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In this letter we investigate the propagation of nonlinear pulses along the free surface of flexible meta-
materials based on the rotating squares mechanism. While these metamaterials have previously been
shown to support the propagation of elastic vector solitons through their bulk, here we demonstrate
that they can also support the stable propagation of nonlinear pulses along their free surface. Further,
we show that the stability of these surface pulses is higher when they minimally interact with the
linear dispersive surface modes. Finally, we provide guidelines to select geometries that minimize such
interactions.

Surface waves that propagate along the boundary
of a medium play a key role in a variety of natural
and man-made systems. Seismic surface waves cause
the ground to shake1 and surface gravity waves can be
observed on rivers, lakes and oceans2. Further, sur-
face ultrasonic waves are harnessed in non-destructive
testing to detect cracks or corrosion3,4 and surface
acoustic waves are commonly used to realize electronic
systems5,6. It is therefore important to investigate the
physics of surface waves in order to better control nat-
ural events and to advance technology.

Ongoing advances in fabrication are enabling the
realization of mechanical metamaterials capable of
manipulating elastic waves in unprecedented ways.
These have been used to enable the design of waveg-
uides and filters7, energy absorbers8, energy har-
vesters9 and vibration isolators10. They have also
provided a powerful platform to investigate and ob-
serve surface waves11,12 and topologically protected
edge modes13–17. While most mechanical metamate-
rials operate in the linear regime, it has been recently
shown that large deformations and instabilities can
be exploited to manipulate the propagation of finite
amplitude elastic waves18–29. However, to date most
studies have focused on nonlinear pulses propagating
in the bulk of these flexible metamaterials. The prop-
agation of large amplitude pulses on their free surfaces
has received little attention.

In this letter, we combine experiments and simula-
tions to investigate the propagation of nonlinear waves
on the free surface of a flexible metamaterial compris-
ing a network of squares connected by thin and highly
deformable ligaments. Recent studies focused on the
propagation of vector solitons through the bulk of such
metamaterials have hinted at the existence of large
amplitude pulses with stable shape localized at their
free surfaces25 (Fig. 1a). Motivated by these observa-
tions, we systematically investigate the propagation

of large amplitude waves on the surface of a rectangu-
lar sample. We find that the system supports surface
pulses with coupled displacements and rotations that
retain their shape during propagation. Further, we
numerically investigate the stability of these surface
pulses and find that the less they interact with the
excited linear surface dispersive modes, the more sta-
ble they are.

We consider a 32 × 24 array of squares fabricated
out of polydimethylsiloxane (PDMS) using direct ink
writing23,25,30. The squares are rotated by offset an-
gles of θ0 = 25◦ with a center-to-center-distance of
a = 10.89 mm, and are connected to one another by
flexible ligaments of approximately 4 mm in width
(Fig. 1b). In our experiments, we use a customized
polylactide (PLA) impactor to apply an impulse to
the top left corner of the sample (Fig. 1b). To charac-
terize the propagation of the excited pulses, we record
the experiments with a high-speed camera (Photron
FASTCAM Mini AX) and extract the displacement
and velocity of each square unit.

Fig. 1c shows the contour plot of the vertical dis-
placement (uy) at t = 9.4 ms after impact. The
impact excites a pulse with the energy mostly local-
ized close to the top surface. To further characterize
the propagation of this pulse, we generate the spatio-
temporal map of uy along the top row of the sam-
ple (Fig. 1d). This indicates that a single pulse is
formed and propagates at a speed of c ' 28 m/s until
it reaches the end of the specimen.

Next, we make use of numerical simulations to sys-
tematically explore the characteristics of the nonlinear
pulses that propagate along the surface of the meta-
material. We model the system as an array of rigid
squares with mass m = 0.4 g and moment of inertia
J = 4.8 g mm2. Each square has three degrees of free-
dom (displacements ux and uy and rotation θ) and is
connected to the neighbors via a combination of linear
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Figure 1. (a) Experimental snapshot at t = 7 ms of
a 2D circular sample with 30 squares along its diameter
when excited with an impactor at 45◦ angle (taken from
Deng et al. 25). The color represents the velocity along
the direction of the impact (v||). The impact also excites
a large amplitude pulse that propagates along the free sur-
face with nearly constant velocity (see red dashed circle in
the snapshot and spatio-temporal plot of v|| along the sur-
face). (b) Snapshot of the system tested for this study
(left). Excitation profile of the impacted unit cell (right).
(c) Contour plot of the vertical displacement (uy) at time
t = 9.4 ms after impact. (d) Spatio-temporal map of uy
along the top surface.

longitudinal (with experimentally measured stiffness
kl = 19237 N/m), shear (ks = 9618 N/m), and rota-
tional springs (kθ = 0.0507 N.m/rad)25. By imposing
force equilibrium at each unit, we derive a system of
coupled nonlinear ordinary differential equations that
we numerically integrate to obtain the response of the
structure26. In our simulations we consider a larger
system comprising 50×25 squares to minimize bound-
ary effects, apply the experimentally extracted dis-
placement signal shown in Fig. 1b to four squares on
the top left corner (highlighted in red in Fig. 2a), and
implement free-boundary conditions everywhere else.
Finally, to prevent reflections from the bottom sur-
face, we add progressively increasing damping to the
bottom 10 rows of the model.

In Fig. 2a we report the numerically predicted con-
tour plot of uy at time t = 12.8 ms after the impact.
We find that the applied input excites a pulse with a
width of '5 squares that remains mostly localized on
the top surface. This suggests that dispersion should
occur, since the wavelength of the wave is compara-
ble to the structure’s spatial period. In order to ana-
lyze the stability of such large amplitude pulses during

propagation, in Fig. 2b we report the spatial-temporal
map of uy along the top row of the sample. Further,
in Fig. 2c we show the evolution of the vertical (uy)
and horizontal (ux) displacement components of the
pulse as a function of space along the top surface at
t = 6, 11.2 and 16.3 ms. While the former indicates
that the pulse travels along the surface with a rel-
atively constant velocity and width, the latter shows
that its amplitude and shape vary during propagation.
Since such variation could be due to an applied impact
that results in a displacement signal far from that of
a potentially supported solitary wave, we then use the
numerical signal collected at the 25th unit (which we
fit with derivatives of Gaussian functions - Fig. 2d)
as new impact signals for both the ux and uy com-
ponents. As shown in Fig. 2e, this input initially re-
sults in a more stable propagation along the surface,
closer to what one would expect from a solitary wave.
However, when simulating a longer sample compris-
ing 200×25 units we find that the pulse gets largely
distorted after a propagation distance of ≈100 units
(Fig. 2f) - likely because of interactions with the lin-
ear surface waves. To better quantify this distortion,
we introduce the ratio

η(t) =

∑
i∈Setp [u

[1,i]
y (t)]2∑200

i=1 [u
[1,i]
y (t)]2

, (1)

where u
[1,i]
y (t) is the displacement of the i-th square on

the top surface along the y-direction at time t and Setp
denotes the set of squares on the top surface that are
in the nonlinear pulse. This set comprises the squares
for which x[1,i] ∈ [x0−3W,x0 +3W ], where x0 and W
denote the position and width of the nonlinear pulse,

which are identified by fitting u
[1,i]
y with a Gaussian

curve (A sech((x− x0)/W )). As shown in Fig. 2f, we
find that η is close to 1 at t=20 ms, confirming that
the energy is initially concentrated in the nonlinear
pulse. However, during propagation η monotonically
decreases (η = 0.58 and 0.47 at t=55 and 90 ms, re-
spectively), indicating that the energy progressively
leaks out of the nonlinear pulse.

Interestingly, our simulations also indicate that the
distortion of the pulse is largely affected by the me-
chanical properties of the hinges. By changing the tor-
sional stiffness from Kθ = 4kθ cos2 θ0/(kla

2) = 0.073
(Fig. 2f) to Kθ = 0.03 (Fig. 2g), we obtain a surface
pulse that seems to be able to propagate stably with
nearly constant shape, amplitude and speed over 200
units. In this case we find that η ≈ 0.9 during the
entire propagation.

To verify our hypothesis that the distortion of the
nonlinear pulses is caused by interactions with lin-
ear surface modes, we calculate the band structure of
the system. To this end, we perform one-dimensional
Bloch wave analysis on a supercell comprising 25 ×
2 square units, assuming free boundary conditions for
the top and bottom edges. As reported in Fig 3c for
a structure characterized by Kθ = 0.03, the band
structure shows both bulk modes with motion dis-
tributed over the entire supercell (see modes iii-vi)
and surface modes localized at the free boundary (see
modes i-ii). Such surface modes occur at lower fre-
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Figure 2. (a)-(e) Numerical results for a model comprising 50×25 squares. (a) Contour plots of uy over the entire model
at t = 12.8 ms after impact and in a region close to the top surface at t = 12.0 ms, 12.8 ms, and 13.6 ms. The pulse is
excited by applying the experimentally extracted displacement signal shown in Fig. 1b to the four squares highlighted in
red. (b) Spatio-temporal map of uy along the top surface. (c) Spatial displacement profiles along the top surface at t =
6.0, 11.2 and 16.3 ms. (d) The signal collected at the 25th unit (continuous lines) is fitted with derivatives of Gaussian
functions (dashed lines). (e) Spatial displacement profiles along the top surface at t = 6.0, 11.2 and 16.3 ms when the
model is excited by applying the signal shown in (b). (f)-(g) Numerical results for a model comprising 200×50 squares.
Spatial displacement profiles along the top surface at t = 20.0, 55.0 and 90.0 ms with (f) Kθ = 0.073 and (g) Kθ = 0.03
when excited by applying the signal shown in (d).

quencies than the bulk modes for comparable wave-
lengths, and are dispersive. Next, we compare these
linear modes to the dispersion curves extracted from
the nonlinear pulses reported in Figs. 2f and 2g via
a double Fourier transform (from space-time to wave
number-frequency). We find that the dispersion curve
of the linear and nonlinear surface waves are very
close to each other for the metamaterials with both
Kθ = 0.073 (Fig. 3b) and Kθ = 0.03 (Fig. 3c). How-
ever, the nonlinear surface pulses are characterized by
a non-dispersive propagation (i.e. they are a straight
line) unlike the dispersion predicted for linear surface
modes. This indicates that for the nonlinear pulses
the linear dispersion is compensated by nonlinear dis-
tortion effects, a clear feature of solitary waves31.

In order to quantify the proximity between the lin-
ear and nonlinear surface modes, in Figs. 3d and 3e
we report the group velocities as a function of the
wavenumber of the linear (green lines) and nonlinear
(red lines) pulses for Kθ = 0.073 and 0.03. As ex-
pected, we find that the group velocity is constant for
the nonlinear modes (i.e. vg/v0 ≈ 0.41 for Kθ = 0.073
and vg/v0 ≈ 0.38 for Kθ = 0.03), whereas it varies
as a function of the wave number for the linear one.
Further, it appears that for the metamaterial with
Kθ = 0.03 the group velocity of the nonlinear pulse
is, for most wavenumbers, larger than the one of lin-
ear modes (Fig. 3d), ensuring separation and weak
interactions between them. By contrast, for the struc-
ture with Kθ = 0.073 the group velocity of the linear

waves is larger than that of the nonlinear pulse over a
wider range of wavenumbers (see area highlighted in
red in Fig. 3e). It follows that in this case the linear
waves propagate faster than the nonlinear pulse for a
wide range of wavenumbers and this promotes interac-
tions between them that ultimately lead to distortion
of the nonlinear pulse during propagation. To quan-
tify such interactions, we calculate the area Avg of the
region below vg of the linear surface modes, but above
that of the nonlinear pulse (see regions highlighted in
red in Figs. 3d and 3e). For the two structures with
Kθ = 0.073 and Kθ = 0.03 we find that Avg = 0.15
and 0.009, respectively.

Finally, to confirm the connection between the dis-
tortion of the nonlinear pulses and proximity between
the linear and nonlinear surface modes, we simu-
late 330 systems characterized by Kθ ∈ [0.01, 0.1],
Ks = ks/kl ∈ [0.1, 1], θ0 ∈ [15◦, 40◦] and input am-
plitude A ∈ [1mm, 4mm]. From each simulation, we
extract the mean value of η (defined in Eq. (1) and av-
eraged over 10 values calculated at 10 times between
55 ms and 90 ms), as well Avg . As shown in Fig. 4a,
we find that the smaller Avg (i.e., the more separation
there is between the group velocities of the linear and
nonlinear surface pulses), the higher is η (i.e., the more
energy is concentrated in the nonlinear pulses). This
observation clearly confirms that, for a given metama-
terial design, nonlinear pulses are more stable when
they weakly interact with the linear modes - a condi-
tion that is achieved when the group velocity of the
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Figure 3. (a) 1D band structure showing bulk bands
(black lines) and edge bands (green lines). Modal defor-
mation fields of surfaces (i-ii) and bulk (iii-vi) modes. The
colors indicate the rotation of each unit (with dark blue
corresponding to no rotation and dark red to maximum ro-
tation). (b)-(c) Comparison between the linear modes and
the dispersion curves extracted from the nonlinear pulses
reported in Figs. 2f and 2g via a double Fourier trans-
form (from space-time to wave number-frequency) for (b)
Kθ = 0.073 and (c) Kθ = 0.03. (d)-(e) Group velocity of
the nonlinear (red lines) and linear (green lines) surface
waves for (d) Kθ = 0.073 and (e) Kθ = 0.03.

nonlinear waves is greater than that of linear modes
over a wide frequency range. Further, our results indi-
cate that the ratio η strongly depends on the geomet-
ric parameters of the metamaterial. Stable propaga-
tion (i.e. η → 1) is found for Kθ ' 0.02 (Figs. 4b-d),
input amplitude Ain ' 2 mm (Fig. 4b), offset angle
θ0 ' 30o (Fig. 4c), and dimensionless shear stiffness
Ks = ks/kl ' 0.5 (Fig. 4d). As such, these results
provide guidelines to identify flexible metamaterials
based on the rotating squares mechanism that can
support stable propagation of large amplitude pulses
on their free surfaces.

To summarize, we have demonstrated that flexible
metamaterials based on the rotating squares mech-
anism can support the propagation of solitary-like
nonlinear wave pulses along their free surfaces. Our
results indicate that stable propagation of nonlinear
pulses along the surface is achieved when the large

amplitude waves minimally interact with the linear
surface dispersive modes. In practice, this condition
is realized when the nonlinear pulses possess a larger
group velocity than the linear surface modes for most
wavenumbers. Although our numerical simulations of-
fer ample evidence of the existence of nonlinear surface
pulses, we have not yet been able to derive analytical
solutions to prove their solitary nature. Given their
characteristic width of about 5 units, as well as their
spatial shapes, the supported surface pulses could be
either compactons or micropterons32–34, but an ana-
lytical solution is needed to confirm this hypothesis -
a challenge for future work.
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