 1, 2 (mod 2).

Lemma 0.1 Solutions of system (1) are uniformly bounded in the positive plane M 1 ≥ 0 and M 2 ≥ 0. There are no periodic orbits in the system whenever (i) G 2 ̸ = 0, and

M 1 < q 1 β 1 d 2 , and M 2 < q 2 β 2 d 1 , or, (ii)G 2 = 0, and M 1 < q 1 β 1 d 2 and M 2 > d 1 K , where K = q 1 β 1 (e 1 +M 1 ) 2 -d 2 /M 1 . Proof: Because, M ′ i ≤ M i [r i + c i α ij -d i M i ] . So, lim sup t→∞ M i (t) ≤ r i +c i α ij d i , i, j = 1, 2, i ̸ = j (mod 2). Thus solutions of system (1) are uniformly bounded. Let B(M 1 , M 2 ) = 1/M 1 M 2 . Then for G 2 ̸ = 0, ∂ ∂M 1 (Bf 1 ) + ∂ ∂M 2 (Bf 2 ) = q 1 β 1 (e 1 +M 1 ) 2 -d 2 /M 1 + q 2 β 2 (e 2 +M 2 ) 2 -d 1 /M 2 > 0, ( 2 
)
will hold if q 1 β 1 (e 1 +M 1 ) 2 -d 2 /M 1 > 0 and q 2 β 2 (e 2 +M 2 ) 2 -d 1 /M 2 > 0 hold. That is, if M 1 < q 1 β 1 d 2 and M 1 < q 1 β 1 d 2 are satisfied. (ii) For G 2 = 0, right side of equation (11) will be positive if K > 0, i, e, M 1 < q 1 β 1 d 2 and M 2 > d 1 K
. By the Bendixson-Dulac Theorem there are no periodic solutions for the given regions for both the cases. Proof is complete.

Solving the isoclines M ′ i = 0, we find that the equation of M i is of order 5. Thus there exists at most five intersections the isoclines M ′ i = 0, in the interior of the positive phase plane. The trivial equilibrium 0(0, 0) always exists and its eigenvalues are r i > 0, i = 1, 2. The one species fixed points are

E 1 (r 1 /d 1 , 0) and E 2 (0, r 2 /d 2 ). Eigenvalues of E i are -r i and ρ i ≡ r j + c j α ij r i h i d i +r i - q j β j r i d i e j , i, j = 1, 2, i ̸ = j (mod 2). System (1) is competitive (cooperative) if, ∂f 1 /∂x 2 = c 1 α 12 h 2 (h 2 +M 2 ) 2 -q 1 β 1 e 1 +M 1 < (>)0 and ∂f 2 /∂x 1 = c 2 α 21 h 1 (h 1 +M 1 ) 2 -q 2 β 2 e 2 +M 2 < (>)0
. By varying values of the parametres ∂f i /∂x j , can be zero.

(i) Transitions between outcomes of bi-directional interactions

We assume that (H1) (i)∂f i /∂x j ≥ 0(≤ 0), i, j = 1, 2, i ̸ = j (mod 2) (ii) r i > 0, i = 1, 2,i.e, interaction is facultative-facultative mutualisms and (ii) ρ i < 0, i.e, E i is saturated along its orthogonal direction and there exists three interior fixed points

I i , i = 1, 2, 3. (H2)(i) ∂f i /∂x j ≥ 0(≤ 0), i, j = 1, 2, i ̸ = j (mod 2) (ii) r 1 > 0, r 2 < 0, i.e, interaction
is obligatory-facultative mutualisms and (ii) ρ 1 < 0, i.e, E 1 is saturated along its orthogonal direction and there exists two interior fixed points

I i , i = 1, 2. (H3)(i) ∂f i /∂x j ≥ 0(≤ 0), i, j = 1, 2, i ̸ = j, (ii) r i < 0, i = 1, 2, i.e,
interaction is obligate-obligate mutualisms and (iii) there exists two interior fixed points I i , i = 1, 2. System (1) is cooperative for ∂f i /∂x j ≥ 0, and irreducible [START_REF] Smith | The Theory of Chemostat, Dynamics of microbial competition[END_REF],

Assume that e 1 = [ M1 , M2 ], e 2 = [ M1 , M2 ] and e 3 = [ M1 , M2 ], where e 1 , e 3 are sinks and e 3 is a saddle point. Now, if [e 1 , e 3 ], or [e 3 , e 1 ], form a order interval, i.e, e 1 < e 3 or e 3 < e 1 , then e 2 lies in between e 1 and e 3 or e 3 and e 1 , i.e, e 1 < e 2 < e 3 or e 3 < e 2 < e 1 by Theorem E1 [START_REF] Smith | The Theory of Chemostat, Dynamics of microbial competition[END_REF]. For the equilibrium e 1 = [ M1 , M2 ], of system (1) we denote the δ-neighberhood of e 1 by the set

N = {(M 1 , M 2 ) ∈ Ω, : M1 -δ < M 1 < M1 -δ and M2 -δ < M 2 < M2 -δ},
where Ω is the uniformly bounded and closed region of system (1). Statement 0.1 (i) Suppose that (H1) holds. For system [START_REF] Bronstein | Conditional outcomes in mutualistic interactions[END_REF] with mutualism, we get matrix (H 2 ) and for other matrices mutualism breaks down. (ii) For system [START_REF] Bronstein | Conditional outcomes in mutualistic interactions[END_REF] with competition, we get the matrix (H 1 ). The fixed points lie on the carrying simplex (except the 0) Σ and Σ is convex in the positive plane M 1 ≥ 0 and M 2 ≥ 0. For other matrices competition breaks down. In both the cases (i) and (ii), system (1) is impermanent.

Proof: The origin 0 is a repeller. E 1 and E 2 are sinks. by the Index theorem [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF], the sum of indices of saturated fixed points is (+1). Out of three I i , two are saddle points, say I 1 , I 2 and the remaining one I 3 is sink. For definiteness, assume that I 1 (resp.I 3 ) lies near E 1 (resp.E 2 ). The connection matrix [see 3, 10, 16, 17] of system ( 1) is of the form with (H1).

E 1 E 2 I 2 I 1 I 3 0 H = E 1 E 2 I 2 I 1 I 3 0         0 0 0 x 1 y 1 0 0 0 0 x 2 y 2 0 0 0 0 x 3 y 3 0 0 0 0 0 0 z 1 0 0 0 0 0 z 2 0 0 0 0 0 0        
Using the conditions H 2 = 0 and rank H = 2, from H we get the following four possible matrices, (i) H 1 with the entites

x 1 = 1, x 2 = 0, x 3 = 1, y 1 = 0, y 2 = y 3 = 1, z 1 = z 2 =
0 and the other entries are same as H, (ii)

H 2 with x 1 = x 2 = 0, x 3 = 1, y 1 = y 2 = 0, y 3 = 1, z 1 = z 2 = 1, (iii) H 3 with x 1 = 1, x 2 = 0, x 3 = 1, y 1 = 1, y 2 = 0, y 3 = 1, z 1 = z 2 = 1, and (iv) H 2 with x 1 = 0, x 2 = 1, x 3 = 1, y 1 = 0, y 2 = 1, y 3 = 1, z 1 = z 2 = 1.
In connection matrix H 1 , as the entry from 0 to I 1 (also from 0 to I 3 ) is zero, there exists two connections from 0 to I 1 (also from 0 to I 3 ). One connection from 0 to I 1 (also from 0 to I 3 ) always exists by Dancer-Hess Lemma [START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF] (as there is no other fixed point between them) and also see (P2) (in the introduction). To get the other connection from 0 to I 1 (also from 0 to I 3 ), this conection must cross over either I 1 , or I 2 , or I 3 , but in that case mutualism beaks down, as this connection would cross IV to I or III to IV quadrant of any equilibrium with respect to that equilibrium and that is impossible. Any orbit cannot cross III to IV or II to I quadrant of any equilibrium with respect to that equilibrium as the system is cooperative. The unstable manifold of I 1 , or I 3 , (or the stable manifold of I 2 ) lies in the III and I quadrant (or in the II and IV quadrant) of the respective fixed point. So the connection matrix H 1 can only occur if the flows near one or two of I 1 , or I 2 , or I 3 are nonmonotonic so that another connection from 0 to I 1 can happen crossing an eqilibrium. Thus monotonic interaction (+, +) shifts to nonmonotonic interaction, namely (+, -) for the existence of matrix H 1 . Also see [START_REF] Reineck | A connection matrix analysis of ecological models[END_REF]. For martix (H1), there arises three situations; Case 1) One connection 0 to I 3 lies in III quadrant of I 3 and if the second connection from 0 to I 3 moves into II or IV quadrant of I 3 , then I 3 will be in nonmonotonic region (because whenever I 3 is in monotonic region, the stable manifold to I 3 must lie into I and III quadrant of I 3 ). If the second connection from 0 to I 3 crosses over from the right side of I 3 without intersecting the stable manifold to E 2 (E 2 lies on the right side of I 3 ), then I 3 will be in nonmonotonic δ-neighberhood of I 3 by (P1). The other equilibrium I 2 or I 1 or both may lie in monotonic or nonmonotonic δ-neighberhood of I 2 , or I 1 , or both. Case 2) Suppose that case 1 does not happen due to the stable manifold to E 2 and the second connection from 0 to I 3 crosses over from the left side of I 3 and right side of I 2 , then I 3 will be in nonmonotonic δ-neighberhood of I 3 by (P1). I 2 will be in nonmonotonic δ-neighberhood of I 2 and I 1 will be either monotonic or nonmonotonic δ-neighberhood of I 1 . Case 3) Suppose that cases 1 and 2 do not happen. Then the connection from 0 to I 3 moves crossing I 2 , then I 2 and I 3 , will be in nonmonotonic δ-neighberhood of I 2 and I 3 . The I 1 will be in either monotonic or nonmonotonic δ-neighberhood of I 1 . So for matrix (H 1 ), the phase plane Ω is partitioned into monotonic and nonmonotonic regions. We get partition of Ω into regions which facultative interactions occupy as amensalism (because E 2 is sink), predation (due to second connection from 0 to I 3 ), predation (if cross over I 2 ), mutualism or predation (for I 1 ), amensalism (since E 1 is sink). For the existence of amensalism, system (1) is impermanent, proof is striaghtforward [see 2 , 9]. For matrix H 3 , the connection from I 3 to E 1 , is possible, if it can move over I 2 and I 1 through the side where stable manifolds from 0 to I 3 and from 0 to I 1 do not lie. Again mutualism cannot admit this matrix H 3 . For this matrix the interaction mutualism near I 2 and I 1 shifts to nonmonotonic interaction. We get regions where interactions are amensalism, predation, and amensalism. By the same reasoning, for matrix H 4 mutualism shifts to nonmonotonic interaction. In this case the connection from I 1 to E 2 , moves over I 2 and I 3 . In this case, system (1) is impermanent. For the matrix H 2 , the connections are due to mutualism. There exists only one connection 0 → I 1 and 0 → I 3 . The connections I 1 → I 2 and I 3 → I 2 exist without any cross over I 2 . There may exist two connections from I 3 to E 2 (or I 1 to E 1 ) as the corresponding entry is zero. The one connection from I 3 to E 2 (or I 1 to E 1 ) is from II (IV) quadrant of I 3 (I 1 ). The second connection cannot cross over E 2 (E 1 ) because E 2 (E 1 ) lies on M 2 (M 1 ) axis and M 2 (M 1 ) axis is invariant. So E 2 (E 1 ) always lies in the monotonic region as per our definition. However we get amensalism (since E 2 is sink), mutualism and amensalism (E 1 is sink). System (1) is impermanent. (ii) System is competitive. As I 1 (resp.I 3 ) lies near E 1 (resp.E 2 ), the x (resp.y) coordinate of I 1 (resp.I 3 ) is lesser than the x (resp.y) coordinate of E 1 (resp.E 2 ). More clearly, the coordiates of I 1 (resp.I 3 ) are related by ≤ with the coordiates of E 1 (resp.E 2 ). For matrix H 2 , the reasoning is same as for the cooperative case with the property (P4). For other matrices the proof is same as above. Regarding the convexity of Σ, the proof is similar to that of Zeeman and Zeeman [START_REF] Zeeman | On the convexity of carrying simplices in competitive Lotka-Voltera systems[END_REF]. The feasible interior equilibria I i including axial E i belong to the positive M 1 M 2 plane and the carrying simplex Σ joins E i and I i . The Σ is not a line, as the equilibria are regular. Suppose that the Σ is not strictly convex. Then there exists a line H in the positive M 1 M 2 plane, and it meets Σ with atleast three points.We assume that H is transversal to Σ and contains no interior fixed point (if not, then one could perturb H slightly) in the positive M 1 M 2 plane. By Theorem 1.7 of Hirsch [START_REF] Hirsch | Systems of differential equations that are competitive or cooperative, III: competing Species[END_REF] Σ projects radially and homeomorphically onto H. Thus H intersects Σ in a finite number of points which belong to Σ and H in the same order. The connections from 0 to the saddle points I 1 and I 3 both cross H (by P2 in the introduction). If there exists only three points on Σ ∩ H, then the connections 0 → I 1 and ∞ → I 1 or 0 → I 3 and ∞ → I 3 cossing H add one or two points to the set of three intersecting points on Σ∩H. Thus there will be always atleast four points on Σ ∩ H which contradicts the Pink Lemma [START_REF] Zeeman | On the convexity of carrying simplices in competitive Lotka-Voltera systems[END_REF]. Statement 0.2 (i) Under (H2) for system (1), the obligate-facultative mutualisms give regions of mutualism and amensalism. (ii) Under (H3) for system (1), the obligate-obligate mutualisms give region of mutualism and region of extinction of both species. In cases (i) and (ii), system (1) is impermanent.

Proof: (i) The axial equilibrium E 2 does not exist. Assume that I 1 is saddle point and I 2 is sink. Then the connection matrix is of the form,

I 2 E 1 0 I 1 B 1 = I 2 E 1 0 I 1     0 0 x 1 0 0 1 y 0 0 0 0 0 0 0 0    
By matrices with x = 0, y = 0 and x = 0, y = 1, it can be prove (see [START_REF] Sikder | Systems of two-species mutualism with degenerate, nonhyperbolic origin, connection matrices and system-flow properties[END_REF]) that there exists the saddle-saddle connection from 0 to I 1 , and it divides the phase plane into regions; mutualism (near I 2 ), mutualism (near I 1 ) and amensalism (near E 1 ) (see[ ]). The equilibrium I 1 will be in the monotonic region, as there is no movement of flow crossing over I 1 .

(ii) The axial equilibria do not exist. Let I 1 is a saddle point and I 2 , is sink. The origin is sink. Then the connection matrix is

0 I 2 I 1 ∆ = 0 I 2 I 1   0 0 x 0 0 y 0 0 0  
Since 0 and I 2 form an ordered interval [0, I 2 ], I 1 lies in between them. For matrix with x = y = 1, there are connections from I 1 to the origin 0 and to I 2 . The unstable manifolds of I 1 lies in II and IV quadrant with respect to I 1 . Below the unstable manifold of I 1 solutions move to 0 and above the unstable manifold of I 1 solutions move to I 2 . Thus the obligate-obligate mutualism exists into regions; (i) the region of extinction where both species go to zero and (ii) the region where interaction is mutualism. It is to be noted that the matrix with x = 0, y = 1 (or x = 1, y = 0) is possible but in that situation the second connection from I 1 to 0 cannot cross over 0, as axes are invariant. For matrix with x = 1, y = 0, one connection is from I 1 to I 2 in the III quadrant of I 2 and the second connection from I 1 to I 2 can move along the IV or II quadrant of I 2 , it need not to cross over I 2 (there are unstable manifolds in the II and IV quadrant of I 1 .).

(ii) Transitions between outcomes of uni-directional interactions

Now we consider the uni-directional consumer-resource mutualism. Here, G 2 = 0 in equations [START_REF] Holland | A consumer-resource approach to the density-dependent population dynamics of mutualism[END_REF]. Solving the isoclines of M ′ i = 0, with G 2 = 0 the equation of M i becomes of order four. Thus there exists at most four intersections of the isoclines M ′ 1 = 0 and M ′ 2 = 0 in the positive plane of M 1 M 2 system. We assume that E 1 is non-saturated and E 2 is saturated. Then by the Index theorem there must exist two interior fixed points, I 1 and I 2 , where say, I 1 is a saddle point and I 2 is sink. Moreover, since E 2 and I 2 are sinks, the saddle point I 1 lies between E 2 and I 2 . The coordinates of E 2 , I 1 and I 2 can be related by ≤ .

Statement 0.3 For system (1) with mutualism and G 2 = 0, we get matrix ∆ 3 and for other matrices mutualism breaks down.

Proof: The connection matrix with the equilibria 0, E 2 , I 2 , E 1 and I 1 is of the form

E 2 I 2 I 1 E 1 0 ∆ = E 2 I 2 I 1 E 1 0       0 0 x y 0 0 0 z u 0 0 0 0 0 v 0 0 0 0 w 0 0 0 0 0      
Using the conditions ∆ 2 = 0 and rank ∆ = 2, from ∆ we get the following possible connection matrices (i)

∆ 1 with x = 1, z = 1, y = u = 0, v = 0, w = 1, (ii) ∆ 2 with x = y = 1, z = u = 0, v = w = 1, (iii) ∆ 3 with x = y = 0, z = u = 1, v = w = 1.
From the above three possible matrices ∆ i , i = 1, 2, 3, the occurence of actual connection matrix is derived by applying the properties of the monotonic flow. In matrix ∆ 1 , as the entry from 0 to I 1 is zero, there are two connections from 0 → I 1 . There is always a connection 0 → I 1 . For the other connection 0 → I 1 , it must cross over either I 1 , or I 2 . If the flow is cooperative then it cannot cross over I 2 . So in this case system is not in mutualism relationship. Orbits near I 2 move from IV quadrant to I and III to II quadrants of I 2 with respect to I 2 . Thus the flows near I 2 are nonmonotonic. The flows near I 1 can be either monotonic or nonmonotonic (if cross over around it happens). For matrix ∆ 1 , we get regions for amensalism and predation. For the matrix ∆ 2 , , the connection E 1 → E 2 can happen if the unstable manifold of E 1 can cross over both the I 2 and I 1 . As a result, the flows near I 2 and I 1 will be in nonmonotonic region and mutualim breaks down. The matrix ∆ 3 only can occur in favour of mutualism. In this case the connections are 0 → I 1 , 0 → E 1 , I 1 → I 2 , and E 1 → I 2 . The unstable manifolds in the III and I quadrant of I 1 including the connection 0 → I 1 divide the feasible phase plane into two regions so that interior solutions converge either to E 2 or I 2 . Thus system (1) with G 2 = 0 partitions Ω into regions of amensalism, predation, predation or mutualism (matrix ∆ 1 ), or amensalism and predation (matrix ∆ 2 ), or amensalism and mutualism (matrix ∆ 3 ) .

Remark 1 (a)In 2D monotonic system, to know whether a δ-neighberhood of an equilibrium is in monotonic or nonmonotonic we need to find the movement of the flows around that equilibrium. (b) In 2D nonmonotonic system, if interacting species coexist at a stable limit cycle, then it is certain that the interspecific interaction is in predation. So for the shifts of interaction from predation (-, +) to mutualism (+, +), or competition (-, -), it is necessary for the annihilations (or disappearance) of periodic solutions (if they exist) about an equilibrium. In this case, calculation of the sign of ∂f i /∂x j , i ̸ = j, in the neighberhood of the fixed point may help. (c) It may happen that for the given form function f i of system (1), the outcome of a connection matrix may not agree, in that case we need to consider the other form of f i . (d) The difference of the outcomes between mutualism and competition is that in case mutualism the saddle point lies in between two sinks and in case competition the feasible equilibria lies on a carrying simplex. If the sign ∂f i /∂x j , i ̸ = j, is positive (negetaive) in the neighberhood of a fixed point, it is for cooperation (competition). (e) For systems of three or more interacting species, if species coexist at one stable equilibrium or limit cycle and then switch to another equilibrium or limit cycle, we may ascertain whether it is in monotonic or nonmonotonic region by calculation the signs of ∂f i /∂x j , i ̸ = j, in the neighberhood of the equilibrium or limit cycle. Thus our definition of sign variation may be extended in n-species system around any isolated invariant set [START_REF] Butler | Persistence in dynamical systems[END_REF].

Comparision with four important studies

In this section we will consider four important studies for the transition of intreaction outcomes; (i) the uni-directional interactions studied by Wang et al. [START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF], (ii) interactions with a nonlinear α-function studied by Hernandez [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF], (iii) a model of bi-directional resource exchange between two local ecosystems in a metaecosystem studied by Messan-Rodriguez [START_REF] Messan-Rodriguez | Dynamical implications of bi-directional resource exchange within a meta-ecosystem[END_REF], and (iv) transitions between population interactions with a two species model studied by Lara and Rebaza [START_REF] Lara | Dynamics of transitions in population interactions[END_REF] (in Remark 2). We verify our results with their results and mention the cases not covered by their papers.

(i) The uni-directional interactions studied by Wang et al.

We consider the uni-directional CR population dynamics where the resource has both positive and negative effects on the consumer and the has only the negative effect on the resource with the following equations studied by Wang et a. [START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF].

M ′ i = M i [r i + c i F i (N 1 , N 2 ) -q i G i (N 1 , N 2 ) -d i M i ] ≡ M i f i (M 1 , M 2 ) (3) 
where,

F 1 (N 1 , N 2 ) = α 12 M 2 h 2 +M 2 ,
and F 2 (N 1 , N 2 ) = 0, the consumer functional response and G i (N 1 , N 2 ) = N j , the resource supply function. Here for system (3), ∂f 1 /∂x 2 can be positive, zero or negative, and ∂f 2 /∂x 1 is always negative. Solutions of system (3) are uniformly bounded and there are no periodic orbits for system (3). The origin 0(0, 0) always exists. The one-species equilibrium

E 1 (r 1 /d 1 , 0) or E 2 (0, r 2 /d 2 ) exists if r i , d i > 0, for i = 1, 2.
We assume that the origin is repeller, E 1 is nonsaturated and E 2 is saturated along their orthogonal direction(s). Then by the Index theorem there exists either no or two two-species equilibria I 2 (saddle, assume) and I 1 (sink). Assume that E 2 lies near I 2 and E 1 near I 1 . Then the connection matrix is of the form

E 2 I 1 I 2 E 1 0 W = E 2 I 1 I 2 E 1 0       0 0 x y 0 0 0 z u 0 0 0 0 0 v 0 0 0 0 w 0 0 0 0 0      
Using the conditions W 2 = 0 and rank W = 2, from W we get the following possible connection matrices (i)

W 1 with x = 1, z = 1, y = u = 0, v = 0, w = 1, (ii) W 2 with x = y = 1, z = u = 1, v = w = 1, (iii) W 3 with x = 0, y = 1, z = 0, u = 1, v = 1, w = 0.
For matrix W 1 , one of the two connections 0 → I 2 , must cross over I 1 , (from the left side of I 1 ). So I 1 is in nonmonotonic region with sign (+, -) and I 2 is in competitive region with sign (-, -). This result is same as (see Figure 2b in [START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF]) that of Wang et al. For matrix W 2 , the connection E 1 → E 2 , must cross over I 1 and I 2 (from the side where the connection from 0 to I 2 does not lie) and both I 1 and I 2 must be in nonmonotonic region with sign (+, -). This result is not obtained in Wang et at [START_REF] Wang | Uni-directional consumer-resource theory characterizing transitions of interaction outcomes[END_REF]. The matrix W 3 gives the same result as W 1 . Thus we get regions for amensalism, competition and predation and amensalism, predation and predation. System (3) is impermenent.

(ii) Interactions with a nonlinear α-function studied by Hernandez [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF].

Hernandez studied the following LV system of equations for a two species interaction with a nonlinear α-function

M ′ i = r i M i 1 -M i K i + α ij M j K i ≡ M i f i (M 1 , M 2 ) (4)
where,

α ij = b i M j -c i M 2 j 1+d i M 2 j
, is the interaction coefficient between species i and j, for i, j = 1, 2, with i ̸ = j. Here for system (4), ∂f 1 /∂x 2 and ∂f 2 /∂x 1 can be positive, zero or negative depending on the values of the parameters. Solutions of system (4) are uniformly bounded, for

M ′ i ≤ r i M i [1+ b i K i d i -M i K i ] and lim sup t→∞ ≤ r i K i (1 + b i K i d i ).
There are no periodic solutions for system (3), for consider the Duluc function

B(M 1 , M 2 ) = 1/M 1 M 2 , then ∂ ∂M 1 (Bf 1 ) + ∂ ∂M 2 (Bf 2 ) = -r 1 K 1 M 2 -r 2 K 2 M 1 < 0. ( 5 
)
For system (4), the origin 0(0, 0) always exists. One-species equilibria are E 1 (K 1 , 0) and E 2 (0, K 2 ). Assume that the origin, and the E 1 and E 2 are nonsaturated along their orthogonal direction(s). Then by the Index theorem there exist either one or three interior equilibria I i , i = 1, 2, 3. Whenever there are three interior fixed points we assume I 1 , I 3 are sinks and I 2 is a saddle point. Then the connection matrix is of the form

I 1 I 3 I 2 E 1 E 2 0 J = I 1 I 3 I 2 E 1 E 2 0         0 0 x 1 x 2 x 3 0 0 0 y 1 y 2 y 3 0 0 0 0 0 0 z 1 0 0 0 0 0 z 2 0 0 0 0 0 z 3 0 0 0 0 0 0        
Using the conditions J 2 = 0 and rank J = 2, from J we get the following four possible matrices, (i) J 1 with the unknown entites

x 1 = 1, x 2 = 1, x 3 = 0, y 1 = 1, y 2 = 0, y 3 = 1, z 1 = z 2 = z 3 = 1 and (ii) J 2 with x 1 = 1, x 2 = 0, x 3 = 0, y 1 = 1, y 2 = y 3 = 0, z 1 = 0, z 2 = z 3 = 1, (iii) J 3 with x 1 = x 2 = x 3 = 0, y 1 = 0, y 2 = y 3 = 1, z 1 = 0, z 2 = z 3 = 1
, and (iv)

J 4 with x 1 = 0, x 2 = x 3 = 1, y 1 = 0, y 2 = y 3 = 1, z 1 = 0, z 2 = z 3 = 1.
For matrix J 1 , system (4) is cooperative (see Figure 2a in [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF]) or competitive. In case cooperative, I 2 lies in the order interval [I 1 , I 3 ]. In case competitive the feasible equilibria lies on the carrying simplex Σ. That the system (4) could be competitive is not shown in [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF]. For matrix J 2 , for the second connection from 0 to I 2 , it must be cross over either I 1 or I 3 . In that case I 1 or I 3 , or both can be in nonmonotonic regions with signs (+, -). This matrix is reported in Figure 2b in [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF]. For matrix J 3 (J 4 ), the connection from E 1 to I 3 (E 2 to I 1 ) will cross over I 1 and I 3 (I 3 and I 2 ) and I 1 and I 3 (I 3 and I 2 ) will be in the nonmonotonic zone with sign (+, -). This case is also not reported in [START_REF] Hernandez | Dynamics of transitions between population interactions: a non-linear interaction α-function defined[END_REF]. System (4) is permanent for all matrices J I , i = 1, 2, 3, 4.

We will make our final remark for model (iii) studied by Lara and Rebaza [START_REF] Lara | Dynamics of transitions in population interactions[END_REF], where they studied transitions between population interactions with a two species model. Remark 2 . In section 5 of the paper [START_REF] Lara | Dynamics of transitions in population interactions[END_REF], it is given that the boundary equilibria of the model are nonsaturated. Hence by the Index theorem, there exists three interior fixed points P, Q, R, (in our case I 3 , I 2 , I 1 , repectively, for system (4)). The region where P and Q lie, ∂f 1 /∂x 2 and ∂f 2 /∂x 1 are negative (these are easy to check) and hence it is in competitive region. The R lies in a nonmonotonic region, where ∂f 1 /∂x 2 > 0 and ∂f 2 /∂x 1 < 0, with sign (+, -). (See Figure 5 in [START_REF] Lara | Dynamics of transitions in population interactions[END_REF]). Further, by varying the values of parameters, it is also obtained that P can be in nonmonotonic region and R can be in monotonic region. That is, this is our results from the matrix J 2 of system (4). The connecting orbits among the feasible multiple equilibria (as given in the Figure 5 in [START_REF] Lara | Dynamics of transitions in population interactions[END_REF]) are easily visualized from matrix J 2 (see P1, P2 and P3). This becomes possible by the use of the Conley connection matrix theory [START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF][START_REF] Reineck | A connection matrix analysis of ecological models[END_REF] and the property of monotonic flow [START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, I, Limit sets[END_REF][START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, II: Convergence almost everywhere[END_REF][START_REF] Hirsch | Systems of differential equations that are competitive or cooperative, III: competing Species[END_REF]. Index theorem [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF] is also helpful to derive the local stability and the existence of the number of fixed points of bounded solutions. So the mathematical tools of this paper (which are completely different from that of [START_REF] Lara | Dynamics of transitions in population interactions[END_REF]) may give new direction to understand transition outcomes between population interactions and permanence of the system. Just, using the properties of monotonic flows (or from the movement of the flows around an equilibrium) one can obtain the above conclusions from the matrix J 2 .

(iv) Model stdied by Messan Rodriguez et al [START_REF] Messan-Rodriguez | Dynamical implications of bi-directional resource exchange within a meta-ecosystem[END_REF].

Messan-Rodriguez et al. developed the following simple model (after recaling the original model) of bi-directional resources exchanges between two local ecosystems in a meta-eosystem framework

M ′ i = r i M i 1 -M i 1+α i M j -β i M j ≡ M i f i (M 1 , M 2 ), (6) 
where, M 1 and M 2 represent the resource stock of each ecosystem relative to its carrying capacity K; α i , i = 1, 2, and β i is the relative benefits and costs of resource exchanges for ecosystem i, respectively. r 1 = 1, and r 2 is the relative growth rate of resources in M 2 relative to those in M 1 . For system [START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, I, Limit sets[END_REF], solutions are uniformly bounded, there are no periodic solutions in the phase plane, and the sign of ∂f i /∂x j , i ̸ = j, can be positive, zero or negative. The origin 0(0, 0) always exists and a repeller. The axial equilibria are E 1 (1, 0) and E 2 (0, 1). Assume that the both E i are nonsaturated along their orthogonal directions and there exists three interior fixed points. Then we get the connection matrices similar to those of system (4). Similarly, we get the connection matrices of system (ii) in section 2, when we assume the one axial equilibrium is saturated and the other one is nonsaturaed with two interior fixed points. Thus, we get different and distinct regions of the two ecosystems in a meta-ecosystem, that mutualism (or competition), and/or predation and/or amensalism may occupy. Two ecosystems are permanent or impermanent. The results are obtained with the help of the Conley connection matrices and the properties of monotonic flows that are different from the analysis in [START_REF] Messan-Rodriguez | Dynamical implications of bi-directional resource exchange within a meta-ecosystem[END_REF].

Conclusion

Ecologically, shift from one interaction to others is well established. Mathematically, such shifts are described in two ways; (i) by the density of an equilibrium with respect to the carrying capacities, (ii)by the intersecting point with respect to the slopes of tangents to the zero-growth isoclines. In this paper we use another method which depends on the movement of flows around an equilibrium. As this method depends on the movement of flows or on calculation of the sign of ∂f i /∂x j , i ̸ = j, in the neighberhood of an equilibrium, we can replace an equilibrium by any isolated invariant set (see Remarks 1). For such movements in 2D monotonic flows, we need not to care about periodic solutions. But in 2D nonmonotonic flows, transition from (-, +) to other interactions, cares for periodic solutions (if they exist) are essential, as in ecology, shifts from parasitism to mutualism or competition are commonly observed. In this paper we consider models that have multiple interior fixed points and these fixed points partition the phase plane into one or more regions where species can coexist with the combination of outcomes (+, +), (-, -), (+, -), (-, 0), etc. The key factor responsible for such behavior is due to nonlinearity in the interspecific terms of the model. The interspecific term consists if costs and benefits for each species, or density-dependent, saturating, functional responses, or resource exchange between two local ecosystems etc. It depends on the value of ∂f 1 /∂x 2 and ∂f 2 /∂x 1 , which can be negative, zero, or positive by the variation of the parameters involved in these terms. Sign shift must have an effect on uniform persistence [START_REF] Butler | Persistence in dynamical systems[END_REF] or permanence [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF] of a system. For example, shifting from mutualism or competition to amensalism definitely ensures impermanence, or shifting from mutualism or competition to predation may or may not cause impermanence of the system through oscillations. Our studies show that (1) transitions of interactions (mutualism or competition) occupy different zones of the phase plane either in order as A M P A, or A C P A, or only A M, or A C, or E M etc., where A, M, P, C are for amensalism, mutualism, predation, competition respectively. E is for zone of extinction of both the species. This may look like the diagram of an example of continuous possible outcomes of mutualism in Box 2 in Bronstein [START_REF] Bronstein | Conditional outcomes in mutualistic interactions[END_REF], and (2) the number of outcomes in facultative-facultative mutualism is more than that in obligate-facultative or obligate-obligate mutualism. This was also predicted by Bronstein [START_REF] Bronstein | Conditional outcomes in mutualistic interactions[END_REF]. That is, our results are in accordance with the empirical data and observations of the insightful review of Bronstein. For these results we use the Conley connection matrix theory and the results of monotonic flows without any numerical simulations. Finally, it appears from our results that the phase plane may be partitioned into three equivalent class of zones, namely, competitive zone, mutualism zone and predation zone. Each class is equivalent in the sense that the equilibira lying in a class are with the same sign. For example the equilibria lying in the mutualistic class zone will be assigned the outcome sign (+, +). This may happen if there are finitely many equilibria (assuming they are regular) for more general interaction growth functions, where species are to switch from one stable fixed point to another for their long time existence and servival. And we replace the finite long sequence like A M M M M P P P P A... etc., by short sequence A M P A. This is what Bronstein conceived in the Box 2, if we cosider in M the signs (+, 0), or (0, 0) etc. This may reflect that interactions might occupy potentially dynamic regions along a continuum of possible outcomes, ranging from mutualistic to progressively more antagonistic, as a result of the balance of costs and benefits of interacting species (see Bronstein [START_REF] Bronstein | Conditional outcomes in mutualistic interactions[END_REF] ans Hernandez [START_REF] Hernandez | The big ifs in the outcomes of species interactions: review and insights from the interaction function (IF) model[END_REF]). The methods of this paper may give new direction to understand transition outcomes between two interacting species populations or two ecosystems in a meta-ecosystem and thus their uniform persistence.